Методы принятия оптимальных решений
Последовательность действий, составляющих содержание процесса постановки задачи. Принятие решений в условиях риска. Учет неопределенных факторов, заданных законом распределения. Методы стохастического программирования и статистического моделирования.
Рубрика | Экономико-математическое моделирование |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 18.01.2011 |
Размер файла | 45,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
25
- Содержание
- Введение
- 1. Постановка задач принятия оптимальных решений
- 2. Принятие решений в условиях риска
- 2.1 Критерий ожидаемого значения (КОЗ)
- 2.2 Критерий предельного уровня
- 2.3 Критерий наиболее вероятного исхода
- 2.4 Учет неопределенных факторов, заданных законом распределения
- 3. Постановка задачи стохастического программирования
- 4. Метод статистического моделирования
- 4.1 Учет неопределенных пассивных условий
- 4.2 Учет активных условий
- Заключение
- Список литературы
Введение
Человек - существо свободное и обречено на выбор решений, стараясь сделать всё наилучшим образом. В наиболее общем смысле теория принятия оптимальных решений представляет собой совокупность математических и численных методов, ориентированных на нахождение наилучших вариантов из множества альтернатив и позволяющих избежать их полного перебора. Ввиду того, что размерность практических задач, как правило, достаточно велика, а расчеты в соответствии с алгоритмами оптимизации требуют значительных затрат времени, то методы принятия оптимальных решений главным образом ориентированы на реализацию их с помощью ЭВМ.
Практическая потребность общества в научных основах принятия решений возникла с развитием науки и техники только в XVIII веке. Началом науки "Теория принятия решений" следует считать работу Джозефа Луи Лагранжа, смысл которой заключался в следующем: сколько земли должен брать на лопату землекоп, чтобы его сменная производительность была наибольшей. Оказалось, что утверждение "бери больше, кидай дальше" неверно. Бурный рост технического прогресса, особенно во время и после второй мировой войны, ставил все новые и новые задачи, для решения которых привлекались и разрабатывались новые научные методы. Можно выделить следующие научно-технические предпосылки становления "Теории принятия решений": удорожание "цены ошибки".
Чем сложнее, дороже, масштабнее планируемое мероприятие, тем менее допустимы в нем "волевые" решения и тем важнее становятся научные методы, позволяющие заранее оценить последствия каждого решения, заранее исключить недопустимые варианты и рекомендовать наиболее удачные:
- ускорение научно-технической революции техники и технологии.
Жизненный цикл технического изделия сократился настолько, что "опыт" не успевал накапливаться и, требовалось применение более развитого математического аппарата в проектировании;
- развитие ЭВМ.
Размерность и сложность реальных инженерных задач не позволяло использовать аналитические методы.
Как часто это бывает, эта наука стала, с одной стороны, определенной ветвью других более общих наук (теория систем, системный анализ, кибернетика и т.д.), а с другой, стала синтезом определенных фундаментальных более частных наук (исследование операций, оптимизация и т.д.), создав при этом и собственную методологию [1].
Инженерное дело теснейшим образом связано с совокупностями объектов, которые принято называть сложными системами, которые характеризуются многочисленными и разнообразными по типу связями между отдельно существующими элементами системы и наличием у системы функции назначения, которой нет у составляющих ее частей. На первый взгляд каждая сложная система имеет уникальную организацию. Однако более детальное изучение способно выделить общее в системе команд ЭВМ, в процессах проектирования лесной машины, самолета и космического корабля.
