Пример проведения исследования социально-экономических систем

Обоснование необходимости в разработке информационных систем, позволяющих осуществить прогноз и управление динамикой развития социально-экономических систем (СЭС) различной иерархии. Общая постановка и пример решения задачи оптимального управления СЭС.

Рубрика Экономико-математическое моделирование
Вид контрольная работа
Язык русский
Дата добавления 08.02.2011
Размер файла 52,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Обращаясь к тексту научных статей, многие студенты испытывают если не шок, то уж недоумение обязательно. Действительно: осуществление перехода от изучаемого материала к применяемым знаниям, умения и навыкам - это весьма трудный процесс, который удается далеко не всем!

По этой причине в настоящей главе рассмотрены результаты, опубликованные в научной статье, - однако они снабжены большим количеством комментариев, которые позволяют студенту успешно преодолеть ту пропасть, которая разделяет освоенный им материал и отчеты, в которых этот учебный материал используется.

Комментарии описывают также мотивацию принятия тех или иных предположений, осуществления выбора, детализации - и прочих элементов практической деятельности. В научных статьях и отчетах эти этапы, как правило, весьма тщательно скрыты, - поэтому чтение этой главы даст возможность пытливым студентам и начинающим специалистам подняться до уровня практического применения имеющихся у них знаний.

Изложенные ниже результаты важны не только для России и других государств СНГ, но и для стран с развитой экономикой. Для последних - полученные результаты являются, вероятно, одними из весьма немногих, позволяющих разрабатывать на их основе методики для количественного сравнения состояний стран с разной структурой экономики, валютой, способом политического управления и т.п., а также - позволяют выявить негативные тенденции и наметить пути для их предотвращения.

Постановка задачи

социальный экономический система динамика задача

С развитием общества все большее значение приобретает необходимость в разработке информационных систем, позволяющих осуществить прогноз и управление динамикой развития социально - экономических систем (СС) различного уровня иерархии. Под. СС в настоящей главе понимается совокупность однородных объектов социально - экономического процесса (социальных и/или экономических отношений) - начиная от совокупности отдельных людей и заканчивая обществом в целом. Среди важнейших задач, без решения которых невозможно адекватное управление СЭС, ключевое место занимает проблема нахождения критериальных соотношений, выражающих основные закономерности динами развития СС. Без выработки таких критериев разработка количественной формализации описания СС и математических моделей для управления ними будет чрезвычайно затруднена.

Как правило, формализованные критериальные соотношения базируются на результатах рассмотрения конкретных моделей, описывающих СЭС. Высокий уровень сложности таких моделей обусловлен, как правило, следующими причинами:

Отсутствием четкого понимания разнообразных процессов, происходящих в СЭС разного уровня иерархии, а также единого подхода к их описанию.

Отсутствием четких критериев для выделения объектов социально - экономического процесса как единой СС.

Трудностями принципиального характера, связанными с необходимостью введения в рассмотрение, учета и формализации так называемого “человеческого фактора” со всем комплексом специфических эффектов, вносимых им в социально - экономический процесс. Среди важнейших из них необходимо выделить: способность Человека синтезировать новую информацию, имеющую коммерческую ценность; наличие существенной, изменяющейся со временем вариабельности в свойствах, целях, задачах, откликах и т.п. отдельных людей; наличие вариабельности в способности отдельных людей как участвовать в социально - экономических процессах, так и влиять на них; и т.д..

Указанные причины (которые перечислены далеко не все!) привели к тому, что подавляющее большинство современных математических моделей описания динамики СЭС ориентированы на использование их результатов, так называемыми ЛПР - людьми, принимающими решения (например, чиновников разного уровня иерархии, менеджеров, политиков и т.п.). Однако при том ЛПР часто оказываются перед лицом необходимости принимать решения практически “вслепую”, ибо большинство из них, не являясь специалистами в области математического моделирования (математической кибернетики!), просто не знают границ применимости каждой отдельной модели, положенной в основу той, или иной экспертной системы. Наконец, многие из таких ЛПР не являются координаторами, то есть они принимают решения действительно "вслепую"!

Таким образом, одним из возможных перспективных подходов к описанию СЭС является следующий.

