Корреляционная функция. Взаимная корреляционная функция. Линейное преобразование случайного процесса

Алгоритм вычисления автокорреляционной функции. Специфика оценки математического ожидания и расчет дисперсии случайного процесса. Взаимная корреляционная функция. Линейное преобразование и спектральная плотность случайного процесса. Преобразование Фурье.

Рубрика Экономико-математическое моделирование
Вид реферат
Язык русский
Дата добавления 15.02.2011
Размер файла 65,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

18

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Корреляционная функция. Взаимная корреляционная функция. Линейное преобразование случайного процесса

1. Корреляционная функция

При исследовании случайных сигналов широко используется теория случайных процессов, основанная на использовании моментов не выше второго порядка. Эта теория получила название корреляционной теории.

Определение. Корреляционной функцией Rx(t1,t2) случайного процесса X(t) называется корреляционный момент центрированного случайного процесса в двух сечениях t = t1 и t = t2:

Корреляционная функция обладает всеми свойствами корреляционного момента. Часто вместо корреляционной функции рассматривается нормированная корреляционная функция x(t1,t2):

которая является безразмерной величиной.

В дальнейшем будем рассматривать только центрированные случайные процессы. Если процесс будет не центрированным, то об этом будет специально оговорено.

Корреляционная функция Rx(t1,t2) случайного процесса X(t) называется еще автокорреляционной функцией.

Для стационарных процессов (в широком и узком смысле) автокорреляционная функция имеет вид

Rx(t1,t2) = Rx(0, t2 - t1) = Rx() ,

где = t2 - t1.

Можно определить и временную автокорреляционную функцию следующим образом

где - реализация центрированного случайного процесса X(t). Для эргодических процессов = Rx().

Ниже приведен обычный график автокорреляционной функции

Rx

2. Свойства автокорреляционных функций

Автокорреляционные функции играют большую роль в представлении случайных процессов и при анализе систем, оперирующих со случайными входными сигналами. Поэтому приведем некоторые свойства автокорреляционных функций стационарных процессов.

1. Rx(0) = M(X2(t)) = Dx(t).

2. Rx() = Rx(-). Автокорреляционная функция является четной функцией. Это свойство симметрии графика функции исключительно полезно при вычислении автокорреляционной функции, так оно означает, что вычисления можно производить только для положительных , а для отрицательных можно их определить, используя свойство симметрии.

3.Rx() Rx(0). Наибольшее значение автокорреляционной функции, как правило, принимает при = 0.

Пример. В случайном процессе X(t) = A Cost, где А - случайная величина с характеристиками: М(А) = 0, D(A) = 2, найти М(Х), D(Х) и Rx(t1,t2).

Решение. Найдем математическое ожидание и дисперсию случайного процесса:

М(Х) = М(A Cost) = Cost М(А) = 0,

D(Х) = М((A Cost-0)2) = М(А2) Cos2t = 2 Cos2t.

Теперь найдем автокорреляционную функцию

Rx(t1,t2) = М(А Cost1 А Cost2) =

= М(А2) Cost1 Cost2 = 2 Cost1 Cost2.

3. Взаимная корреляционная функция

Входной Х(t) и выходной Y(t) случайные сигналы системы можно рассматривать как двумерный векторный случайный процесс Введем числовые характеристики этого процесса.

Математическое ожидание и дисперсия векторного случайного процесса определяется как математическое ожидание и дисперсия его компонент:

Корреляционную функцию векторного процесса введем с помощью матрицы второго порядка:

где Rxy (t1, t2) взаимная корреляционная функция случайных процессов X(t) иY(t), определяемая следующим образом

Из определения взаимной корреляционной функции вытекает, что

Rxy (t1,t2) = Ryx (t2,t1).

Нормированной взаимной корреляционной функцией двух случайных процессов X(t), Y(t) называется функция

Определение. Если взаимная корреляционная функция случайных процессов X(t) и Y(t) равна нулю:

то случайные процессы называются некоррелироваными.