1. Постановка задач принятия оптимальных решений
риск стохастический программирование моделирование
Несмотря на то, что методы принятия решений отличаются универсальностью, их успешное применение в значительной мере зависит от профессиональной подготовки специалиста, который должен иметь четкое представление о специфических особенностях изучаемой системы и уметь корректно поставить задачу. Искусство постановки задач постигается на примерах успешно реализованных разработок и основывается на четком представлении преимуществ, недостатков и специфики различных методов оптимизации. В первом приближении можно сформулировать следующую последовательность действий, которые составляют содержание процесса постановки задачи:
- установление границы подлежащей оптимизации системы, т.е. представление системы в виде некоторой изолированной части реального мира. Расширение границ системы повышает размерность и сложность многокомпонентной системы и, тем самым, затрудняет ее анализ. Следовательно, в инженерной практике следует к декомпозиции сложных систем на подсистемы, которые можно изучать по отдельности без излишнего упрощения реальной ситуации;
- определение показателя эффективности, на основе которого можно оценить характеристики системы или ее проекта с тем, чтобы выявить "наилучший" проект или множество "наилучших" условий функционирования системы. В инженерных приложениях обычно выбираются показатели экономического (издержки, прибыль и т.д.) или технологического (производительность, энергоемкость, материалоемкость и т.д.) характера. "Наилучшему" варианту всегда соответствует экстремальное значение показателя эффективности функционирования системы;
- выбор внутрисистемных независимых переменных, которые должны адекватно описывать допустимые проекты или условия функционирования системы и способствовать тому, чтобы все важнейшие технико-экономические решения нашли отражение в формулировке задачи;
- построение модели, которая описывает взаимосвязи между переменными задачи и отражает влияние независимых переменных на значение показателя эффективности.
В самом общем случае структура модели включает основные уравнения материальных и энергетических балансов, соотношения, связанные с проектными решениями, уравнения, описывающие физические процессы, протекающие в системе, неравенства, которые определяют область допустимых значений независимых переменных и устанавливают лимиты имеющихся ресурсов.
Элементы модели содержат всю информацию, которая обычно используется при расчете проекта или прогнозировании характеристик инженерной системы. Очевидно, процесс построения модели является весьма трудоемким и требует четкого понимания специфических особенностей рассматриваемой системы.
Несмотря на то, модели принятия оптимальных решений отличаются универсальностью, их успешное применение зависит от профессиональной подготовки инженера, который должен иметь полное представление о специфике изучаемой системы. Основная цель рассмотрения приводимых ниже примеров - продемонстрировать разнообразие постановок оптимизационных задач на основе общности их формы [2, 3].
Все оптимизационные задачи имеют общую структуру. Их можно классифицировать как задачи минимизации (максимизации) M-векторного векторного показателя эффективности Wm(x), m=1,2,...,M, N-мерного векторного аргумента x=(x1,x2,...,xN), компоненты которого удовлетворяют системе ограничений-равенств hk(x)=0, k=1,2...K, ограничений-неравенств gj(x)>0, j=1,2,...J, областным ограничениям xli<xi<xui, i=1,2...N.
Все задачи принятия оптимальных решений можно классифицировать в соответствии с видом функций и размерностью Wm(x), hk(x), gj(x) и размерностью и содержанием вектора x:
- одноцелевое принятие решений - Wm(x) - скаляр;
- многоцелевое принятие решений - Wm(x) - вектор;
- принятие решений в условиях определенности - исходные данные - детерминированные;
- принятие решений в условиях неопределенности - исходные данные - случайные.
Наиболее разработан и широко используется на практике аппарат одноцелевого принятия решений в условиях определенности, который получил название математического программирования.
Математический аппарат одноцелевого принятия решений в условиях неопределенности представляет собой стохастическое программирование (известны законы распределения случайных величин), теории игр и статистических решений (закон распределения случайных величин неизвестен).
Рассмотрим процесс принятия решений с самых общих позиций. Психологами установлено, что решение не является начальным процессом творческой деятельности. Оказывается, непосредственно акту решения предшествует тонкий и обширный процесс работы мозга, который формирует и предопределяет направленность решения. В этот этап, который можно назвать "предрешением" входят следующие элементы:
- мотивация, то есть желание или необходимость что-то сделать. Мотивация определяет цель какого-либо действия, используя весь прошлый опыт, включая результаты;
- возможность неоднозначности результатов;
- возможность неоднозначности способов достижения результатов, то есть свобода выбора.
После этого предварительного этапа следует, собственно, этап принятия решения. Но на нем процесс не заканчивается, т.к. обычно после принятия решения следует оценка результатов и корректировка действий. Таким образом, принятие решений следует воспринимать не как единовременный акт, а как последовательный процесс [3].
