Дисперсионный анализ
Основные понятия дисперсионного анализа. Использование дисперсионного анализа при изучении миграционных процессов, в химии, в методике воспитания физических качеств, при биотестировании почвы. Дисперсионный анализ в контексте статистических методов.
Рубрика | Экономико-математическое моделирование |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 20.03.2010 |
Размер файла | 163,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Министерство образования Российской Федерации
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
Факультет информационных технологий
Кафедра прикладной информатики
КУРСОВАЯ РАБОТА
По дисциплине:
«Системный анализ»
На тему:
«Дисперсионный анализ»
ГОУ ОГУ 071900.5303.09 ПЗ
Руководитель работы
Юдина Н.М.
«___»_____________2003 г.
Исполнитель
студент гр. 99 ИСЭ-2
Жбанов В.В.
«___»_____________2003 г.
г. Оренбург-2003
Содержание
Введение
1 Дисперсионный анализ
1.1 Основные понятия дисперсионного анализа
1.2 Однофакторный дисперсионный анализ
1.3 Многофакторный дисперсионный анализ
2 Применение дисперсионного анализа в различных задачах исследованиях
2.1 Использование дисперсионного анализа при изучении миграционных процессов
2.2 Принципы математико-статистического анализа данных медико биологических исследований
2.3 Биотестирование почвы
2.4 Грипп вызывает повышенную выработку гистамина
2.5 Дисперсионный анализ в химии
2.6 Использование прямого преднамеренного внушения в бодрствующем состоянии в методике воспитания физических качеств
2.7 Купирование острой психотической симптоматики у больных шизофренией атипичным нейролептиком
2.8 Снование фасонной пряжи с ровничным эффектом
2.9 Сопутствующая паталогия при полной утрате зубов у лиц пожилого и старческого возраста
3 Дисперсионный анализ в контексте статистических методов
3.1 Векторные авторегрессии
3.2 Факторный анализ
3.3 Парная регрессия. Вероятностная природа регрессионных моделей
Заключение
Список использованных источников
Введение
Цель работы: познакомится с таким статистическим методом, как дисперсионный анализ.
Дисперсионный анализ (от латинского Dispersio - рассеивание) - статистический метод, позволяющий анализировать влияние различных факторов на исследуемую переменную. Метод был разработан биологом Р. Фишером в 1925 году и применялся первоначально для оценки экспериментов в растениеводстве. В дальнейшем выяснилась общенаучная значимость дисперсионного анализа для экспериментов в психологии, педагогике, медицине и др.
Целью дисперсионного анализа является проверка значимости различия между средними с помощью сравнения дисперсий. Дисперсию измеряемого признака разлагают на независимые слагаемые, каждое из которых характеризует влияние того или иного фактора или их взаимодействия. Последующее сравнение таких слагаемых позволяет оценить значимость каждого изучаемого фактора, а также их комбинации.
При истинности нулевой гипотезы (о равенстве средних в нескольких группах наблюдений, выбранных из генеральной совокупности), оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии.
При проведении исследования рынка часто встает вопрос о сопоставимости результатов. Например, проводя опросы по поводу потребления какого-либо товара в различных регионах страны, необходимо сделать выводы, на сколько данные опроса отличаются или не отличаются друг от друга. Сопоставлять отдельные показатели не имеет смысла и поэтому процедура сравнения и последующей оценки производится по некоторым усредненным значениям и отклонениям от этой усредненной оценки. Изучается вариация признака. За меру вариации может быть принята дисперсия. Дисперсия у2 - мера вариации, определяемая как средняя из отклонений признака, возведенных в квадрат.
На практике часто возникают задачи более общего характера - задачи проверки существенности различий средних выборочных нескольких совокупностей. Например, требуется оценить влияние различного сырья на качество производимой продукции, решить задачу о влиянии количества удобрений на урожайность с/х продукции.
Иногда дисперсионный анализ применяется, чтобы установить однородность нескольких совокупностей (дисперсии этих совокупностей одинаковы по предположению; если дисперсионный анализ покажет, что и математические ожидания одинаковы, то в этом смысле сово-купности однородны). Однородные же совокупности можно объединить в одну и тем самым получить о ней более полную информацию, следовательно, и более надежные выводы /2/.
1 Дисперсионный анализ
1.1 Основные понятия дисперсионного анализа
В процессе наблюдения за исследуемым объектом качественные факторы произвольно или заданным образом изменяются. Конкретная реализация фактора (например, определенный температурный режим, выбранное оборудование или материал) называется уровнем фактора или способом обработки. Модель дисперсионного анализа с фиксированными уровнями факторов называют моделью I, модель со случайными факторами - моделью II. Благодаря варьированию фактора можно исследовать его влияние на величину отклика. В настоящее время общая теория дисперсионного анализа разработана для моделей I.