Для суммы случайных процессов X(t) и Y(t) автокорреляционная функция равна

Rx+y(t1,t2) = Rx(t1,t2) + Rxy(t1,t2) + Ryx(t1,t2) + Ry(t1,t2).

Для некоррелированных случайных процессов X(t) и Y(t) автокорреляционная функция суммы случайных процессов равна сумме автокорреляционных функций

Rx+y(t1,t2) = Rx(t1,t2) + Ry(t1,t2),

а значит и дисперсия суммы случайных процессов равна сумме дисперсий:

Dx+y(t) = Dx(t) + Dy(t).

Если где X1(t), ..., Xn(t) - некоррелированные случайные процессы, то и

При выполнении различных преобразований со случайными процессами часто удобно записывать их в комплексном виде.

Комплексным случайным процессом называется случайный процесс вида

Z(t) = X(t) + i Y(t),

где X(t) , Y(t) - действительные случайные процессы.

Математическое ожидание, корреляционная функция и дисперсия комплексного случайного процесса определяются следующим образом:

M(Z) = M(X) + i M(Y),

где знак * обозначает комплексное сопряжение;

Пример. Пусть случайный процесс , где - постоянная величина, Здесь А и - независимые случайные величины, причем М(А) = mA, D(A) = 2 , а - равномерно распределенная случайная величина на интервале [0 , 2]. Определить математическое ожидание, корреляционную функцию и дисперсию комплексного случайного процесса Z(t).

Решение. Найдем математическое ожидание:

Используя равномерное распределение случайной величины на интервале [0 , 2], имеем

Автокорреляционная функция случайного процесса Z(t) равна

Отсюда имеем

Dz(t1) = Rz(t1, t1) = 2 + mA2.

Из полученных результатов следует, что случайный процесс Z(t) стационарный в широком смысле.

4. Линейное преобразование случайного процесса

При решении многих практических задач радиотехники приходится определять характеристики случайного процесса на выходе линейной системы. Линейная система осуществляет линейные операции над входным случайным процессом. Это значит, что если на вход системы поступает случайный процесс X(t), то на выходе этот процесс преобразуется в случайный процесс

Y(t) = A [X(t)],

где А - оператор (преобразование), обладающий свойствами:

A [1X1(t) + 2X2(t)] = 1 A [X1(t)] + 2[X2(t)].

Здесь постоянные величины.

Примеры линейных операторов

Оператор умножения на неслучайную функцию f(t):

Y(t) = A [X(t)] = f(t) X(t).

Определим математическое ожидание и автокорреляционную функцию случайного процесса Y(t):

my(t) = M(Y(t)) = M(f(t) X(t)) = f(t) M(X(t)),

Оператор дифференцирования:

Представив производную в виде предела

и применив операцию математического ожидания к правой и левой части равенства, получаем

Так как

То

Оператор интегрирования:

Представим интеграл в виде интегральной суммы

и применим к этому равенству операцию математического ожидания. Тогда имеем

Автокорреляционная функция случайного процесса легко определяется:

5. Преобразование Фурье

При анализе различных линейных систем широко используются преобразования Фурье и Лапласа, позволяющие достаточно просто выполнить необходимые вычисления. Основная причина такого упрощения заключается в замене процедуры свертки, используемой при анализе системы во временной области на обычную операцию умножения частотных характеристик и функций, используемых при анализе в частотной области.

Пусть у нас имеется сигнал (неслучайный, который представляет собой функцию времени) f(t), измеряемый в вольтах. Тогда

- преобразование Фурье сигнала f(t) (иногда под преобразованием Фурье понимают сопряженную величину F*()), которое имеет размерность [B/(рад/c)] и определяет относительные амплитуды и фазы незатухающих гармонических составляющих. Таким образом, амплитудное соотношение в преобразовании Фурье характеризует плотность распределения амплитуд по частоте, а значит определяет распределение энергии по спектру. Спектром любого колебательного процесса называется функция, описывающая распределение амплитуд гармоник по различным частотам. Спектр показывает, какого рода колебания по частоте преобладают в данном процессе и какова его внутренняя структура.

