Разработка системы для оценки перспективности производственных направлений на предприятии

Описание используемых математических методов и моделей, новые подходы к анализу и синтезу динамических объектов. Анализ иерархий и приоритетов, шкала относительной важности. Метод Крылова и свойства квадратной матрицы, выбор программной платформы.

Рубрика Экономико-математическое моделирование
Вид курсовая работа
Язык русский
Дата добавления 23.03.2011
Размер файла 162,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ЗАДАНИЕ НА КУРСОВОЙ ПРОЕКТ ПО КУРСУ «ЭКОНОМИЧЕСКАЯ КИБЕРНЕТИКА»

Содержание

Исходные данные

Введение

1.Описание используемых математических методов и моделей

1.1 Анализ иерархий и приоритетов

1.2 Метод Крылова

1.3 Метод Ньютона (метод касательных

1.4 Метод Гаусса для решения систем уравнений

2.Обоснование выбора программной платформы

Исходные данные

Предприятие, производящее компьютеры. На предприятии есть пять основных направлений:

1) PC Производство настольных рабочих станций

2) СР Производство серверов

3) СО Производство сетевого оборудования

4) КП Производство компьютерной периферии

5) НБ Производство ноутбуков Производство линейно.

Структура технологических связей:

PC

СР

СО

КП

НБ

PC

0,053

0,123

0,042

0,087

0,062

СР

0,085

0,070

0,076

0,160

0,110

CO

0,050

0,132

0,048

0,084

0,046

КП

0,045

0,069

0,047

0,030

0,117

НБ

0,050

0,104

0,051

0,067

0,065

Всего на предприятии работает 3000 человек, структура распределения трудовых ресурсов на производство единицы продукции следующая:

PC

СР

СО

КП

НБ

0,112

0,050

0,049

0,028

0,147

N = 7 - последняя цифра М = 1 - предпоследняя

Требуется:

1) Составить таблицу попарных сравнений, исходя из имеющегося спроса на рынке каждого вида продукции. Оценить математически согласованность таблицы.

2) Определить приоритеты для производства каждого вида продукции и на основании этих приоритетов рассчитать предварительный режим работы производства, считая, что всего на предприятии ежемесячно производится 100000 единиц оборудования.

3) Оценить является ли производство продуктивным. При непродуктивном производстве внести в технологическую матрицу необходимые коррективы.

4) Учитывая имеющиеся ограничения на трудовые ресурсы рассчитать максимально возможный столбец выпуска добавочной стоимости

5) Для каждого вида продукции рассчитать оптимальную ценовую политику. Для расчета ценовой политики использовать самостоятельно составленные статистические данные о продажах

6) Сделать вывод, от том какие три из шести из подразделений являются наиболее перспективными.

Введение

В условиях рыночной системы управления производственной и сбытовой деятельностью предприятий и фирм в основе принятия хозяйственных решений лежит рыночная информация, а обоснованность решений проверяется рынком в ходе реализации товаров и услуг. При таком подходе основой предпринимательской деятельности становится изучение потребительского спроса.

Кибернетика характеризуется новыми подходами к анализу и синтезу сложных динамических объектов. Системный подход, позволяет рассматривать явление во всей его сложности, с учетом всех имеющихся связей и свойств. Вместе с тем, развитие кибернетики потребовало переосмысления некоторых старых понятий, сложившихся в общественной практике, и формализации представлений терминологического характера, являющихся исходной базой при изучении сложных систем управления различной природы.

Целью данного курсового проекта является разработка системы для оценки перспективности производственных направлений на предприятии.

Для достижения поставленной цели следует разработать ряд взаимосвязанных программных модулей, а именно:

- модуль подготовки данных;

- модуль формирования режима работы производства, на основе оценки приоритетов;

- модуль расчета максимально возможного выпуска добавочной стоимости, с использованием модели Леонтьева;

- модуль определения оптимальной ценовой политики для видов продукции.