На первом этапе - создание блока математических моделей, описывающих ключевые особенности динамики СС, то есть характерные для СС любого уровня иерархии. В силу необходимости отражения самоорганизационных свойств СЭС, эти математические модели должны являться нелинейными и стохастическими, и ориентированными на выработку критериальных закономерностей. В определенном смысле речь идет о создании совокупности неких абстрактных структур математического характера, на базе которых может быть проведено адекватное описание СС.

Далее, на втором тапе, направление исследований разбивается на два потока: во-первых, на создание математических моделей, формализующих необходимые пользователю понятия, термины, количественные закономерности и т.п., а также связи между ними (например, поле законодательных нормативов) во введенные на первом этапе абстрактные структуры. Этим достигается унификация подхода всей совокупности разнородных по составу ЛПР к описанию результатов своей деятельности, а также - и то чрезвычайно важно - нахождение синергетического, нелинейного эффекта от своих совокупных, совместных действий.

Во-вторых, на построение адекватной реальности математической модели для описания взаимодействия тех абстрактных структур, которые были введены на первом этапе. Собственно, только на этом этапе и может идти речь о построении адекватной реальности математической модели для описания СС. Вероятно, многие поптки описания динамики СС бли обречен на неудачу уже на самом тапе постановки задачи, ибо пытались строить соответствующий формализм непосредственно сразу уже на первом тапе. Весьма важным является то, что на втором этапе исследования могут идти параллельно по обоим направлениям, что благоприятствует скорейшему внедрению полученных результатов в практику.

В этой главе будет построен класс математических моделей, ориентированных на описание состояний СЭС разного уровня иерархии, в котором находят количественное выражение некоторые “наивные” термины, понятия и т.п., широко используемые в вербальном виде - особенно в современном политическом словаре. Фактически, в здесь представлена модель, способная описать усредненное состояние всей экономики, - то есть усредненное состояние всей иерархической экономической системы в целом для данной страны.

Модель

В основу описания динамики единичного представителя (далее -“объекта”) СЭС данного уровня иерархии положим следующие соображения, которые можно назвать также и “аксиомами”

А1. Деньги (финансы, ресурсы - сведенные к единому выражению, и т.п.) являются мерой информации, которой обладает рассматриваемый объект. “Стоимость” информации определяется посредством самосогласования через всю иерархическую систему СЭС (наибольший вклад в нее вносит, как правило, СЭС наиболее высокого уровня иерархии - государство).

А2. Способность к синтезу (рождению) новой информации Человеком приводит к тому, что для рассматриваемого объекта его способность к увеличению финансов увеличивается с возрастанием их количества, тем самым образуя кольцо положительной обратной связи (более подробно о кольцах положительной и отрицательной обратной связи см. в следующей главе): “больше информации - больше финансов - больше информации” (ср. с английской пословицей “деньги делают деньги”). то также достигается путем самосогласования.

А3. Существует необходимость “расходования” денег (финансов, информации) для продолжения функционирования рассматриваемого объекта (что формирует тем самым кольцо отрицательной обратной связи). Интенсивность расходования возрастает с ростом денежной массы быстрее, чем ее прирост. Такое расходование также замыкается самосогласованием через всю иерархию СЭС (например, через налоги - как федеральные, так и местные).

А4. Поскольку способность Человека синтезировать (создавать) новую информацию (следовательно, и новые финансы) носит ярко выраженный индивидуальный характер, то процесс функционирования совокупности рассматриваемых объектов должен носить стохастический характер.

Математически сказанное в А1-А3 можно описать уравнением

R(m) - T(m) (1)

где R(m)>0 и T(m)>0 - некоторые (монотонные) функции, причем m0: m>m0T(m)>R(m) (вследствие А3 функция T(m) при больших m становится больше, чем R(m)). Здесь обозначено через m массу финансов (информации), которой обладает рассматриваемый объект социально - экономических отношений в настоящее время.