Для преобразования Фурье разработана теория, суть которой кратко заключается в следующем.

Вводится пространство L2 (-,) - пространство суммируемых в квадрате функций, то есть таких функций, для которых

Если f(t) - сигнал, то это условие означает конечность мощности этого сиг-

нала. Для каждой функции f L2 (-,) существует предел в среднем функции

при Т и этот предел обозначается

причем F() L2 (-,). Существует и обратное преобразование

Для двух преобразований Фурье

,

выполняет обобщенное равенство Парсеваля:

В частности, получаем обычное равенство Парсеваля

6. Спектральная плотность стационарного случайного процесса

Непосредственное применение преобразования Фурье для реализации случайного процесса x(t) неприменимо, так как это преобразование не существует. С целью использования преобразования Фурье при анализе стационарного (центрированного) случайного процесса необходимо видоизменить реализацию процесса таким образом, чтобы преобразование Фурье существовало для каждой реализации. Один из таких способов заключается во введении усеченного процесса XT(t):

Этот усеченный процесс удовлетворяет требованию существования преобразования Фурье для любой реализации, так как

Это соотношение означает, что оно выполняется для любой реализации случайного процесса XT(t). Теперь для усеченного процесса можно ввести преобразование Фурье, понимая под этим преобразование Фурье любой его реализации:

Целью дальнейшего является доказательство того факта, что в пределе при Т существует, если даже не существует преобразование Фурье для какой-либо реализации.

Первый этап доказательства состоит в применении равенства Парсеваля:

(1)

Заметим, что

(2)

Усредним теперь во времени левую часть равенства (1) с целью получения средней мощности случайного процесса

(3)

Левая часть полученного равенства представляет собой квадрат эффективного значения функции XT(t). Кроме того, для эргодического процесса при Т эта величина приближается к значению среднего квадрата случайного процесса M(X2(t)).

В соотношении (3) нельзя перейти к пределу при Т, так как не существует .

Поэтому сначала возьмем математическое ожидание левой и правой частей этого равенства

и перепишем его, устремив Т . Тогда

Для стационарного процесса

Поэтому получаем соотношение

(4)

Величина

называется спектральной плотностью случайного процесса. Укажем, что после выполнения операции усреднения по множеству реализаций (по ансамблю) справедлив переход к пределу при Т . Если X(t) - напряжение, то ([X] = B), Sx() имеет размерность а интеграл от Sx() в соответствии с (4) определяет средний квадрат этого напряжения, то есть

Более наглядная физическая интерпретация спектральной плотности может быть дана путем анализа средней мощности. Если X(t) - флуктуационное напряжение или ток, протекающий через резистор сопротивления 1 Ом, то М(Х2) есть средняя мощность, рассеиваемая этим резистором.

Спектральную плотность можно интерпретировать как среднюю мощность, сосредоточенную в пределах полосы частот шириной 1 Гц.

Вследствие этого спектральную плотность часто называют спектром плотности мощности.

От двусторонней спектральной плотности случайного процесса можно перейти к односторонней, где фигурирует обычно частота f. С этой целью запишем

и в первом интеграле сделаем замену переменной, положив = 2f, а во втором - = - 2f.

Тогда

Так как в силу соотношения (2) функция Sx() = Sx(-), то есть является четной функцией, то

где

и

Представим интеграл в этом соотношении в виде интегральной суммы

где Dk - дисперсия случайного процесса на k-ой гармонике. Отсюда получаем, что Gx(f) = Dk/fk - дисперсия (мощность) k-ой гармоники, отнесенная к полосе частот fk, то есть спектральная плотность дисперсии (мощности) случайного процеса.