1.Описание используемых математических методов и моделей

1.1 Анализ иерархий и приоритетов

Метод анализа иерархий является замкнутой логической конструкцией, которая обеспечивает с помощью простых и хорошо обоснованных правил, решение многокритериальных задач, включающих как качественные, так и количественные факторы, причем количественные факторы могут иметь разную размерность. Метод основан на декомпозиции задачи и представлении ее в виде иерархической структуры, что позволяет включить в иерархию все имеющиеся у лица, принимающего решение знания по решаемой проблеме и последующей обработке суждений лиц, принимающих решения. В результате может быть выявлена относительная степень взаимодействия элементов в иерархии, которые затем выражаются численно. Метод анализа иерархий включает процедуры синтеза множественных суждений, получения приоритетности критериев и нахождения альтернативных решений.

Весь процесс решения подвергается проверке и переосмыслению на каждом этапе, что позволяет проводить оценку качества полученного решения.

Первый этап - предусматривает представление проблемы в виде иерархии или сети. В простейшем случае иерархия строится начиная с цели, которая помещается в вершину иерархии. Через промежуточные уровни, на которых располагаются критерии и от которых зависят последующие уровни, к самому низкому уровню, который содержит перечень альтернатив.

Второй этап. После иерархического представления задачи необходимо установить приоритеты критериев и оценить каждую из альтернатив по критериям, определив наиболее важную их них.

В методе анализа иерархий элементы сравниваются попарно по отношению к их влиянию на общую для них характеристику.

Парные сравнения приводят к записи характеристик сравнений в виде

квадратной таблицы чисел, которая называется матрицей.

Сравнивая набор критериев, друг с другом, формируется обратно

симметричная матрица попарных сравнений, которая имеет вид (1.1).

Когда задача представлена в виде иерархической структуры, матрица составляется для попарного сравнения критериев на втором уровне по отношению к общей цели, расположенной на первом уровне. Такие же матрицы должны быть построены для парных сравнений каждой альтернативы на третьем уровне по отношению к критериям второго уровня и т.д., если количество уровней больше трех.

Для проведения субъективных парных сравнений в методе анализа иерархий используется шкала, представленная в таблице 1.1.

Таблице 1.1- Шкала относительной важности

Интенсивность относительной важности

Определение

Объяснение

1

Равная важность

Равный вклад двух критериев в цель.

3

Умеренное превосходство одного над другим.

Опыт и суждения дают легкое превосходство одной альтернативы над другой

5

Существенное или сильное превосходство

Опыт и суждения дают сильное превосходство одного критерия над другим

7

Значительное превосходство

Одному из критериев дается настолько сильное предпочтение, что оно становится практически значительным

9

Очень сильное превосходство

Очевидность превосходства одного критерия над другим подтверждается наиболее сильно

2,4,6,8

Промежуточные решения между двумя соседними суждениями

Применяется в компромиссных случаях

Обратные величины приведенных выше чисел

Если при сравнении одного критерия с другим получено одно из вышеуказанных чисел, то при сравнении второго критерия с первым получаем обратную величину

В рамках данной курсовой работы в качестве критерия для сравнения видов продукции использовались статистические данные по продажам (спросу) на рынке. Данные по продажам представлены в таблице 1.2.

Таблица 1.2 - Статистические данные по продажам продукции предприятия

Виды

PC

СР

СО

КП

НБ

Итого

5000

200

700

1100

3000

10000

Пояснение к сокращениям:

PC - Производство настольных рабочих станций

СР - Производство серверов

СО - Производство сетевого оборудования

КП - Производство компьютерной периферии

НБ - Производство ноутбуков

Для определения значений попарных сравнений воспользуемся соотношением (1.2).

модель приоритет матрица программа

где - сравнение i -го и j -то вида продукции; d] - спрос на j -й вид

продукции.

Таким образом, таблица попарных сравнений будет иметь вид:

Таблица 1.3 - Таблица попарных сравнений (подготовка).

PC

CP

CO

КП

НБ

PC

1

25,000

7,143

4,545

1,667

5000

CP

0,040

1

0,286

0,182

0,067

200

CO

0,140

3,500

1

0,636

0,233

700

КП

0,220

5,500

1,571

1

0,367

1100

НБ

0,600

15,000

4,286

2,727

1

3000

5000

200

700

1100

3000

10000

Для приведения таблицы попарных сравнений к шкале 1-10, следует воспользоваться соотношением (1.3):

Таким образом, таблица попарных сравнений будет иметь вид: Таблица 1.4- Таблица попарных сравнений

PC

CP

СО

КХ1

НБ

PC

1

10,000

2,857

1,818

0,667

CP

0,016

1

0,114

0,073

0,027

CO

0,056

1,400

1

0,255

0,093

КП

0,088

2,200

0,629

1

0,147

НБ

0,240

6,000

1,714

1,091

1

Из таблицы видно, что Рабочие станции по сравнению с Серверами оценены как 10, соответственно Сервера по сравнению Рабочими станциями в 0,016.