Условие монотонности R(m) и T(m) приводит к тому, что уравнение (1) имеет только одно стационарное положение равновесия, которое является устойчивым и в котором рассматриваемый объект характеризуется значением m0:

R(m0) = T(m0) (2)

В функциях R(m) и T(m) должна найти отражение вся иерархическая система СЭС. Поскольку в настоящее время вид тих функций неизвестен, дальнейший анализ (1) возможен только с привлечением соображений модельного, феноменологического характера.

Отметим, что выполнения последнего свойства можно ожидать и от объектов социально - экономического процесса в предположении, что их способность как к приросту массы финансов, так и к их трате инвариантны относительно преобразований масштаба величин m для СЭС, принадлежащих данному уровню иерархии (естественно, конкретная их параметризация для каждого уровня иерархии своя).

Итак, проведем дальнейшее рассмотрение, предполагая, что

R(m) = cma

T(m)=dmb (3)

При том b>a вследствие А3. Здесь сама способность рассматриваемого объекта социально - экономического процесса к приобретению и расходованию финансов определяется коэффициентами a и b, которые будут зависеть как от принадлежности объекта к тому или иному уровню иерархии СС, так и от всей их иерархической совокупности (например, будут регулироваться государством). На Рис.5.1 представлены данные (Украина, январь 1996 года) системе налогообложения доходов граждан - видно, что в диапазоне 1,6<m<200 единиц необлагаемого дохода она хорошо аппроксимируется зависимостью T(m)=0,045 m1,38 (для России на тот же период времени в диапазоне 1<m<8 получим T(m)=0,17 m1,18).

Интенсивности процессов приобретения и расходования финансов в рамках аппроксимации (3) будут определяться величинами параметров c и d, а стационарное состояние достигается при m0=(c/d)1/(b-a).

Модель (1) - (3) выведена на основании А1 - А3. Для того, чтобы она удовлетворяла также и А4, необходимо учесть вариабельность свойств и возможностей человеческой компоненты социально - экономического процесса. Для заданного объекта то проявляется двумя путями. Во-первых, вследствие внутренних для рассматриваемого объекта причин - например, связанных с его кадровым составом (успехом в подборе людей, способных создавать новую информацию - координаторов), а также от профессионального уровня тих людей (своего рода неравномерность распределения таких людей по фирмам). В результате разные объект социально - экономического процесса для данного уровня иерархии будут различаться своими константами с. Во-вторых, вследствие причин внешних для данного класса объектов - например, вследствие локальной (территориальной) вариабельности законодательного поля, регулирующего налоговую политику. В результате разные объект будут различаться своими константами d.

Отметим, что учет статистических закономерностей должен быть проведен в рамках ансамблевого подхода, когда рассматривается целый класс объектов для СЭС заданного уровня иерархии.

Хотя в общем случае обе причины учета вариабельности свойств Человека действуют совместно, далее для простоты будем рассматривать их раздельное описание. Таким образом, приходим к стохастическим моделям

(A)

(B)

где для модели (А) d=const и m0=1/(b-a), а для (В) - c=const и m0=1/(a-b). В (А) и (В) произведены соответствующие преобразования. Функции t и t являются стохастическими.

В общем случае модели (А) и (В) приводят к тому, что совокупность объектов данного уровня иерархии для социально-экономических процессов характеризуется распределением плотности вероятности P(m,t). Если шум t (или t, соответственно) является стационарным, то вследствие условия b>a имеем P(m,t) Ps(m), причем, в общем случае, вид Ps(m) будет определяться лишь статистическими свойствами t (t) и величинами a, b и m0. Дальнейшее рассмотрение проведем в пренебрежении переходными процессами - то есть для Ps(m).

Общими свойствами моделей (А) и (В) являются такие:

Обе модели допускают обезразмеривание, то есть Ps(m) можно представить в автомодельном виде Ps(x) по безразмерной переменной x=m/m0 (естественно, при соответствующем обезразмеривании функций t (t)). то обстоятельство является весьма важным, ибо позволяет сравнивать между собой поведение разных СЭС (но обладающих одинаковыми параметрами a и b). Распределение Ps(x) зависит тогда только от a, b и вида (точнее - структуры) обезразмеренного шума t (t). Вследствие этого появляется возможность разработки новых критериев для классификации и сравнения состояний СЭС, принадлежащих к разным уровням иерархии. Так, то свойство рассматриваемых моделей позволяет отвлечься от видов национальных валют, их конвертации и т.п., и сравнивать между собой объекты-СЭС одинакового уровня иерархии, находящиеся даже в разных странах (и, соответственно, в разных условиях). Вследствие этого появляется возможность также для количественного сравнения между собой состояний СЭС из разных стран и синтеза систем оптимального управления развитием СЭС в выбранном направлении (например, появляется возможность количественного сравнения показателей качества жизни граждан (малых фирм и т.п.) для разных стран).

