Критерии оптимальности и типы планов

Основные группы критериев оптимальности и их выбор в зависимости от задачи исследования. Использование ортогонального и ротатабельного планирования в практической работе. Ненасыщенные, насыщенные и сверхнасыщенные планы; свойство композиционности.

Рубрика Экономико-математическое моделирование
Вид реферат
Язык русский
Дата добавления 27.01.2011
Размер файла 6,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Критерии оптимальности и типы планов

критерий оптимальность планирование насыщенный

В настоящее время используется свыше 20 различных критериев оптимальности планов, которые подразделяются на две основные группы. К первой группе относят критерии, связанные с ошибками оценок коэффициентов, а ко второй - с ошибкой оценки поверхности отклика. Далее будут охарактеризованы только те критерии, которые наиболее часто применяются при решении задач оптимизации, описания поверхности отклика и оценки влияния факторов.

Критерии первой группы представляют интерес для задач оптимизации, выделения доминирующих (наиболее значимых) параметров на начальных этапах решения оптимизационных задач или для выявления несущественных параметров в задачах восстановления закономерности функционирования объекта. Геометрическое истолкование свойств ошибок коэффициентов связано со свойствами эллипсоида их рассеяния, определяемого математическим ожиданием и дисперсией значений ошибок. Пространственное расположение, форма, и размер эллипсоида полностью зависят от плана эксперимента.

Критерию D-оптимальности соответствует минимальный объем эллипсоида рассеяния ошибок (минимум произведения всех дисперсий коэффициентов полинома). В соответствующем плане эффекты факторов максимально независимы друг от друга. Этот план минимизируют ожидаемую ошибку предсказания функции отклика. Критерию A-оптимальности соответствует план с минимальной суммарной дисперсией всех коэффициентов. Критерию E-оптимальности - план, в котором максимальная дисперсия коэффициентов будет минимальна.

Выбор критерия зависит от задачи исследования, так при изучении влияния отдельных факторов на поведение объекта применяют критерий Е-оптимальности, а при поиске оптимума функции отклика - D-оптимальности. Если построение D-оптимального плана вызывает затруднения, то можно перейти к А-оптимальному плану, построение которого осуществляется проще.

Критерии второй группы используются при решении задач описания поверхности отклика, определения ограничений на значения параметров. Основным здесь является критерий G-оптимальности, который позволяет построить план с минимальным значением наибольшей ошибки в описании функции отклика. Применение G-оптимального плана дает уверенность в том, что в области планирования нет точек с чрезмерно большой ошибкой описания функции.

Среди всех классов планов основное внимание в практической работе уделяется ортогональным и ротатабельным планам.

Ортогональным называется план, для которого выполняется условие парной ортогональности столбцов матрицы планирования, в частности, для независимых переменных, где N - количество точек плана эксперимента, k - количество независимых факторов. При ортогональном планировании коэффициенты полинома определяются независимо друг от друга - вычеркивание или добавление слагаемых в функции отклика не изменяет значения остальных коэффициентов полинома. Для ортогональных планов эллипсоид рассеяния ориентирован в пространстве так, что направления его осей совпадают с направлениями координат пространства параметров.

Использование ротатабельных планов обеспечивает для любого направления от центра эксперимента равнозначность точности оценки функции отклика (постоянство дисперсии предсказания) на равных расстояниях от центра эксперимента. Это особенно важно при решении задач поиска оптимальных значений параметров на основе градиентного метода, так как исследователь до начала экспериментов не знает направление градиента и поэтому стремится принять план, точность которого одинакова во всех направлениях. В ряде случаев при исследовании поверхности отклика требуется униморфность модели, а именно, соблюдение постоянства значений дисперсии ошибки в некоторой области вокруг центра эксперимента. Выполнение такого требования целесообразно в тех случаях, когда исследователь не знает точно расположение области поверхности отклика с оптимальными значениями параметров. Указанная область будет определена на основе упрощенной модели, полученной по результатам экспериментов.

По соотношению между количеством оцениваемых неизвестных параметров модели и количеством точек плана эксперимента все планы подразделяются на три класса: ненасыщенные - количество параметров меньше числа точек плана; насыщенные - обе величины одинаковы; сверхнасыщенные - количество параметров больше числа точек плана. Метод наименьших квадратов применяют только при ненасыщенном и насыщенном планировании, и он не применим для сверхнасыщенного планирования.