В зависимости от количества факторов, определяющих вариацию результативного признака, дисперсионный анализ подразделяют на однофакторный и многофакторный.
Основными схемами организации исходных данных с двумя и более факторами являются:
- перекрестная классификация, характерная для моделей I, в которых каждый уровень одного фактора сочетается при планировании эксперимента с каждой градацией другого фактора;
- иерархическая (гнездовая) классификация, характерная для модели II, в которой каждому случайному, наудачу выбранному значению одного фактора соответствует свое подмножество значений второго фактора.
Если одновременно исследуется зависимость отклика от качественных и количественных факторов, т.е. факторов смешанной природы, то используется ковариационный анализ /3/.
При обработке данных эксперимента наиболее разработанными и поэтому распространенными считаются две модели. Их различие обусловлено спецификой планирования самого эксперимента. В модели дисперсионного анализа с фиксированными эффектами исследователь намеренно устанавливает строго определенные уровни изучаемого фактора. Термин «фиксированный эффект» в данном контексте имеет тот смысл, что самим исследователем фиксируется количество уровней фактора и различия между ними. При повторении эксперимента он или другой исследователь выберет те же самые уровни фактора. В модели со случайными эффектами уровни значения фактора выбираются исследователем случайно из широкого диапазона значений фактора, и при повторных экспериментах, естественно, этот диапазон будет другим.
Таким образом, данные модели отличаются между собой способом выбора уровней фактора, что, очевидно, в первую очередь влияет на возможность обобщения полученных экспериментальных результатов. Для дисперсионного анализа однофакторных экспериментов различие этих двух моделей не столь существенно, однако в многофакторном дисперсионном анализе оно может оказаться весьма важным.
При проведении дисперсионного анализа должны выполняться следующие статистические допущения: независимо от уровня фактора величины отклика имеют нормальный (Гауссовский) закон распределения и одинаковую дисперсию. Такое равенство дисперсий называется гомогенностью. Таким образом, изменение способа обработки сказывается лишь на положении случайной величины отклика, которое характеризуется средним значением или медианой. Поэтому все наблюдения отклика принадлежат сдвиговому семейству нормальных распределений.
Говорят, что техника дисперсионного анализа является "робастной". Этот термин, используемый статистиками, означает, что данные допущения могут быть в некоторой степени нарушены, но несмотря на это, технику можно использовать.
При неизвестном законе распределения величин отклика используют непараметрические (чаще всего ранговые) методы анализа.
В основе дисперсионного анализа лежит разделение дисперсии на части или компоненты. Вариацию, обусловленную влиянием фактора, положенного в основу группировки, характеризует межгрупповая дисперсия у2. Она является мерой вариации частных средних по группам вокруг общей средней и определяется по формуле:
где k - число групп;
nj - число единиц в j-ой группе;
- частная средняя по j-ой группе;
- общая средняя по совокупности единиц.
Вариацию, обусловленную влиянием прочих факторов, характеризует в каждой группе внутригрупповая дисперсия уj2.
Между общей дисперсией у02, внутригрупповой дисперсией у2 и межгрупповой дисперсией существует соотношение:
у02 = + у2.
Внутригрупповая дисперсия объясняет влияние неучтенных при группировке факторов, а межгрупповая дисперсия объясняет влияние факторов группировки на среднее значение по группе.
1.2 Однофакторный дисперсионный анализ
Однофакторная дисперсионная модель имеет вид:
xij = м + Fj + еij, (1)
где хij - значение исследуемой переменой, полученной на i-м уровне фактора (i=1,2,...,т) c j-м порядковым номером (j=1,2,...,n);
Fi - эффект, обусловленный влиянием i-го уровня фактора;
еij - случайная компонента, или возмущение, вызванное влиянием неконтролируемых факторов, т.е. вариацией переменой внутри отдельного уровня.
Основные предпосылки дисперсионного анализа:
- математическое ожидание возмущения еij равно нулю для любых i, т.е.
M(еij) = 0; (2)
- возмущения еij взаимно независимы;
- дисперсия переменной xij (или возмущения еij) постоянна для
любых i, j, т.е.
D(еij) = у2; (3)
- переменная xij (или возмущение еij) имеет нормальный закон
распределения N(0;у2).
Влияние уровней фактора может быть как фиксированным или систематическим (модель I), так и случайным (модель II).