Анализ приоритетов производится с использованием «Модуля формирования режима работы производства, на основе оценки приоритетов», работа которого будет описана далее.

1.2 Метод Крылова

Метод Крылова основан на свойстве квадратной матрицы М обращать в нуль свой характеристический многочлен. В данной работе матрица М -это матрица коэффициентов технологических связей, которая имеет вид представленный в (1.4).

или в числах (для n = 9 и m = 1)

Согласно теореме Гамильтона-Кали, всякая квадратная матрица является корнем своего характеристического многочлена и, следовательно, обращает его в нуль. Пусть (1.5) характеристический многочлен

Заменяя в выражении (1.5) величину на М , получаем

Взяв произвольный ненулевой вектор и умножив обе части выражения (1.6) на него, получим:

Предположим что:

Тогда:

Или в виде

Если эта система имеет единственное решение, то ее корни р], р2,..., рп являются коэффициентами характеристического многочлена (1.5).

Если известны коэффициенты рх2,..., рп и корни характеристического многочлена, то метод Крылова дает возможность найти соответствующие собственные векторы по следующей формуле:

\

Здесь - векторы, использованные при нахождении коэффициентов рх, рг,..., рп методом Крылова, а коэффициенты определяются по схеме Горнера

Для определения собственных чисел матрицы М необходимо решить

полученное характеристическое уравнение. Для матрицы М это уравнение будет пятой степени, решать такое уравнение в данной работе будем решать, используя метод касательных или иначе метод Ньютона.

1.3 Метод Ньютона (метод касательных)

Метод Ньютона (также известный как метод касательных) -- это итерационный численный метод нахождения корня (нуля) заданной функции. Поиск решения осуществляется путём построения последовательных приближений и основан на принципах простой итерации. Метод обладает квадратичной сходимостью. Улучшением метода является метод хорд и касательных. Также метод Ньютона может быть использован для решения задач оптимизации, в которых требуется определить нуль первой производной либо градиента в случае многомерного пространства.

Достоинства метода Ньютона:

1) если минимизируемая функция является квадратической, то метод позволит найти минимум за один шаг;

2) если минимизируемая функция относится к классу поверхностей вращения, то метод также обеспечивает сходимость за один шаг;

3) если функция несимметрична, то метод не обеспечивает сходимость за конечное число шагов. Но для многих функций достигается гораздо более высокая скорость сходимости, чем при использовании других модификаций метода наискорейшего спуска.

Чтобы численно решить уравнение f(x)=0 (в предыдущем подразделе это характеристическое уравнение, представленное (1.5)) методом простой итерации, его необходимо привести к следующей форме:, где -сжимающее отображение.

Для наилучшей сходимости метода в точке очередного приближения должно выполняться условие . Решение данного уравнения ищут в виде , тогда:

В предположении, что точка приближения «достаточно близка» к корню , и что заданная функция непрерывна, окончательная формула такова:

С учётом этого функция определяется выражением:

Эта функция в окрестности корня осуществляет сжимающее отображение, и алгоритм нахождения численного решения уравнения f{x)= 0 сводится к итерационной процедуре вычисления:

По теореме Банаха последовательность приближений стремится к корню уравнения.

Рисунок 1.1 -Графическое представление метода Ньютона

Основная идея метода заключается в следующем: задаётся начальное приближение вблизи предположительного корня, после чего строится касательная к исследуемой функции в точке приближения, для которой находится пересечение с осью абсцисс. Эта точка и берётся в качестве следующего приближения. И так далее, пока не будет достигнута необходимая точность.

Использование метода Крылова и метода Ньютона приведены в приложениях. Реализация методов производилась в среде MathCAD и MS VS (VB.net).

1.4 Метод Гаусса для решения систем уравнений

Метод Гаусса - классический метод решения системы линейных алгебраических уравнений. Состоит в постепенном понижении порядка системы и исключении неизвестных.