Выдвинутые выше положения носят достаточно общий характер, обычно подробно исследуемый психологами. Более близкой с точки зрения инженера будет следующая схема процесса принятия решения. Эта схема включает в себя следующие компоненты:
- анализ исходной ситуации;
- анализ возможностей выбора;
- выбор решения;
- оценка последствий решения и его корректировка.
2. Принятие решений в условиях риска
Как указывалось выше, с точки зрения знаний об исходных данных в процессе принятия решений можно представить два крайних случая: определенность и неопределенность. В некоторых случаях неопределенность знаний является как бы "неполной" и дополняется некоторыми сведениями о действующих факторах, в частности, знанием законов распределения описывающих их случайных величин. Этот промежуточный случай соответствует ситуации риска [4].
Принятие решений в условиях риска может быть основано на одном из следующих критериев:
- критерий ожидаемого значения;
- комбинации ожидаемого значения и дисперсии;
- известного предельного уровня;
- наиболее вероятного события в будущем.
Рассмотрим более подробно применение этих критериев.
2.1 Критерий ожидаемого значения (КОЗ)
Использование КОЗ предполагает принятие решения, обуславливающего максимальную прибыль при имеющихся исходных данных о вероятности полученного результата при решении. По существу, КОЗ представляет собой выборочные средние значения случайной величины. Естественно, что достоверность получаемого решения при этом будет зависеть от объема выборки [4].
2.2 Критерий предельного уровня
Этот критерий не имеет четко выраженной математической формулировки и основан в значительной степени на интуиции и опыте ЛПР. При этом ЛПР на основании субъективных соображений определяет наиболее приемлемый способ действий. Критерий предельного уровня обычно не используется, когда нет полного представления о множестве возможных альтернатив. Учет ситуации риска при этом может производиться за счет введения законов распределений случайных факторов для известных альтернатив.
Несмотря на отсутствие формализации, критерием предельного уровня пользуются довольно часто, задаваясь их значениями на основании экспертных или опытных данных [4].
2.3 Критерий наиболее вероятного исхода
Этот критерий предполагает замену случайной ситуации детерминированной путем замены случайной величины прибыли (или затрат) единственным значением, имеющим наибольшую вероятность реализации. Использование данного критерия, также как и в предыдущем случае в значительной степени опирается на опыт и интуицию. При этом необходимо учитывать два обстоятельства, затрудняющие применение этого критерия:
- критерий нельзя использовать, если наибольшая вероятность события недопустимо мала;
- применение критерия невозможно, если несколько значений вероятностей возможного исхода равны между собой [4].
2.4 Учет неопределенных факторов, заданных законом
распределения
Случай, когда неопределенные факторы заданы распределением, соответствует ситуации риска. Этот случай может учитываться двумя путями. Первый - анализом адаптивных возможностей, позволяющих реагировать на конкретные исходы; второй - методически, при сопоставлении эффективности технических решений. Суть первого подхода заключается в том, что законы распределения отдельных параметров на этапе проектирования могут быть определены с достаточной степенью приближения на основе сопоставления с аналогами, из физических соображений или на базе статистических данных и данных прогнозов.
Методический учет случайных факторов, заданных распределением, может быть выполнен двумя приемами: заменой случайных параметров их математическими ожиданиями (сведением стохастической задачи к детерминированной) и "взвешиванием" показателя качества по вероятности (этот прием иногда называют "оптимизация в среднем").
Первый прием предусматривает определение математического ожидания случайной величины v - M(v) и определение зависимости W(M(v)), которая в дальнейшем оптимизируется по u. Однако сведение к детерминированной схеме может быть осуществлено в тех случаях, когда диапазон изменения параметра u невелик или когда зависимость W(u) линейна или близка к ней.
Второй прием предусматривает определение W в соответствии с зависимостями соответственно для дискретных и непрерывных величин:
, (1)
, (2)
где P(ui) - ряд распределений случайной величины ui;
f(ui) - плотность распределения случайной величины u.