Модели (А) и (В) являются инвариантными относительно группы преобразований mN: m=kNn, где k>0 и n>0 - соответствующие константы. Это позволяет применять как сами модели (А) и (В), так и произведенные на их базе интерпретации, к различным характеристикам, описывающим рассматриваемые объекты социально - экономического процесса (например, выполнение соотношений такого вида естественно ожидать для численности N сотрудников фирмы в зависимости от имеющихся в ней запаса финансов). Естественно, при такой группе преобразований параметры модели преобразуются как aN=1+n(am - 1), bN=1+n(bm - 1), N=ma-b, tN=ka-btm (для примера вписан лишь соотношения для модели (А); для модели (В) такие соотношения выглядят аналогично). Весьма важным является также то обстоятельство, что все результаты (например, распределения Ps(x)), полученные для одной какой - нибудь характеристики рассматриваемого объекта могут быть пересчитаны для любой (!) другой характеристики, связанной с первой рассматриваемым групповым соотношением, - а ввод автоматически (!) являются верными. Иными словами, мы получили новый способ установления инвариантности и эквивалентности как между отдельными характеристиками рассматриваемого объекта, так и между объектами разных уровней иерархии, а также - новый способ восстановления целого класса характеристик объекта по распределению одной из его характеристик!

Общее обсуждение

Рассмотрим каналы, посредством которых общество (государство) может изменять величины, характеризующие рассмотренные модели и приведенный выше Пример - a,b,c,d и 2. Отметим. что все эти параметры могут изменяться при переходе к иному иерархическому уровню, и к тому же конкретная интерпретация тих параметров, как и способов управления, может быть разной для разных иерархических уровней.

Как отмечалось выше, член R=cma определяет способность данного объекта к приращению дохода. При том параметр c определяется индивидуальными (то есть - изменяемыми от объекта к объекту) свойствами данного объекта, тогда как a - всей иерархической системой СЭС в целом. Например, для нижнего иерархического уровня - совокупности отдельных людей - с будет зависеть от их личных способностей, тогда как a - будет определяться, например, наличием инфраструктур, способствующих как получению (синтезу) новой информации и ее последующей обработки, так и способствующих “реализации задумов”.

Поскольку при наличии дохода (точнее - свободных денег) возможность доступа к информации (ее объему, точности и адекватности, надежности переработки и т.п.) увеличивается, то можно ожидать, что a>0, то есть доход возрастает пропорционально имеющемуся (ср. “деньги делают деньги”). Вместе с тем, трудно ожидать, что в нормальной экономике могут достигаться значения a1, при которых “начальный капитал” вырастал б взрывообразно (впрочем, то затруднение легко преодолевается при b>1). Итак, для отдельного человека ожидается 0<a<1 - впрочем, пока что то не более чем эвристическое соображение. Для крупных корпораций - наоборот, можно ожидать, что с ростом дохода способность денег “приносить деньги” будет падать - что достигается при a<0. Таким образом, можно ожидать, что с ростом уровня иерархии происходит уменьшение a. Что же касается с, то ожидаемая картина как раз противоположна: ожидается его возрастание (одновременно - с возрастанием 2 : ибо основной “прорыв” крупных компаний достигается, как правило, благодаря деятельности “наиболее гениальных” людей, - а их всегда мало!). Эвристическим подтверждением этому может служить также необходимость возрастания характерного времени {(1-a)c}-1m01-a=T (характерное время для изменения единичным объектом-СЭС своего экономического состояния) с ростом уровня иерархии.