Алгоритм решения СЛАУ методом Гаусса подразделяется на два этапа.

На первом этапе осуществляется так называемый прямой ход, когда путём элементарных преобразований над строками систему приводят к ступенчатой или треугольной форме, либо устанавливают, что система несовместна. А именно, среди элементов первого столбца матрицы выбирают ненулевой, перемещают его на крайнее верхнее положение перестановкой строк и вычитают получавшуюся после перестановки первую строку из остальных строк, помножив её на величину, равную отношению первого элемента каждой из этих строк к первому элементу первой строки, обнуляя тем самым столбец под ним. После того, как указанные преобразования были совершены, первую строку и первый столбец мысленно вычёркивают и продолжают пока не останется матрица нулевого размера. Если на какой-то из итераций среди элементов первого столбца не нашёлся ненулевой, то переходят к следующему столбцу и проделывают аналогичную операцию.

На втором этапе осуществляется так называемый обратный ход, суть которого заключается в том, чтобы выразить все получившиеся базисные переменные через небазисные и построить фундаментальную систему решений либо, если все переменные являются базисными, то выразить в численном виде единственное решение системы линейных уравнений. Эта процедура начинается с последнего уравнения, из которого выражают соответствующую базисную переменную и подставляют в предыдущие уравнения, и так далее, поднимаясь по «ступенькам» наверх. Каждой строчке соответствует ровно одна базисная переменная, поэтому на каждом шаге, кроме последнего, ситуация в точности повторяет случай последней строки.

Помимо аналитического решения СЛАУ, метод Гаусса также применяется для: нахождения матрицы, обратной к данной (к матрице справа приписывается единичная такого же размера, что и исходная, после чего исходную приводят к виду единичной матрицы методом Гаусса-Жордана; в результате на месте изначальной единичной матрицы справа оказывается обратная к исходной матрица).

2.Обоснование выбора програмной платформы

Для выполнения поставленных задач использовались Microsoft Visual Studio 2005 (Visual Basic.Net как язык программирования) и математический пакет MathCAD, для контроля правильности математических расчетов.

Обоснование выбора языка программирования. Классический список проблем, который существовал в программировании, и на разрешение которого было направлено создание корпорацией Microsoft продукта -технологии Microsoft.Net:

- разнообразие частных решений для решения задач разработки крупномасштабного программного обеспечения - как результат, явно ощущалась потребность в разработке некоторого общего подхода, в котором бы критически учитывались все имеющиеся решения, и в рамках которого с единых позиций ' можно было бы разрешать многие проблемы информационной индустрии;

- сложность интеграции существующих решений в рамках единых программных систем - различие аппаратно-программных платформ, предлагаемых корпоративных решений, вариантность программных компонент выводит проблему интеграции разрабатываемого ПО в число наиболее острых задач программирования;

- трудоемкость разработки распределенных программных систем -возникающие при разработке распределенных систем проблемы обеспечения надежности, безопасности и масштабируемости требовали создания более общих средств решения, определения признаваемых подходов и стандартов;

- широкое распространение Интернет технологий - мир Интернета требовал осмысления накопленных после появления Java решений и ожидал промышленного перехода на технологии сервис-ориентированного программного обеспечения и др.

Платформа Microsolt.Net. для разработки и исполнения программного обеспечения решает эти проблемы программирования.

Платформа .NET состоит из нескольких основных компонентов:

- операционные системы корпорации Microsoft (Windows 2000/ХР/МЕ/СЕ), представляющие собой базовый уровень платформы MS .Net,

- серверы MS.Net (.Net Enterprise Servers) являются программными продуктами корпорации Microsoft, использование которых позволяет снизить сложность разработки сложных программных систем. В числе готовых для применения серверы Application Center 2000, Exchange Server 2000, SQL Server и др.,

- сервисы MS.Net (.Net Building Block Services) представляют собой готовые «строительные блоки» сложных программных систем, которые могут быть использованы через Интернет как сервисные услуги. Набор таких сервисов MS.Net планируется последовательно расширять. Примером имеющегося сервиса платформы MS.Net является Microsoft Passport, позволяющий установить единое имя пользователя и пароль на всех сайтах, поддерживающих аутенфикацию через Passport,

- интегрированная среда разработки приложений Visual Studio.NET (VS.Net) - верхний уровень MS.Net - обеспечивает возможность создания сложного ПО на основе платформы и продолжает в этом плане ряд разрабатываемых корпорацией Microsoft средств разработки профессионального программного обеспечения.