Пусть, например, необходимо выяснить, имеются ли сущест-венные различия между партиями изделий по некоторому показа-телю качества, т.е. проверить влияние на качество одного фактора - партии изделий. Если включить в исследование все партии сырья, то влияние уровня такого фактора систематическое (модель I), а полученные выводы применимы только к тем отдельным парти-ям, которые привлекались при исследовании. Если же включить только отобранную случайно часть партий, то влияние фактора случайное (модель II). В многофакторных комплексах возможна смешанная модель III, в которой одни факторы имеют случайные уровни, а другие - фиксированные.
Пусть имеется m партий изделий. Из каждой партии отобрано соответственно n1, n2, …, nm изделий (для простоты полагается, что n1=n2=...=nm=n). Значения показателя качества этих изделий представлены в матрице наблюдений:
x11 x12 … x1n
x21 x22 … x2n
………………… = (xij), (i = 1,2, …, m; j = 1,2, …, n).
xm1 xm2 … xmn
Необходимо проверить существенность влияния партий из-делий на их качество.
Если полагать, что элементы строк матрицы наблюдений - это численные значения случайных величин Х1,Х2,...,Хm, выражающих качество изделий и имеющих нор-мальный закон распределения с математическими ожиданиями соответственно a1,а2,...,аm и одинаковыми дисперсиями у2, то данная задача сводится к проверке нулевой гипотезы Н0: a1=a2 =...= аm, осуществляемой в дисперсионном анализе.
Усреднение по какому-либо индексу обозначено звездочкой (или точкой) вместо индекса, тогда средний показатель качества изделий i-й партии, или групповая средняя для i-го уровня факто-ра, примет вид:
, (4)
где i* - среднее значение по столбцам;
ij - элемент матрицы наблюдений;
n - объем выборки.
А общая средняя:
. (5)
Сумма квадратов отклонений наблюдений хij от общей средней ** выглядит так:
2=2+2+
+22. (6)
или
Q = Q1 + Q2 + Q3.
Последнее слагаемое равно нулю
=0. (7)
так как сумма отклонений значений переменной от ее средней равна нулю, т.е.
2=0.
Первое слагаемое можно записать в виде:
В результате получается тождество:
Q = Q1 + Q2, (8)
где - общая, или полная, сумма квадратов отклонений;
- сумма квадратов отклонений групповых средних от общей средней, или межгрупповая (факторная) сумма квадратов отклонений
- сумма квадратов отклонений наблюдений от групповых средних, или внутригрупповая (остаточная) сумма квадратов отклонений
В разложении (8) заключена основная идея дисперсионного анализа. Применительно к рассматриваемой задаче равенство (8) показывает, что общая вариация показателя качества, измеренная суммой Q, складывается из двух компонент - Q1 и Q2, характеризующих изменчивость этого показателя между партиями (Q1) и изменчивость внутри партий (Q2), характеризующих одинаковую для всех партий вариацию под воздействием неучтенных факторов.
В дисперсионном анализе анализируются не сами суммы квадратов отклонений, а так называемые средние квадраты, являющиеся несмещенными оценками соответствующих дисперсий, которые получаются делением сумм квадратов отклонений на соответствующее число степеней свободы.
Число степеней свободы определяется как общее число наблюдений минус число связывающих их уравнений. Поэтому для среднего квадрата s12, являющегося несмещенной оценкой межгрупповой дисперсии, число степеней свободы k1=m-1, так как при его расчете используются m групповых средних, связанных между собой одним уравнением (5). А для среднего квадрата s22, являющегося несмещенной оценкой внутригрупповой дисперсии, число степеней свободы k2=mn-m, т.к. при ее расчете используются все mn наблюдений, связанных между собой m уравнениями (4).
Таким образом:
= Q1/(m-1),
= Q2/(mn-m).
Если найти математические ожидания средних квадратов и , подставить в их формулы выражение xij (1) через параметры модели, то получится:
(9)
т.к. с учетом свойств математического ожидания
а
(10)
Для модели I с фиксированными уровнями фак-тора Fi(i=1,2,...,m) - величины неслучайные, поэтому
M(S) =2 /(m-1) +у2.
Гипотеза H0 примет вид Fi = F*(i = 1,2,...,m), т.е. влияние всех уровней фактора одно и то же. В случае справедливости этой гипотезы
M(S)= M(S)= у2.
Для случайной модели II слагаемое Fi в выражении (1) - величина случайная. Обозначая ее дисперсией
получим из (9)
(11)
и, как и в модели I
M(S)= у2.
В таблице 1.1 представлен общий вид вычисления значений, с помощью дисперсионного анализа.