При описании дискретных случайных величин наиболее часто используют распределения Пуассона, биноминальное. Для непрерывных величин основными распределениями являются нормальное, равномерное и экспоненциальное [4].
3. Постановка задачи стохастического программирования
При перспективном и оперативном планировании работы предприятия возникает необходимость в учете ряда случайных факторов, существенно влияющих на процесс производства. К таким факторам относятся спрос, который не всегда может быть предсказуем, непредусмотренные сбои в поступлении сырья, энергии, рабочей силы, неисправности и аварии оборудования. Еще больше случайных факторов необходимо учитывать при планировании производства, эффективность которого зависит от климатических условий, урожайности и т.д. Поэтому, например, задачи планирования лесного производства целесообразно ставить и исследовать в терминах и понятиях стохастического программирования, когда элементы задачи линейного программирования (матрица коэффициентов A, вектора ресурсов В, вектора оценок С) часто оказываются случайными. Подобного типа задачи ЛП принято классифицировать как задачи стохастического программирования (СП).
Подходы к постановке и анализу стохастических задач существенно различаются в зависимости от последовательности получения информации - в один прием или по частям. При построении стохастической модели важно также знать, необходимо ли принять единственное решение, не подлежащее корректировке, или можно по мере накопления информации один или несколько раз корректировать решение. В соответствии с этим в стохастическом программировании исследуются одноэтапные, двухэтапные и многоэтапные задачи.
В одноэтапных задачах решение принимается один раз и не корректируется. Они различаются по показателям качества решения (по целевым функциям), по характеру ограничений и по виду решения.
Задача СП может быть сформулирована в M- и P-постановках по отношению к записи целевой функции и ограничений. Случайны элементы вектора С (целевая функция).
При M-постановке целевая функция W записывается в виде:
(3)
Что означает оптимизацию математического ожидания целевой функции.
От математического ожидания целевой функции можно перейти к математическому ожиданию случайной величины cj
(4)
При P- постановке имеем:
- при максимизации
(5)
где Wmin - предварительно заданное допустимое наихудшее (минимальное) значение целевой функции;
- при минимизации
(6)
где Wmax - предварительно заданное допустимое наихудшее (максимальное) значение целевой функции.
Суть P-постановки заключается в том, что необходимо найти такие значения xj, при которых максимизируется вероятность того, что целевая функция будет не хуже предельно допустимого значения.
Ограничения задачи, которые должны выполняться при всех реализациях параметров условий задачи, называются жесткими ограничениями. Часто возникают ситуации, в которых постановка задачи позволяет заменить жесткие ограничения их усреднением по распределению случайных параметров. Такие ограничения называют статистическими [4, 5].
В инженерной практике наиболее часто используется нормальный закон распределения, поэтому дальнейшие зависимости приведем для этого случая.
4. Метод статистического моделирования
В задачах принятия оптимальных решений широкое применение получил метод Монте-Карло. Основными особенностями этого метода, основанного на многократном повторении одного и того же алгоритма для каждой случайной реализации, являются: универсальность (метод не накладывает практически никаких ограничений на исследуемые параметры, на вид законов распределения); простота расчетного алгоритма; необходимость большого числа реализаций для достижения хорошей точности; возможность реализации на его основе процедуры поиска оптимальных параметров проектирования.
Отметим основные факторы, определяющие применение метода статистического моделирования в задачах исследования качества при проектировании: метод применим для задач, формализация которых другими методами затруднена или даже невозможна; возможно применение этого метода для машинного эксперимента над не созданной в натуре системы, когда натурный эксперимент затруднен, требует больших затрат времени и средств или вообще не допустим по другим соображениям [5].
4.1 Учет неопределенных пассивных условий
Неопределенные факторы, закон распределения которых неизвестен, являются наиболее характерными при исследовании качества адаптивных систем. Именно на этот случай следует ориентироваться при выборе гибких конструкторских решений. Методический учет таких факторов базируется на формировании специальных критериев, на основе которых принимаются решения. Критерии Вальда, Сэвиджа, Гурвица и Лапласа уже давно и прочно вошли в теорию принятия решений.