Образно говоря, член R=cma выражает “силу сцепления” рассматриваемого объекта с СЭС более высоких уровней иерархии, а его параметры - c и a - определяются этим сцеплением. При том параметр a определяется структурным строением всей иерархической пирамиды СЭС (однако, в наибольшей степени, - ближайшими иерархическими уровнями). Например, для отдельного человека он будет определяться : 1) наличием инфраструктур, способных “конвертировать” (социализировать) вновь созданную информацию в финансы, и 2) всем богатством совокупностей сторон человеческой природы, которые вовлечены в социально - экономические процессы, и т.п. “Интенсивность” же прироста массы финансов определяется индивидуальным подбором людей в рассматриваемом объекте, и, в силу этого, изменяется от объекта к объекту. Таким образом, параметр a определяет условия для реализации возможностей объектов, а в c находит выражение индивидуальная способность объектов к осуществлению возможностей, предоставленных ему участием в иерархической пирамиде СЭС (например, - обществе или государстве). Иными словами, различия в c обусловлены индивидуальной способностью рассматриваемых объектов в реализации своих возможностей, предоставленных им на данном уровне иерархии от всей совокупности СЭС.

Следует отметить, что “роль индивидуальности” существенно повышается в момент начала выхода на новый технологический уровень: вероятно, большинство крупных компаний стали такими именно вследствие того, что предоставили возможности людям, способным правильно “угадать” направление развития технологии.

Обратимся ко второму члену, T=dmb, описывающему расходы финансов. тот член выражает, образно говоря, “плату за информацию” (а также - расходы на “поддержание своего статуса”). Для отдельного человека - то налоги на личный доход и на личное состояние Ожидаемое значение есть b>0 (значения b<0 поражали б своей нелогичностью: "чем выше доход, тем меньше налоги"!).

Интересно, что если вблизи m0 начинается включение новых налогов (на недвижимость, имущество и т.п.) - то функция T(m) обязательно становится выпуклой вниз, и поэтому b>1. Если при том a<1, то распределения Ps(m) для модели (А) всегда обладают свойством относительного сужения с ростом m0 (см. Рис.4.3), что позволяет полнее использовать самые разные качества, способности и т.п. людей без опасения, что вследствие этого уменьшится устойчивость общества. Таким образом, становится понятным желание развитых государств иметь как можно большее количество налогоплательщиков - и одновременно собственников, ибо при том можно изымать большую массу налогов без опасения привести к нестабильности общества!

Флюктуации в модели (В) будут иметь иные источники, чем в модели (А). Они, например, могут отражать особенности региональной налоговой политики. Интенсивность таких флюктуаций повышается с ростом доли налогов, подлежащих местному регулированию. Как видно из Рис.4.4, даже при неизменном уровне разнообразия локальной налоговой политики (то есть при 2=const) существует большая доля вероятности выбора показателя b (регулируемого федеральных законодательством) такого, что относительная ширина распределений по доходам объектов данного уровня иерархии СС (например, малых предприятий или крупных фирм; впрочем - и отдельных людей также!) с ростом “уровня благосостояния” (то есть m0) будет возрастать, и на фоне относительного благополучия могут возникнуть в обществе негативные тенденции (напр., - “к отделению вплоть до государственности...”). В том смысле было бы интересно провести на базе представленных в работе результатов исследование современного социально - экономического состояния в Канаде: согласно полученным выше результатам предоставление провинции Квебек дополнительных возможностей для увеличенной экономической автономии может оказаться первым шагом к подведению экономической базы под распад Канады (при b>1 то следует с необходимостью)! Для модели белого шума, при b>1 рост ?2 с ростом m0 имеет место всегда, следовательно, для устойчивости общества по мере “достижения благополучия” следует уменьшать (!) степень свободы регионов в области регулирования налоговой политики.

