Экономико-математическое моделирование межотраслевого равновесия
Эффект распространения (мультипликации). Определение равновесного выпуска итеративным методом. Основные элементы межотраслевых таблиц и анализа. Коэффициент прямых затрат. Основной вид производственных функций. Теорема Г.Г. Забудского, ее содержание.
Рубрика | Экономико-математическое моделирование |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 11.02.2011 |
Размер файла | 203,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Контрольная работа по теме:
Экономико-математическое моделирование межотраслевого равновесия
Введение
Реформа, получившая название «кейнсианская революция», произошла в экономической науке благодаря соединению микро- и макроанализа, однако для функционального анализа экономических циклов одной макроэкономики недостаточно. Любое современное национальное хозяйство развивается в сложной сети межотраслевых взаимосвязей, понять которые во всей их совокупности путём простого суммирования невозможно. Например, спрос на автомобили оказывает влияние не только на автомобильную промышленность, но косвенным образом и на металлургию - производителя базового сырья для изготовления автомобилей, и на отрасли, связанные с производством шин и других комплектующих частей, а также на отрасли, производящие кондиционеры, радиоприёмники и автомобильные компьютеры. Простые расчёты обнаруживают, что «лобовой» подход и арифметика беспомощны при попытке количественного анализа прямого и косвенного эффекта распространения таких влияний. Далее будем называть такой эффект эффектом распространения или эффектом мультипликации. Кроме того, способы анализа, разработанные для решения проблем взаимных связей, необходимы и для формирования экономических планов, сколько-нибудь последовательно связывающих макропеременные с отраслевыми переменными микроуровня. Итак, межотраслевой анализ - это метод систематической квантификации взаимосвязей между различными секторами сложной экономической системы. Экономическая система, для исследования которой он применяется, практически может быть столь большой как народное хозяйство страны или даже мировая экономика, или малой, как экономика метропольных зон (то есть зон больших городов и прилегающих к ним территорий) или даже одно предприятие. В любом случае подход в основном один и тот же. Структура производственного процесса в каждом секторе представляется определенным вектором структурных коэффициентов, который количественно характеризует связь между затратами этого сектора и результатами его деятельности. Взаимосвязь межу векторами рассматриваемой экономики описывается системой линейных уравнений, выражающих балансы между совокупными затратами и агрегированным выпуском каждого продукта и услуг, производимых и используемых в течении одного или нескольких промежутков времени. Метод межотраслевого анализа (interindustry analysis), который ещё называют анализом затраты-выпуск (input-output или I/O analisis), разработанный американским экономистом В.В.Леонтьевым, родившимся в России, позволяет дать последовательный и численно определённый ответ на вопросы, связанные с межотраслевыми взаимодействиями и их влиянием на основные макроэкономические показатели. Суть и сила межотраслевого анализа В.Леонтьева в соединении теории функционирования экономических систем, метода математического моделирования, приемов систематизации и обработки экономической информации.
В экономической теории предшественниками межотраслевого анализа были «экономическая таблица» Ф. Кене, схемы общественного воспроизводства К. Маркса, модель общего экономического равновесия Л. Вальраса. Математическую основу простых форм межотраслевого анализа составляют линейная алгебра и системы линейных дифференциальных уравнений, более сложные модели межотраслевых связей используют весьма разнообразный аппарат современной математики. решение задач межотраслевого анализа, особенно при детальном рассмотрении отраслей, производств, видов продукции и ресурсов, осуществляется с использованием современных ЭВМ. Эта область представляет собой прекрасное поле применения современного персонального компьютера, способного работать с массивами переменных. Несколько лет назад расчёты межотраслевого баланса на большой ЭВМ уже могли осуществляться за несколько секунд, тогда как ранее при выполнении их вручную и даже с использованием настольного арифмометра они занимали 25 часов. Сегодня мы находимся в той эпохе, когда эти же расчёты могут быть проделаны за считанные секунды на персональном компьютере. До недавних пор межотраслевой анализ был доступен лишь ограниченному числу специалистов, ныне же даже непосвящённый человек, внимательно изучив содержание данного пособия, может дома на ПК выполнять такого рода работу.