В соответствии с критерием Вальда в качестве оптимальной выбирается стратегия, гарантирующая выигрыш не меньший, чем "нижняя цена игры с природой":
(7)
Правило выбора решения в соответствии с критерием Вальда можно интерпретировать следующим образом: матрица решений [Wir] дополняется еще одним столбцом из наименьших результатов Wir каждой строки. Выбрать надлежит тот вариант, в строке которого стоит наибольшее значение Wir этого столбца [5].
Выбранное таким образом решение полностью исключает риск. Это означает, что принимающий решение не может столкнуться с худшим результатом, чем тот, на который он ориентируется. Какие бы условия Vj не встретились, соответствующий результат не может оказаться ниже W. Это свойство заставляет считать критерий Вальда одним из фундаментальных. Поэтому в технических задачах он применяется чаще всего как сознательно, так и неосознанно. Однако в практических ситуациях излишний пессимизм этого критерия может оказаться очень невыгодным.
Применение этого критерия может быть оправдано, если ситуация, в которой принимается решение, характеризуется следующими обстоятельствами:
- о вероятности появления состояния Vj ничего не известно;
- с появлением состояния Vj необходимо считаться;
- реализуется лишь малое количество решений;
- не допускается никакой риск.
Критерий Байеса-Лапласа в отличие от критерия Вальда, учитывает каждое из возможных следствий всех вариантов решений:
(8)
Соответствующее правило выбора можно интерпретировать следующим образом: матрица решений [Wij] дополняется еще одним столбцом, содержащим математическое ожидание значений каждой из строк. Выбирается тот вариант, в строках которого стоит наибольшее значение Wir этого столбца.
Критерий Байеса-Лапласа предъявляет к ситуации, в которой принимается решение, следующие требования:
- вероятность появления состояния Vj известна и не зависит от времени;
- принятое решение теоретически допускает бесконечно большое количество реализаций;
- допускается некоторый риск при малых числах реализаций.
В соответствии с критерием Сэвиджа в качестве оптимальной выбирается такая стратегия, при которой величина риска принимает наименьшее значение в самой неблагополучной ситуации:
(9)
Здесь величину W можно трактовать как максимальный дополнительный выигрыш, который достигается, если в состоянии Vj вместо варианта Ui выбрать другой, оптимальный для этого внешнего состояния, вариант.
Соответствующее критерию Сэвиджа правило выбора следующее: каждый элемент матрицы решений [Wij] вычитается из наибольшего результата max Wij соответствующего столбца. Разности образуют матрицу остатков. Эта матрица пополняется столбцом наибольших разностей Wir. Выбирается тот вариант, в строке которого стоит наименьшее значение.
Согласно критерию Гурвица выбирается такая стратегия, которая занимает некоторое промежуточное положение между крайним пессимизмом и оптимизмом:
(10)
Правило выбора, согласно этому критерию, следующее: матрица решений [Wij] дополняется столбцом, содержащим средние взвешенные наименьшего и наибольшего результатов для каждой строки. Выбирается тот вариант, в строках которого стоят наибольшие элементы Wir этого столбца.
Критерий Гурвица предъявляет к ситуации, в которой принимается решение, следующие требования:
- о вероятности появления состояния Vj ничего не известно;
- с появлением состояния Vj необходимо считаться;
- реализуется лишь малое количество решений;
- допускается некоторый риск.
Критерий Ходжа-Лемана базируется одновременно на критериях Вальда и Байеса-Лапласа:
(11)
Правило выбора, соответствующее этому критерию, формулируется следующим образом: матрица решений [Wij] дополняется столбцом, составленным из средних взвешенных (с постоянными весами) математического ожидания и наименьшего результата каждой строки. Отбирается тот вариант решения, в строке которого стоит наибольшее значение этого столбца.
При z=1 критерий преобразуется в критерий Байеса-Лапласа, а при z=0 превращается в критерий Вальда. Таким образом, выбор параметра z подвержен влиянию субъективизма. Кроме того, без внимания остается и число реализаций. Поэтому этот критерий редко применяется при принятии технических решений.