Основная задача управления социально - экономическими системами состоит в том, чтобы добиваться такого их состояния, когда запросы жизненного функционирования отдельных индивидуумов достигают максимально возможного значения. Однако все люди - разные, и то различие чрезвычайно многообразно. По отношению к социально - экономическим процессам Человек выступает в двух ипостасях: и как производитель, и как потребитель. Количественное их выражение сильно варьируется от человека к человеку. В моделях (А) и (В) учтены оба эти свойства Человека; в определенном смысле по отношению к отдельному человеку эти модели являются предельными случаями описания каждого из тих свойств в отдельности. В том смысле модель (А) описывает наличие вариабельности для некоторой совокупности людей в их способности производить новую информацию (при сравнительно малой вариабельности в потреблении), а (В) - вариабельность в их способности “тратить деньги” (при одинаковой способности их зарабатывать). Однако даже при таком, идеализированном описании, модели (А) и (В) могут найти применение для широкого круга задач экономики и количественной социологии. Так, модели вида (А) могут применяться для получения и анализа распределений людей по доходам в больших фирмах или даже обществе в целом, а вида (В) - для однородных групп людей (например, “белых воротничков”), обладающих одинаковым уровнем доходов).

Для следующего иерархического уровня - малых фирм и предприятий - интерпретация моделей (А) и (В) осуществляется аналогичным образом (вариабельность тогда обусловлена успешностью подбора кадров, их квалификацией и профессиональным уровнем, и т.п.).

Управление СЭС производится при помощи изменения параметров a, b, с и d, а также - параметров, задающих интенсивность и структуру шума t (t). Каждый из той совокупности параметров может быть изменен, в общем случае, целым рядом различающихся между собой способов. Наиболее чувствительны параметры a, b, с и d к законодательному полю, в котором существуют рассматриваемые объекты. Естественно, разработка методики сведения существующей системы законов к количественным значениям параметров a, b, с и d, а также к интенсивности и структуре шума t (t), являет собой сложную задачу, еще только ожидающую своего решения.

Приведем кратко основные направления, по которым должно осуществляться управление:

У1. Распределение Ps(m) для данного уровня иерархии СЭС должно быть одномодальным. Многомодальность свидетельствует о наличии нескольких подсистем, “живущих по своим (разным!) законам” Более подробно вопрос, связанные с многомодальностью Ps(m), будут рассмотрен в следующем параграфе.

У2. Ширина распределения Ps(m) должна иметь “оптимальный” характер. Величина такой “оптимальности” должна быть определена экспериментально - исходя из требований а). устойчивости СЭС и б). комфортности существования людей в таких условиях. В качестве примера такого критерия можно использовать, например, такой: различие в доходах 10% “наиболее бедных” и 10% “наиболее богатых” людей не должно превышать заданную величину (найденную экспериментально или эмпирическим путем). Отметим, что “слишком узкие” распределения Ps(m) свидетельствуют об ухудшенных условиях использования в СЭС (или - государстве) естественной (природно - обусловленной) вариабельности свойств и способностей Человека - то характерно, прежде всего, для тоталитарных государств.

У3. Естественным критерием правильности развития общества выступает требование возрастания m0 (например, рост доходов граждан).

У4. Все более полное, всестороннее вовлечение всех качеств, всех возможностей Человека в социально - экономические процессы (например, вследствие повышение уровня образования) приводит к возрастанию интенсивности шума t (то есть “возможностях зарабатывать деньги”).

У5. Для устойчивости общества (“уверенности в будущем”) необходимо, чтобы объект социально - экономического процесса данного уровня иерархии мог “за обозримое время” достичь m0 - начав “с нуля” (то - своего рода вариант реализации “американской мечты”). В рамках моделей (А) и (В) то условие можно записать, например, как {(1-a)c}-1 m01-a T (при a=1 то условие примет вид c-1ln(m0) T), где T - характерное время, численное значение которого зависит от рассматриваемого уровня иерархии (например, для отдельного человека приемлемым значением будет, вероятно, T35 лет, для малых предприятий - T57 лет, а для крупных корпораций - T2030 лет).

Совокупность условий У1-У5 является конфликтной в том смысле, что некоторые из них противоречивы (например, условия У3 и У5). Поэтому управление СС, осуществляемое с использованием настоящего подхода, представляет собой нетривиальную задачу.

Отметим. что в рамках настоящего подхода можно реализовать также и описание динамических процессов, когда необходимо учитывать P(m,t), - однако такое рассмотрение требует привлечения, как правило, уже значительного объема компьютерного моделирования.