Определение равновесного выпуска итеративным методом
В стандартной экономической схеме соподчинение цели и средства устанавливается как:
Средство (производство)(причина) |
Цель (потребление, конечный спрос)(результат) |
где средство (цель низшего уровня) является независимой, а цель (цель высшего уровня) - зависимой переменными. В межотраслевом балансе же принято обратное отношение:
Цель (потребление, конечный спрос) |
|
Средство (производство). |
С точки зрения математики межотраслевой анализ может рассматриваться как особый случай решения системы уравнений. Попробуем осуществить межотраслевой анализ с помощью различных итеративных методов, имеющих конкретный экономический смысл.
Основные элементы межотраслевых таблиц и межотраслевого анализа
Межотраслевой анализ базируется на использовании статистических таблиц, называемых «межотраслевыми». Таблица межотраслевого баланса описывает потоки товаров и услуг между всеми секторами народного хозяйства в течение фиксированного периода времени (как правило, 1 год). Таблицу межотраслевого баланса, выраженную в стоимостных показателях, можно интерпретировать как систему национальных счетов.
В межотраслевом балансе для страны или региона, осуществляющих торговлю с зарубежными странами, экспорт может быть представлен положительными, а импорт отрицательными - компонентами конечного спроса.
Строки приведенной таблицы показывают распределение выпуска (output) каждого вида продукции. Каждая строка характеризуется следующим балансом:
Выпуск данного вида продукции = Промежуточный спрос + Конечный спрос
что математически может быть записано как:
(9-1) |
Промежуточный спрос есть часть общего спроса, представляющая собой закупки данного вида продукции отраслями 1, 2, 3 и так далее в качестве исходных материалов, т.е. в качестве промежуточных продуктов. Напротив, конечный спрос - это продукт, направленный в область конечного использования, т.е. он распределяется в непромышленные секторы экономики. Сюда включается личное потребление населения, расходы на содержание государственного аппарата, просвещение, здравоохранение и так далее.
Столбцы таблицы показывают структуру затрат (input) или структуру используемых ресурсов, необходимых для каждой отрасли. Для столбцов устанавливается следующий баланс:
Расходы отрасли = Промежуточные затраты + Добавленная стоимость,
что в математической записи выглядит так:
(9-2) |
Промежуточные затраты представляют собой исходные материалы, закупленные отраслью у секторов 1, 2, 3 и так далее. Добавленная стоимость есть факторные затраты отрасли, то есть вновь созданная стоимость, распадающаяся на доход работающих по найму (заработную плату) и предпринимательский доход (прибыль).
Для строк и столбцов таблицы межотраслевого баланса имеют место следующие тождества:
Выпуск отрасли = Расходы отрасли
Общая сумма конечного спроса = Общая сумма добавленной стоимости,
которые математически записываются так:
(9-3) |
||
(9-4) |
Теперь рассмотрим схему баланса с точки зрения его крупных составных частей. Выделяют несколько блоков с различным экономическим содержанием - квадранты баланса.
В первом квадранте:
содержатся межотраслевые потоки средств производства (промежуточные затраты, производственный сектор). По форме это квадратная матрица. Данные этого квадранта играют решающую роль в анализе структуры материальных затрат отраслей, пропорций и производственных связей между отраслями, потоков в системе материального снабжения.
Во втором квадранте:
представлена конечная продукция всех отраслей материального производства. В развернутой схеме баланса конечная продукция каждой отрасли показана дифференцировано по направлениям использования: на личное потребление населения, общественное потребление (органы управления, просвещения, науки и так далее), на накопление и другое. Второй квадрант характеризует отраслевую материальную структуру национального дохода, его распределение на фонд накопления и фонд потребления.
Третий квадрант:
также характеризует национальный доход, но со стороны его стоимостного состава. Элементы третьего квадранта - это стоимостный эквивалент конечного продукта, в зарубежной литературе эти элементы называют первичными затратами. В развернутой схеме баланса этот квадрант содержит различные виды доходов работников материального производства. Данные третьего квадранта необходимы для анализа соотношений между вновь созданной и перенесенной стоимостью, между величиной необходимого и прибавочного продукта в целом по материальному производству и в отраслевом разрезе.