Для некоторых планов важную роль играет свойство композиционности. Так, композиционные планы для построения полиномов второго порядка получают добавлением некоторых точек к планам формирования линейных функций. Это дает возможность в задачах исследования сначала попытаться построить линейную модель, а затем при необходимости, добавив наблюдения, перейти к моделям второго порядка, использую ранее полученные результаты и сохраняя при этом некоторое заданное свойство плана, например его ортогональность.

Между критериями оптимальности и методами построения оптимальных планов экспериментов существует жесткая связь. Построение планов производится или с использованием каталогов планов или с использованием непосредственно методов планирования экспериментов, что является непростой задачей и требует достаточно высокой квалификации исследователя в области ТПЭ.

Кроме рассмотренных критериев в планировании экспериментов вполне естественно применяется критерий минимума числа экспериментов, т.е. среди всех планов желательно выбирать такой, который требует минимального числа опытов при соблюдении требований к качеству оценки функции или ее параметров.

Как было отмечено выше, одной из областей применения ТПЭ является решение задач оптимизации, причем непосредственно для поиска оптимальных решений используются градиентные методы. Вычисление оценки градиента осуществляется на основе обработки экспериментальных данных. Хотя градиентный метод оптимизации не является составной частью ТПЭ, в целях удобства освоения материала далее приведено его краткое изложение.

Размещено на Allbest.ru


Подобные документы

  • Критерии оптимальности в эколого-математических моделях. Использование максимума относительной скорости роста численности популяций. Принцип минимального воздействия в эколого-математических моделях. Модели случайных стационарных процессов.

    контрольная работа [193,1 K], добавлен 28.09.2007

  • Многошаговые процессы в динамических задачах. Принцип оптимальности и рекуррентные соотношения. Метод динамического программирования. Задачи оптимального распределения средств на расширение производства и планирования производственной программы.

    курсовая работа [129,8 K], добавлен 30.12.2010

  • Матрица выигрышей и рисков. Максиминные и минимальные критерии (крайнего пессимизма и оптимизма). Критерии максимизации взвешенного среднего показателя оптимальности стратегий. Выбор сельхозкультуры для оптимального использования посевных площадей.

    курсовая работа [488,8 K], добавлен 14.06.2011

  • Выбор и определение показателей оптимальности для решения транспортной задачи для автомобильного, железнодорожного, речного транспорта. Определение удельных затрат на доставку груза, составление матрицы задачи и схемы оптимальных транспортных связей.

    контрольная работа [419,4 K], добавлен 27.11.2015

  • Применение методов нелинейного программирования для решения задач с нелинейными функциями переменных. Условия оптимальности (теорема Куна-Таккера). Методы условной оптимизации (метод Вульфа); проектирования градиента; штрафных и барьерных функций.

    реферат [3,2 M], добавлен 25.10.2009

  • Экономико-математическая модель распределения средств рекламного бюджета по различным источникам для получения наибольшей прибыли. Оценка деятельности продавцов компании, создание матрицы назначений по должностям с целью увеличения объема продаж.

    контрольная работа [1,9 M], добавлен 16.11.2010

  • Элементы теории матричных игр. Способы решения матричных игр. Различия в подходах критериев оптимальности при определении оптимальной стратегии в условиях статистической неопределенности. Нахождение седловой точки игры. Графическое решение матричной игры.

    контрольная работа [366,9 K], добавлен 12.05.2014

  • Критерий оптимальности и матрица ЭММ распределения и использования удобрений. Расчет технико-экономических коэффициентов и констант. Основные переменные в экономико-математической задаче. Математическая запись системы ограничений и системы переменных.

    контрольная работа [402,9 K], добавлен 18.11.2012

  • Сущность общей методики формирования критериев. Расчет показателя эффективности стратегии, средневзвешенного выигрыша, цены игры, оптимальности стратегии по критериям Байеса, Лапласа, Вальда, Ходжа-Лемана, Гермейера, максимаксному, критерию произведений.

    реферат [67,3 K], добавлен 23.05.2010

  • Типы многокритериальных задач. Принцип оптимальности Парето и принцип равновесия по Нэшу при выборе решения. Понятие функции предпочтения (полезности) и обзор методов решения задачи векторной оптимизации с использованием средств программы Excel.

    реферат [247,4 K], добавлен 14.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.