Пример. Стационарный случайный процесс имеет двухстороннюю спектральную плотность

Определить среднюю мощность процесса, рассеиваемую на резисторе сопротивлением 1 Ом в диапазоне изменения от -4 до 4.

Решение Средняя мощность процесса M(X2(t)) для указанного диапазона равна:

автокорреляционная функция случайный процесс

В радиотехнике часто используется понятие "белого шума". Под "белым шумом" принято понимать стационарный случайный процесс, спектральная плотность которого постоянна на всех частотах. Термин "белый шум" образно подчеркивает аналогию со светом, у которого в пределах видимого диапазона частот интенсивность всех спектральных составляющих примерно одинакова. Белый шум является математической моделью процесса, который реально в природе не существует, так как мощность его равна бесконечности. Однако это удобная модель для описания широкополосных случайных процессов систем, в полосе пропускания которых спектр можно считать постоянным.

Размещено на Allbest


Подобные документы

  • Построение и изучение математической модели случайного стационарного эргодического процесса с вероятностными характеристиками: ожидание и дисперсия. Построение графиков динамики изменения эмпирических данных и гистограмм распределения для всех выборок.

    курсовая работа [217,2 K], добавлен 18.03.2012

  • Недостатки традиционного Фурье-преобразования. Оконное, дискретное преобразование, оконные функции и их виды. Непрерывное вейвлет-преобразование, материнские вейвлеты. Кратномасштабный анализ и разложение сигнала по разным ортонормированным базисам.

    курсовая работа [1015,5 K], добавлен 23.10.2009

  • Порядок расчета установившегося случайного процесса в системе управления. Статистическая линеаризация нелинейной части системы. Расчет математического ожидания, среднеквадратического отклонения сигнала ошибки. Решение уравнений и построение зависимостей.

    контрольная работа [269,4 K], добавлен 23.02.2012

  • Определение нижней и верхней цены игры, заданной платежной матрицей. Имеет ли игра седловую точку? Решение геометрически задачи линейного программирования. Построение графа состояний случайного процесса. Предельные вероятности для заданной системы.

    контрольная работа [280,0 K], добавлен 04.02.2011

  • Степень тесноты и характера направления зависимости между признаками. Парная линейная корреляционная зависимость, ее корреляционно-регрессионный анализ. Исследование связи между одним признаком-фактором и одним признаком-результатом, шкала Чеддока.

    методичка [75,0 K], добавлен 15.11.2010

  • Передаточная функция разомкнутой системы "ЛА-САУ". Выбор частоты среза для желаемой ЛАХ и ее построение. Синтез корректирующего звена. Расчет переходного процесса для замкнутой скорректированной и не скорректированной автоматической системы управления.

    курсовая работа [83,9 K], добавлен 10.12.2012

  • Гетероскедастичность случайного возмущения: основные причины и последствия. Тесты на наличие или отсутствие гетероскедастичности. Тест ранговой корреляции Спирмена. Тест Голдфеда–Квандта. Тест Глейзера. Количественные характеристики вектора возмущений.

    реферат [149,8 K], добавлен 06.01.2015

  • Принципы и этапы построения модели авторегрессии, ее основные достоинства. Спектр процесса авторегрессии, формула для ее нахождения. Параметры, характеризующие спектральную оценку случайного процесса. Характеристическое уравнение модели авторегрессии.

    контрольная работа [71,8 K], добавлен 10.11.2010

  • Общая характеристика и порядок определения коэффициента корреляции, методика и этапы его оценки. Описание автокорреляционных функций. Сущность критерия Дарбина-Уотсона. Примеры практических расчетов с помощью макроса Excel "Автокорреляционная функция".

    курсовая работа [1,7 M], добавлен 03.07.2010

  • Системы с положительной и отрицательной обратной связью. Собственные динамические свойства системы. Стандартный сигнал простого вида. Единичная ступенчатая функция. График переходного процесса. Значение постоянной времени. Сохранение полезных сигналов.

    курсовая работа [27,0 K], добавлен 14.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.