Отметим, что общие итоги второго и третьего квадранта равны:
Таким образом, в межотраслевом балансе соблюдается важнейший принцип единства материально-вещественного и стоимостного состава национального дохода.
Четвертый квадрант:
отражает конечное распределение и использование национального дохода. В результате перераспределения первично созданного национального дохода образуются конечные доходы населения, предприятий, государства. Их величиной определяется доля участия населения, государственных и иных предприятий и учреждений в потреблении и накоплении всей массы конечной продукции. Данные этого квадранта важны для отражения в межотраслевой модели баланса доходов и расходов населения, источников финансирования капиталовложений, для анализа общей структуры конечных доходов по группам потребителей.
В целом межотраслевой баланс в рамках единой экономико-математической модели объединяет балансы отраслей материального производства, баланс всего общественного продукта, балансы национального дохода, финансирование доходов и расходов населения.
Наряду с межотраслевым балансом в стоимостном исчислении, как уже отмечалось, разрабатываются межпродуктовые балансы в натуральном выражении. Натуральный баланс содержит перечень не отраслей, а самих продуктов материального производства: уголь, нефть, чугун, сталь и тому подобное. В качестве единиц измерения выступают специфические для каждого продукта количественные характеристики: вес, объем, площадь, длина, киловатт-часы и другие.
Таблица межотраслевого баланса на национальном уровне составляется в настоящее время приблизительно в восьмидесяти странах. Также составляется много межотраслевых балансов на уровне регионов и крупных городов. Число секторов, которые описывают экономическую систему, в последнее время значительно увеличилось. Некоторые из наиболее детализированных таблиц описывают национальную экономику в разрезе 500-600 отдельных секторов.
Таблица межотраслевого баланса позволяет изучать структуру потоков ресурсов, однако для понимания функционирования экономики, в частности эффекта распространения (мультипликации), мы должны сделать ещё один шаг, заключающийся в построении таблиц коэффициентов прямых затрат и коэффициентов полных затрат.
Коэффициент прямых затрат определяется как объём ресурса i, необходимый для производства единицы продута j, т.е.
(9-5) |
Множество коэффициентов затрат всех секторов рассматриваемой экономики, представленных в форме прямоугольной таблицы, соответствующее таблице межотраслевого баланса для той же самой экономики, называется структурной матрицей этой экономики. На практике структурные матрицы обычно вычисляются на основе межотраслевого баланса в стоимостном выражении.
После подстановки Xij = aijXj в (7-1) получаем:
(9-6) |
что вплотную подводит нас к центральному вопросу межотраслевого анализа - как изменится объём выпуска отрасли Xi, если при фиксированном коэффициенте прямых затрат aij значение изменится на Fi , т.е. Fi = + Fi. Иными словами, для каждой отрасли допускается существование производственной функции с неизменным эффектом масштаба (затраты прямо пропорциональны выпуску) и с отсутствием взаимозаменяемости ресурсов (соотношение затрат фиксировано и не зависит от уровня выпуска).
Производственные функции могут быть записаны следующим образом:
В этом выражении учитываются только затраты промежуточных продуктов, затраты факторов производства опущены. Следовательно, для ответа на поставленный вопрос мы приходим к необходимости отыскания решения X1, X2, ... , Xn системы линейных уравнений:
(9-7) |
Чтобы упростить вид этого выражения, прибегнем к матричному представлению:
X = AX + F, |
(9-8) |
где
Полученная формула и есть леонтьевская модель межотраслевого баланса или линейная модель межотраслевого баланса.
Решаем систему уравнений (9-8) относительно X. Получаем:
X-AX=F для любого вектора конечного спроса F. Учитывая, что X=IX, где I - единичная матрица:
можно записать:
IX-AX=(I-A)X=F
Умножая левую и правую части полученного равенства на матрицу (I-A)-1 (обратную к матрице (I-A)) имеем:
X = (I - A)-1F. |
(**) |
Матрица коэффициентов прямых затрат А соответствует таблице коэффициентов аij, и ясно, что далеко не для всякой матрицы А система уравнений (9-8) имеет положительное решение. Легко построить матрицу, для которой будет невозможно подобрать пару положительных векторов X и F, удовлетворяющих (9-8). Например, матрица А с элементами аij>1. В этом случае для любого вектора X>0 выполнено неравенство: AX>X, следовательно, AX+F>0 при F>0 и значит не существует X>0, удовлетворяющего системе уравнений X=AX+F.