Общая постановка задачи оптимального управления

Условия, по которым должно осуществляться управление, допускают математическую формализацию в рамки стандартной задачи на управление. Ниже кратко опишем ту процедуру (в ряде случаев дополнительная детализация проведена с использованием приближения белого шума t и t).

Одномодальность распределений является, как правило, следствием наличия лишь одного стационарного состояния m0 для уравнения (1) (индуцированными шумом переходами в данном случае пренебрегаем, так как потеря устойчивости обществом достигается до их появления, которое предварительно выражается в значительном увеличении ширины распределений). Нетрудно видеть, что для рассмотренных нами моделей (А) и (В) то условие выполнено.

У2. Критерии “устойчивости” или “оптимальности” состояния СС, основанные на количественном сравнении “наиболее богатых” с “наиболее бедными” объектами (или подобные им) фактически сводятся к ограничениям на ширину распределений Ps(x) (автомодельных распределений, т.к. такие критерии формулируются для относительных величин).

А так как (02) является монотонной функцией, то такие критерии могут быть формально представлены как

(10)

где 02=opt - такое оптимальное значение относительной интенсивности шума, при котором достигается наилучшее Ps(x). Отметим, что для приближения белого шума критерий (10) может быть записан как min или min, соответственно - см. Пример.

У3. Требование роста m0=(c/d)1/(b-a) означает следующее: а). если c>d, то ab. Таким образом, рост m0 может быть осуществлен как “тонкой балансировкой” внутри области 1-a/b<<1 (что может быть реализовано, например, “точным регулированием” налоговой политики, которая сказывается на величине b - см. Рис.1), так и ростом с (то есть более полным использованием информационных возможностей Человека), либо - обоими вместе. Уменьшения разности b-a>0 можно достичь либо увеличивая a, либо уменьшая b. Второй “сценарий” означает уменьшение налогового бремени, но обеспечивает только кратковременный успех, ибо инфраструктуры, необходимые для усиления синтеза информации и социализации ее в финансы остаются практически неизменными (к тому же, при a<1 характерное время T при c=const может даже возрастать с уменьшением d).

б). Если c<d, то вследствие a<b имеем ограничение сверху на m0<1, что ввиду рассмотрения нами размерных величин для m0 представляется бессмысленным. Таким образом, случай c<d для рассмотренных нами задач не может иметь место. Итак, для роста m0 требуется: c>d и ab, причем главное внимание надо уделять возрастанию как с, так и a (а “налоговое бремя” при том может быть даже увеличено по абсолютной величине!).

Математически сказанное можно записать следующим образом. Введем пространства

(11)

и

(12)

Отметим, что для белого шума пространство AB определяется с учетом конкретных особенностей моделей (А) и (В):

(13)

Тогда У3 примет вид

(14)

то условие с учетом сказанного выше можно переписать в виде

(15)

Соотношения (4) - (8) записаны для данного иерархического уровня.

У4. Формализация данного условия требует уже информации о виде и структуре шума t (или t). Для белого шума то условие можно записать так:

(16)

где =[0,).

У5. Условие для уменьшения T может быть записано как

(17)

Представленная задача оптимального управления должна решаться каждый раз при переводе СЭС в новое состояние.

Заключение

На вопрос: а что же следует представлять в качестве результатов исследования социального или экономического объекта в рамках экономической кибернетики, ответ может быть только следующим. В качестве отчета представляется: 1) краткое описание поставленной перед вами задачи, и 2) общие выводы, полученные вами при ее рассмотрении. К отчету - может быть приложен весь представленный выше материал (или же - можно написать в отчете, что этот материал может быть представлен в ответ на специальный запрос со стороны руководства).

Проведенное рассмотрение позволяет сделать следующие выводы:

класс моделей позволяет формализовать описание многих сторон социально - экономических процессов и состояний, ранее выражавшихся лишь вербально. На основе проведенной формализации возникает возможность синтеза математических критериев для оптимизации управления СЭС разного уровня иерархии.

Представленные модели позволяют свести к сравнительно небольшому количеству параметров многие аспекты законодательного порядка, регулирующие широкий круг социально - экономического отношений (прежде всего - налоговых), уровень социально - экономического состояния общества (государства), образования, степень развитости экономики (в том числе - наличия необходимых инфраструктур), и т.п.