Критерий Ходжа-Лемана предъявляет к ситуации, в которой принимается решение, следующие требования:
- о вероятности появления состояния Vj ничего неизвестно, но некоторые предположения о распределении вероятностей возможны;
- принятое решение теоретически допускает бесконечно большое количество реализаций; допускается некоторый риск при малых числах реализаций.
Общие рекомендации по выбору того или иного критерия дать затруднительно. Однако отметим следующее: если в отдельных ситуациях не допустим даже минимальный риск, то следует применять критерий Вальда; если определенный риск вполне приемлем, то можно воспользоваться критерием Сэвиджа. Можно рекомендовать одновременно применять поочередно различные критерии [5].
Такой подход позволяет, во-первых, лучше проникнуть во все внутренние связи проблемы принятия решений и, во-вторых, ослабляет влияние субъективного фактора. Кроме того, в области технических задач различные критерии часто приводят к одному результату.
Применение данных критериев с методической точки зрения удобно продемонстрировать на примере одной задачи.
4.2 Учет активных условий
Как правило, решение практических задач, связанных с оценкой качества и надежности изделий лесного машиностроения, зависит не только от оперирующей стороны (допустим, конструктора), но и от действий других субъектов системы (например, технолога-лесозаготовителя). Каждая из сторон преследует собственные цели, не всегда совпадающие друг с другом. Неопределенность такого рода при принятии решений относят к классу поведенческих неопределенностей. Теоретической основой нахождения оптимального решения в условиях неопределенности и конфликтных ситуаций является теория игр. Игра - это математическая модель процесса функционирования конфликтующих элементов систем, в котором действия игроков происходят по определенным правилам, называемых стратегиями. Ее широкому распространению в последнее время способствовало как развитие ЭВМ, так и создание аналитического аппарата, позволяющего находить аналитические решения для широкого класса задач. Основной постулат теории игр - любой субъект системы, по меньшей мере, так же разумен, как и оперирующая сторона и делает все возможное, чтобы достигнуть своих целей. От реального конфликта игра (математическая модель конфликта) отличается тем, что она ведется по определенным правилам, которые устанавливают порядок и очередность действий субъектов системы, их информированность, порядок обмена информацией, формирование результата игры.
Существует много классов игр, различающихся по количеству игроков, числу ходов, характеру функций выигрыша и т.д. Выделим следующие основные классы игр:
- антагонистические (игры со строгим соперничеством) и неантагонистические. В первом случае цели игроков противоположны, во втором - могут совпадать;
- стратегические и нестратегические (в первых субъект системы действует независимо от остальных, преследуя свои цели, во-вторых, субъекты выбирают единую для всех стратегию);
- парные игры и игры для N-лиц;
- коалиционные и бескоалиционные;
- кооперативные и некооперативные (в первых возможен обмен информацией о возможных стратегиях игроков);
- конечные и бесконечные (в первых - конечное число стратегий).
Наибольшее распространение в технических приложениях имеют парные стратегические бескоалиционные конечные некооперативные игры. Модель проблемной ситуации в этом случае имеет вид:
< U, V, W1, W2, R1, R2 >, (12)
где U - множество стратегий оперирующей стороны (конструктора);
V - множество стратегий оппонирующей стороны (технолог и природа);
W1 и W2 - показатели качества игроков;
R1 и R2 - системы предпочтения игроков.
Системы предпочтения игроков, в свою очередь, основываются на двух ведущих принципах рационального поведения: принципе наибольшего гарантированного результата и принципе равновесия.
Первый основан на том, что рациональным выбором одного из игроков должен считаться такой, при котором он рассчитывает на самую неблагоприятную для него реакцию со стороны другого игрока.
Второй принцип гласит, что рациональным выбором любого игрока считается такая стратегия u$ (или v$), для которой ситуация (u$, v$) обоюдовыгодна: любое отклонение от данной ситуации игры не является выгодным ни для одного из игроков.