Матрица А характеризует экономику производства, и естественно потребовать, чтобы можно было произвести хотя бы один набор конечных продуктов. Для существования решения достаточно, чтобы выполнялось условие Хаукинса-Саймона, т.е. неотрицательная квадратная матрица А являлась продуктивной (productive), т.е. существовал хотя бы один вектор X > 0, такой, что Х > АХ, или в преобразованном виде (I - A)X > 0.
Г.Г. Забудский формулирует теорему, которая оправдывает выделение класса продуктивных матриц.
Теорема: для того, чтобы линейная модель межотраслевого баланса X=AX+F имела решение при любом неотрицательном F необходимо и достаточно, чтобы продуктивной была матрица прямых затрат А. Это решение единственно.
Существует несколько способов проверки продуктивности матрицы А: критерии продуктивности (необходимые и достаточные условия), а также достаточные условия (т.е. если они выполняются, то А - продуктивна, если нет - нельзя делать вывод о непродуктивности матрицы А).
Критерии:
1. Матрица А продуктивна тогда и только тогда, когда существует матрица (I-А)-1 и она неотрицательна.
2. Неотрицательная матрица А продуктивна тогда и только тогда, когда (I-А) имеет n положительных последовательных главных миноров.
Достаточные условия:
выпуск равновесие межотраслевой затрата
Экономический смысл условия Хаукинса-Саймона заключается в следующем: экономическая система, в которой каждая отрасль функционирует, непосредственно или косвенно потребляя продукцию других отраслей, должна быть способна обеспечивать не только саму себя, но и осуществлять положительные поставки для конечного спроса и при этом любая из ее подсистем должна быть способна осуществлять то же самое. Если хотя бы одна из подсистем не может удовлетворить данное требование, она неизбежно вызовет утечку, которая нарушит способность самоподдержки всей системы - в математической экономике и теории межотраслевых моделей это свойство и называется продуктивностью.
Матрица В=(I-А)-1 называется обратной матрицей Леонтьева или, по аналогии с кейнсианской концепцией мультипликатора, матричным мультипликатором, или мультипликатором Леонтьева. Обратная матрица Леонтьева В есть, собственно, матрица коэффициентов полных затрат. Экономический смысл её элементов bij заключается в следующем: коэффициент bij показывает потребность в валовом выпуске продукции отрасли i для производства единицы конечной продукции отрасли j. Таким образом, bij в сущности есть мультипликатор, показывающий эффект распространения спроса, первоначальным источником которого является конечный спрос на продукцию.
Доказано, что:
I + A + A2 + ... + Ak + ... = (I - A)-1 |
(***) |
Из выражений (**) и (***) получаем:
X = (I - A)-1F = (I + A + A2 + ... + Ak + ...)F,
причём AF есть результат первичного эффекта распространения, A2F - вторичного и т.д. Из предыдущего соотношения следует, что решение (9-8) можно получить итерационно (по методу Якоби):
X(k+1) = AX(k) + F. |
(9-9) |
Подставив в (9-9) в качестве исходного итеративного значения X0 = F, мы рассчитаем эффект мультипликации, порождаемый конечным спросом; задавая другие исходные неотрицательные значения, сможем оценить полученные результаты с экономической точки зрения.
Модель расширяющейся экономики Неймана
Классическая (исходная) модель Неймана строится при следующих предпосылках:
1. экономика, характеризуемая линейной технологией, состоит из отраслей, каждая из которых обладает конечным числом производственных процессов, т.е. выпускается несколько видов товаров, причем допускается совместная деятельность отраслей;
2. производственные процессы разворачиваются во времени, причем осуществление затрат и выпуск готовой продукции разделены временным лагом;
3. для производства в данный период можно тратить только те продукты, которые были произведены в предыдущем периоде времени, первичные факторы не участвуют;
4. спрос населения на товары и, соответственно, конечное потребление в явном виде не выделяются;
5. цены товаров изменяются во времени.