Введение “медленных” переменных (с характерным временем изменчивости много больше T0={(1-a)c}-1m01-a) позволяет использовать полученные результаты путем введения зависимостей вида a(), b(), c(), d(),2() и т.п.

Полученный способ описания допускает распространение на нестационарные случаи, но исследование может быть проведено, как правило, лишь численными методами или путем компьютерного моделирования.

Сформированный класс моделей позволяет как непосредственно произвести их количественную экспериментальную верификация, так и получить на их основе прогноз поведения числовых параметров, характеризующих СЭС.

Список использованной литературы

1. Курносов Ю.В., Конотопов П.Ю. Аналитика: методология, технология и организация информационно-аналитической работы. - М.:РУСАКИ,2004.-512с.

2. . Хорстхемке В., Лефевр Р. Индуцированные шумом переходы. - М.:Мир,1987. - 400с.

3. Экономическая кибернетика: учебник для экон. направлений и спец. вузов/ ред.: А. И. Добрынин, Л. С. Тарасевич. - 3-е изд., испр. и доп.. - СПб.: Питер; СПб: СПбГУЭФ, 2006. - 544 с. -

Размещено на Allbest.ru


Подобные документы

  • Методы исследования и моделирования социально-экономических систем. Этапы эконометрического моделирования и классификация эконометрических моделей. Задачи экономики и социологии труда как объект эконометрического моделирования и прогнозирования.

    курсовая работа [701,5 K], добавлен 14.05.2015

  • Основные подходы к математическому моделированию систем, применение имитационных или эвристических моделей экономической системы. Использование графического метода решения задачи линейного программирования для оптимизации программы выпуска продукции.

    курсовая работа [270,4 K], добавлен 15.12.2014

  • Теоретические основы моделирования оптимизационной программы развития сельскохозяйственной организации с учетом внешнеэкономических связей. Постановка экономико-математической задачи. Обоснование исходной информации и анализы оптимального решения.

    курсовая работа [176,8 K], добавлен 06.05.2015

  • Теория математического анализа моделей экономики. Сущность и необходимость моделей исследования систем управления в экономике и основные направления их применения. Выявление количественных взаимосвязей и закономерностей в социально-экономической системе.

    курсовая работа [366,0 K], добавлен 27.09.2010

  • Обзор основных инструментов, применяемых в прогнозировании. Характеристика базовых методов построения прогнозов социально-экономических систем при помощи программного обеспечения MS EXCEL. Особенности разработки прогнозных моделей на 2004, 2006 и 2009 гг.

    лабораторная работа [218,4 K], добавлен 04.12.2012

  • Исследование методики построения модели и решения на ЭВМ с ее помощью оптимизационных экономико-математических задач. Характеристика программных средств, позволяющих решать такие задачи на ЭВМ. Определение оптимального варианта производства продукции.

    лабораторная работа [79,3 K], добавлен 07.12.2013

  • Моделирование экономических систем: понятие и принципы, типы моделей и оценка их адекватности. Примеры задач линейного программирования: транспортная задача, ее общая формулировка и графическая интерпретация решения задачи. Анализ симплекс-таблиц.

    курсовая работа [237,9 K], добавлен 22.11.2012

  • Понятие товарно-материального запаса. Внедрение систем имитационного моделирования, предназначенных для решения различного рода экономических задач. Решение конкретной задачи по управлению запасами с неудовлетворительным спросом с помощью GPSS World.

    курсовая работа [61,6 K], добавлен 03.03.2011

  • Формальная постановка задачи, методы решения. Модульная организация приложения. Общая схема взаимодействия модулей, описание модулей. Текст программы, руководство пользователя. Тестовый пример игры, приложение Delphi, надежность программного обеспечения.

    курсовая работа [14,4 K], добавлен 19.10.2010

  • Понятие задач оптимизации, которые сводятся к нахождению экстремума целевой функции. Функции линейного программирования – наиболее широко применяющегося математического средства решения экономических задач. Пример решения задачи о раскрое материала.

    контрольная работа [60,3 K], добавлен 17.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.