Обоснование выбора математического пакета.

MATHCAD универсальный математический пакет, предназначенный для выполнения инженерных и научных расчетов. Основное преимущество пакета - естественный математический язык, на котором формируются решаемые задачи. Объединение текстового редактора с возможностью использования общепринятого математического языка позволяет пользователю получить готовый итоговый документ. Пакет обладает широкими графическими возможностями, расширяемыми от версии к версии. Практическое применение пакета существенно повышает эффективность интеллектуального труда.

От других продуктов аналогичного назначения, например, Maple & Theorist (компании Waterloo Maple Software) и Mathematica (компании Wolf Research), MATHCAD (компании Mathsoft) отличается ориентацией на создание высококачественных документов в режиме WYSIWYG. Это означает, что, внося изменения, пользователь немедленно видит их результаты и в любой момент может распечатать документ во всем блеске. Работа с пакетом за экраном компьютера практически совпадает с работой на бумаге с одной лишь разницей - она более эффективна. Преимущества MATHCAD состоит в том, что он не только позволяет провести необходимые расчеты, но и оформить свою работу с помощью графиков, рисунков, таблиц.

Размещено на Allbest.ru


Подобные документы

  • Построение графического дерева решений по установленному критерию оптимальности. Анализ узлов дерева решений с точки зрения доступности информации. Определение вектора приоритетов альтернатив, используя метод анализа иерархий и матрицы парных сравнений.

    контрольная работа [106,4 K], добавлен 09.07.2014

  • Понятие простой экспертизы. Экспертное оценивание важности объектов. Усреднение экспертных оценок. Попарное сравнение объектов. Сложные экспертизы, метод дерева целей. Общие требования при структурировании проблемы. Применение метода анализа иерархий.

    контрольная работа [241,5 K], добавлен 14.02.2011

  • Характеристика ипотечного кредитования на примере Брянской области. Обзор математических методов принятия решений: экспертных оценок, последовательных и парных сравнений, анализа иерархий. Разработка программы поиска оптимального ипотечного кредита.

    курсовая работа [1,7 M], добавлен 29.11.2012

  • Изучение экономических приложений математических дисциплин для решения экономических задач: использование математических моделей в экономике и менеджменте. Примеры моделей линейного и динамического программирования как инструмента моделирования экономики.

    курсовая работа [2,0 M], добавлен 21.12.2010

  • Определение происхождения эффекта взаимодействия. Последовательность и приёмы системного анализа. Разработка максимального количества альтернатив. Разработка эмпирической модели. Основные типы шкал, используемых при спецификации переменных системы.

    презентация [253,7 K], добавлен 19.12.2013

  • Исследование самой совершенной операционной системы для мобильных устройств в мире. Особенности использования математических методов для улучшения работы организации и максимизации прибыли. Применение скоринга для оценки риска и анализа сотрудничества.

    курсовая работа [344,1 K], добавлен 04.12.2013

  • Анализ основных способов построения математической модели. Математическое моделирование социально-экономических процессов как неотъемлемая часть методов экономики, особенности. Общая характеристика примеров построения линейных математических моделей.

    курсовая работа [1,3 M], добавлен 23.06.2013

  • Типы производственных функций и их свойства. Одноотраслевые динамические макроэкономические модели. Основа балансовых моделей - балансовый метод, т.е. метод взаимного сопоставления материальных, трудовых и финансовых ресурсов и потребностей в них.

    курс лекций [176,1 K], добавлен 25.01.2010

  • Характеристика основных принципов создания математических моделей гидрологических процессов. Описание процессов дивергенции, трансформации и конвергенции. Ознакомление с базовыми компонентами гидрологической модели. Сущность имитационного моделирования.

    презентация [60,6 K], добавлен 16.10.2014

  • Методика и основные этапы построения математических моделей, их сущность и особенности, порядок разработки. Составление математических моделей для системы "ЭМУ-Д". Алгоритм расчета переходных процессов в системе и оформление результатов программы.

    реферат [198,6 K], добавлен 22.04.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.