Перейдем к описанию модели Неймана. На дискретном временном интервале с точками рассматривается производство, в котором n видов затрат с помощью m технологических процессов превращаются в n видов продукции. Мы не будем указывать число отраслей, так как в дальнейшем не понадобится подчеркивать принадлежность товаров или технологий к конкретным отраслям. В модели Леонтьева технологические коэффициенты были отнесены к единице продукта. В модели Неймана, принимая в качестве производственных единиц не отрасли, а технологические процессы, удобно отнести эти коэффициенты к интенсивности производственных процессов.
Интенсивностью производственного процесса j называется объем продуктов, выпускаемых этим процессом за единицу времени. Уровень интенсивности j-го процесса в момент времени t обозначим через (). Заметим, что является вектором, число компонент которого соответствует числу выпускаемых j-ым процессом видов товаров и .
Предположим, что функционирование j-го процесса () с единичной интенсивностью требует затрат продуктов в количестве
и дает выпуск товаров в количестве
Введем обозначения . Пара характеризует технологический потенциал, заложенный в j-ом процессе (его функционирование с единичной интенсивностью). Поэтому пару можно назвать базисом j-го производственного процесса, имея в виду, что для любой интенсивности соответствующую пару затраты-выпуск можно выразить как . Поэтому последовательность пар:
(9-9)
представляющих собой затраты и выпуски всех производственных процессов в условиях их функционирования с единичными интенсивностями, будем называть базисными процессами.
Все m базисных процессов описываются двумя матрицами:
,
где A- матрица затрат, B- матрица выпуска. Вектор называется вектором интенсивностей. Соответствующие этому вектору затраты и выпуски по всем m процессам можно получить как линейную комбинацию базисных процессов (9-9) с коэффициентами :
(9-10)
Говорят, что в производственном процессе базисные процессы (9-9) участвуют с интенсивностями . Как видно из (9-10), неймановская технология, описываемая двумя матрицами A и B единичных уровней затрат и выпуска, является линейной. Рассматривая все допустимые «смеси» базисных процессов, получаем расширенное множество производственных процессов:
(9-11)
которое и отражает допустимость совместной деятельности отраслей. Возможность совместного производства нескольких продуктов в одном процессе следует из того, что в каждом процессе j может быть отличной от нуля более чем одна из величин . Множество (9-11) представляет собой неймановскую технологию в статике (в момент t ). Если в матрице A положить n=m, матрицу B отождествить с единичной матрицей, а интерпретировать как вектор валового выпуска, то (9-10) превращается в леонтьевскую технологию.
Продолжим описание модели Неймана. Согласно предпосылок 2) и 3), затраты в момент t не могут превышать выпуска , соответствующего предыдущему моменту t-1 (рис. 1).
Рис. 1
Поэтому должны выполняться условия:
(9-12)
где - вектор запаса товаров к началу планируемого периода.
Обозначим через , вектор цен товаров. Неравенство (9-12) можно трактовать как непревышение спроса над предложением в момент t. Поэтому в стоимостном выражении (в ценах момента t) должно быть:
(9-13)
По предположению 5) прибыль базисного процесса на отрезке [t-1,T] равна величине , т.е. затраты осуществляются по цене начала периода, а готовая продукция - по цене момента ее реализации. Таким образом, издержки по всем базисным процессам можно записать как , а выручку - как (рис. 2).
Рис. 2
Будем говорить, что базисные процессы неубыточны, если , неприбыльны - если
(9-14)
В модели Неймана предполагается неприбыльность базисных процессов. Это объясняется тем, что издержки и выручки разведены во времени, т.е. относятся к разным моментам времени, и в условиях расширяющейся экономики «характерен случай падения цен ()», т.е. покупательская способность денег в момент t будет выше, чем в момент t-1. С таким обоснованием можно согласиться или не согласиться. Главная же причина неприбыльности базисных процессов заложена в определении экономического равновесия. Поясним это чуть подробнее.
Описание модели Неймана завершено. Совокупность неравенств и уравнений
(9-15)
где и - матрицы затрат и выпуска соответственно, называется (динамической) моделью Неймана.
Определение 9.1. Говорят, что в экономике наблюдается сбалансированный рост производства, если существует такое постоянное число , что для всех m производственных процессов:
(9-16)
Постоянное число называется темпом сбалансированного роста производства.