Решается парная матричная игра (проектируемое изделие - меры и средства противодействия) с нулевой суммой (выигрыш одной стороны равен проигрышу другой) на основе рассмотрения платежной матрицы, которая представляет собой совокупность значений U и V (пара стратегий (u, v) U x V называется ситуацией игры) а также выигрышей Wij при парном сочетании всевозможных стратегий сторон.
Решение парной матричной игры может быть в чистых стратегиях, когда для каждой из сторон может быть определена единственная оптимальная стратегия, отклонение от которой невыгодно обоим игрокам. Если выгодно использовать несколько стратегий с определенной частотой их чередования, то решение находится в смешанных стратегиях.
Основные особенности использования методов теории заключаются в следующем. В качестве возможных стратегий со стороны проектируемой системы рассматриваются возможные варианты ее строения, из которых следует выбрать наиболее рациональный. В качестве стратегий противника рассматриваются возможные варианты его противодействия, стратегии их применения.
Необходимо отметить, что при рассмотрении игр с использованием адаптивной системы число ее стратегий может быть расширено благодаря реализации "гибких" конструкторских решений. Анализ игровых ситуаций в этом случае может быть направлен не только на выбор рационального варианта проектируемого изделия, но и на определение алгоритмов рационального применения системы в конфликтной ситуации.
Другая особенность применения методов теории игр заключается в выборе решений, получаемых на основе анализа конфликтной ситуации. В теории игр доказывается теорема о том, что оптимальная стратегия для каждого из игроков является оптимальной и для другого. Так, если решение игры получено в чистых стратегиях (имеется седловая точка), то выбор решения однозначен.
Если же решение игры получено в смешанных стратегиях, то это эквивалентно созданию множества вариантов проектируемого компонента и использованию их с оптимальными частотами, соответствующими оптимальной смешанной стратегии.
Очевидно, что разработка нескольких вариантов изделия сопряжена с большими затратами, не всегда реализуема и затрудняет использование системы. Поэтому при получении решения в смешанных стратегиях рекомендуются следующие случаи принятия окончательного решения:
- для дальнейшего проектирования выбирается тот вариант, который гарантирует максимальное качество (выбор по максиминной стратегии аналогично критерию Вальда);
- выбирается тот вариант, который в смешанной стратегии должен использоваться с максимальной вероятностью;
- реализуется несколько вариантов изделия с частотами, соответствующими смешанной стратегии (создание адаптивно-модульных конструкций).
Важное значение в задачах исследования качества адаптивных систем имеет не только решение игры, но и анализ платежной матрицы [5].
Это особенно важно в тех случаях, когда решение в смешанных стратегиях не реализуется. Этот анализ может проводиться на основе: оценки возможных потерь эффективности в случае реализации чистой стратегии; определения дополнительных затрат на их компенсацию с помощью "гибких" конструкторских решений; оценки достоверности рассмотренных стратегий противодействия; определения возможности реализации компромиссных вариантов и т.д.
Заключение
Теория статистических методов нацелена на решение реальных задач. Поэтому в ней постоянно возникают новые постановки математических задач анализа статистических данных, развиваются и обосновываются новые методы. Обоснование часто проводится математическими средствами, т.е. путем доказательства теорем. Большую роль играет методологическая составляющая - как именно ставить задачи, какие предположения принять с целью дальнейшего математического изучения. Велика роль современных информационных технологий, в частности, компьютерного эксперимента.
Отметим, что актуальной является задача анализа истории статистических методов с целью выявления тенденций развития и применения их для прогнозирования.
Ситуация с внедрением современных статистических методов на предприятиях и в организациях различных отраслей народного хозяйства внушает оптимизм. На отечественных предприятиях продолжают развиваться структуры, нуждающиеся в статистических методах, - подразделения качества, надежности, управления персоналом, центральные заводские лаборатории и другие. Толчок к развитию в последние годы получили службы контроллинга, маркетинга и сбыта, логистики, сертификации, прогнозирования и планирования, инноваций и инвестиций, управления рисками, которым также полезны различные статистические методы, в частности, методы экспертных оценок. Включенные в учебник методы необходимы органам государственного и муниципального управления, организациям силовых ведомств, транспорта и связи, медицины, образования, агропромышленного комплекса, научным и практическим работникам всех областей деятельности [6].