Содержательно (9-16) означает, что все уровни интенсивности возрастают одинаковыми темпами
Раскрывая рекуррентно правую часть(9-16), получаем:
(9-17)
где - интенсивность процесса j , установившаяся к началу планового периода. Заметим, что t в правой части (9-17) является показателем степени, а в левой - индексом.
В случае сбалансированного роста производства, с учетом постоянства темпа роста, последовательность называется стационарной траекторией производства.
Определение 9.2. Говорят, что в экономике наблюдается сбалансированное снижение цен, если существует такое постоянное число , что для всех n товаров
(9-18)
Постоянное число называется нормой процента.
Содержательно (9-18) означает, что цены на все товары снижаются одинаковыми темпами
Название «норма процента» для темпа снижения принято по ассоциации с показателем нормы процента (нормы доходности) в формуле сложного процента , где R0 - сумма начального вложения, Rn - получаемая через n периодов конечная сумма, - норма процента.
Из равенства (9-17) получаем:
(9-19)
где - цены, установившиеся к началу планового периода.
В случае сбалансированного снижения цен последовательность называется стационарной траекторией цен.
Подставляя (9-17) и (9-19) в модель Неймана, получаем ее «стационарную» форму:
(9-20)
Эта система соотношений показывает, что по стационарным траекториям y и p экономика развивается согласно неизменному динамическому закону. Поэтому такую ситуацию естественно назвать равновесной.
Размещено на Allbest.ru
Подобные документы
Экономико-математическая модель для анализа ресурсов в форме отчета устойчивости. Проверка продуктивности технологической матрицы коэффициентов прямых материальных затрат. Оценка точности моделей на основе средней относительной ошибки аппроксимации.
задача [142,9 K], добавлен 03.05.2009Экономико-математическое моделирование как метод научного познания, классификация его процессов. Экономико-математическое моделирование транспортировки нефти нефтяными компаниями на примере ОАО "Лукойл". Моделирование личного процесса принятия решений.
курсовая работа [770,1 K], добавлен 06.12.2014Графический метод решения и построение экономико-математической модели производства. Определение выручки от реализации готовой продукции и расчет оптимального плана выпуска продукции. Баланс производства проверка продуктивность технологической матрицы.
задача [203,4 K], добавлен 03.05.2009Сущность и содержание метода моделирования, понятие модели. Применение математических методов для прогноза и анализа экономических явлений, создания теоретических моделей. Принципиальные черты, характерные для построения экономико-математической модели.
контрольная работа [141,5 K], добавлен 02.02.2013Разработка межотраслевого баланса с увеличением конечного продукта на 10 процентов. Использование данных таблиц межотраслевых потоков и конечных продуктов. Максимальное и минимальное значения целевой функции. Особенности симплексного метода решения задач.
контрольная работа [286,5 K], добавлен 19.11.2014Описание экономико-математического моделирования при оценке производственных операций. Изучение особенностей работы с имитационной моделью производственной системы. Снижение затрат и повышение доходности путем разработки производственного расписания.
курсовая работа [2,0 M], добавлен 26.03.2015Элементы экономико-математического моделирования. Основные направления оптимизационного моделирования банковской деятельности. Модели банка как совокупности стохастических финансовых процессов. Управление портфелем ценных бумаг в банковском бизнесе.
дипломная работа [1,3 M], добавлен 17.07.2013Модель межотраслевого баланса. Цель балансового анализа; определение объема выпуска продукции каждым сектором для удовлетворения всех потребностей экономической системы. Продуктивность и прибыльность модели Леонтьева. Цены в системе межотраслевых связей.
курсовая работа [33,8 K], добавлен 04.05.2015Задача межотраслевого баланса. Спрос на конечную продукцию. Равновесные цены в предположении. Стоимость фондов и затрат труда. Матричное уравнение Леонтьева. Матрица межотраслевого баланса. Матричный мультипликатор ценового эффекта распространения.
контрольная работа [205,4 K], добавлен 16.02.2011Определение этапа разработки экономико-математического моделирования и обоснование способа получения результата моделирования. Теория игр и принятие решений в условиях неопределенности. Анализ коммерческой стратегии при неопределенной конъюнктуре.
контрольная работа [940,6 K], добавлен 09.07.2014