Список литературы
1. Крамер Г. Математические методы статистики. - М.: Мир, 1948 (1-е изд.), 1975 (2-е изд.). - 648 с.
2. Орлов А.И. Устойчивость в социально-экономических моделях. - М.: Наука, 1979. - 296 с.
3. Орлов А.И. Прикладная статистика. - М.: Экзамен, 2006. - 671 с.
4. Орлов А.И. Эконометрика. Учебник для вузов. - Изд. 3-е, исправленное и дополненное. - М.: Изд-во "Экзамен", 2004. - 576 с.
5. Орлов А.И. Теория принятия решений. - М.: Экзамен, 2006. - 576 с.
6. Гнеденко Б.В., Беляев Ю.К., Соловьев А.Д. Математические методы в теории надежности. - М.: Наука, 1965. - 524 с.
Размещено на Allbest.ru
Подобные документы
Оптимизация решений динамическими методами. Расчет оптимальных сроков начала строительства объектов. Принятие решений в условиях риска (определение математического ожидания) и неопределенности (оптимальная стратегия поведения завода, правило максимакса).
контрольная работа [57,1 K], добавлен 04.10.2010Применение теории игр для обоснования и принятия решений в условиях неопределенности. Цель изучения систем массового обслуживания, их элементы и виды. Сетевые методы планирования работ и проектов. Задачи динамического и стохастического программирования.
курсовая работа [82,0 K], добавлен 24.03.2012Экономическое обоснование принятия решений в условиях риска. Понятие и формулировки, методы решения проблем. Критерий Гермейера, Гурвица, Байеса-Лапласа. Решение задачи при помощи компьютера: условные, абсолютные, искомые апостериорные вероятности.
курсовая работа [495,2 K], добавлен 09.04.2013Математическая модель задачи принятия решения в условиях риска. Нахождение оптимального решения по паре критериев. Построение реализационной структуры задачи принятия решения. Ориентация на математическое ожидание, среднеквадратичное отклонение.
курсовая работа [79,0 K], добавлен 16.09.2013Принятие решений в условиях неопределенности. Критерий Лапласа и принцип недостаточного основания. Критерий крайнего пессимизма. Требования критерия Гурвица. Нахождение минимального риска по Сэвиджу. Выбор оптимальной стратегии при принятии решения.
контрольная работа [34,3 K], добавлен 01.02.2012Статистические модели принятия решений. Описание моделей с известным распределением вероятностей состояния среды. Рассмотрение простейшей схемы динамического процесса принятия решений. Проведение расчета вероятности произведенной модификации предприятия.
контрольная работа [383,0 K], добавлен 07.11.2011Решение задач при помощи пакета прикладных программ MatLab. Загрузка в MatLab матриц A и P. Нахождение оптимальной стратегии для заданных матриц с использованием критериев принятия решений в условиях неопределённости Вальда, Гурвица, Лапласа, Сэвиджа.
лабораторная работа [80,2 K], добавлен 18.03.2015Принятие решений как особый процесс человеческой деятельности, направленный на выбор наилучшего варианта действий. Особенности применения математических методов в данном процессе. Принципы оптимизации в математике, их эффективность. Содержание теории игр.
реферат [392,7 K], добавлен 20.03.2016Теория статистических решений как поиск оптимального недетерминированного поведения в условиях неопределенности. Критерии принятия решений Лапласа, минимаксный, Сэвиджа, Гурвица и различия между ними. Математические средства описания неопределенностей.
контрольная работа [66,0 K], добавлен 25.03.2009Этапы построения деревьев решений: правило разбиения, остановки и отсечения. Постановка задачи многошагового стохастического выбора в предметной области. Оценка вероятности реализации успешной и неуспешной деятельности в задаче, ее оптимальный путь.
реферат [188,8 K], добавлен 23.05.2015