Таблица 1.1 - Базовая таблица дисперсионного анализа
Компоненты дисперсии |
Сумма квадратов |
Число степеней свободы |
Средний квадрат |
Математическое ожидание среднего квадрата |
|
Межгрупповая |
m-1 |
= Q1/(m-1) |
|||
Внутригрупповая |
mn-m |
= Q2/(mn-m) |
M(S)= у2 |
||
Общая |
mn-1 |
Гипотеза H0 примет вид уF2 =0. В случае справедливости этой гипотезы
M(S)= M(S)= у2.
В случае однофакторного комплекса как для модели I, так и модели II средние квадраты S2 и S2, являются несмещенными и независимыми оценками одной и той же дисперсии у2.
Следовательно, проверка нулевой гипотезы H0 свелась к проверке существенности различия несмещенных выборочных оценок S и S дисперсии у2.
Гипотеза H0 отвергается, если фактически вычисленное зна-чение статистики F = S/S больше критического Fб:K1:K2, опреде-ленного на уровне значимости б при числе степеней свободы k1=m-1 и k2=mn-m, и принимается, если F < Fб:K1:K2 .
F- распределение Фишера (для x > 0) имеет следующую функцию плотности (для = 1, 2, ...; = 1, 2, ...):
где - степени свободы;
Г - гамма-функция.
Применительно к данной задаче опровержение гипотезы H0 означает наличие существенных различий в качестве изделий различных партий на рассматриваемом уровне значимости.
Для вычисления сумм квадратов Q1, Q2, Q часто бывает удобно использовать следующие формулы:
(12)
(13)
(14)
т.е. сами средние, вообще говоря, находить не обязательно.
Таким образом, процедура однофакторного дисперсионного анализа состоит в проверке гипотезы H0 о том, что имеется одна группа однородных экспериментальных данных против альтернативы о том, что таких групп больше, чем одна. Под однородностью понимается одинаковость средних значений и дисперсий в любом подмножестве данных. При этом дисперсии могут быть как известны, так и неизвестны заранее. Если имеются основания полагать, что известная или неизвестная дисперсия измерений одинакова по всей совокупности данных, то задача однофакторного дисперсионного анализа сводится к исследованию значимости различия средних в группах данных /1/.
1.3 Многофакторный дисперсионный анализ
Следует сразу же отметить, что принципиальной разницы между многофакторным и однофакторным дисперсионным анализом нет. Многофакторный анализ не меняет общую логику дисперсионного анализа, а лишь несколько усложняет ее, поскольку, кроме учета влияния на зависимую переменную каждого из факторов по отдельности, следует оценивать и их совместное действие. Таким образом, то новое, что вносит в анализ данных многофакторный дисперсионный анализ, касается в основном возможности оценить межфакторное взаимодействие. Тем не менее, по-прежнему остается возможность оценивать влияние каждого фактора в отдельности. В этом смысле процедура многофакторного дисперсионного анализа (в варианте ее компьютерного использования) несомненно более экономична, поскольку всего за один запуск решает сразу две задачи: оценивается влияние каждого из факторов и их взаимодействие /3/.
Общая схема двухфакторного эксперимента, данные которого обрабатываются дисперсионным анализом имеет вид:
Рисунок 1.1 - Схема двухфакторного эксперимента
Данные, подвергаемые многофакторному дисперсионному анализу, часто обозначают в соответствии с количеством факторов и их уровней.
Предположив, что в рассматриваемой задаче о каче-стве различных m партий изделия изготавливались на разных t станках и требуется выяснить, имеются ли существенные различия в качестве изделий по каждому фактору:
А - партия изделий;
B - станок.
В результате получается переход к задаче двухфакторного дисперсионного анализа.
Все данные представлены в таблице 1.2, в которой по строкам - уровни Ai фактора А, по столбцам -- уровни Bj фактора В, а в соответствующих ячейках, таблицы находятся значения показателя качества изделий xijk (i=1,2,...,m; j=1,2,...,l; k=1,2,...,n).
Таблица 1.2 - Показатели качества изделий
B1 |
B2 |
… |
Bj |
… |
Bl |
||
A1 |
x11l,…,x11k |
x12l,…,x12k |
… |
x1jl,…,x1jk |
… |
x1ll,…,x1lk |
|
A2 |
x21l,…,x21k |
x22l,…,x22k |
… |
x2jl,…,x2jk |
… |
x2ll,…,x2lk |
|
… |
… |
… |
… |
… |
… |
… |
|
Ai |
xi1l,…,xi1k |
xi2l,…,xi2k |
… |
xijl,…,xijk |
… |
xjll,…,xjlk |
|
… |
… |
… |
… |
… |
… |
… |
|
Am |
xm1l,…,xm1k |
xm2l,…,xm2k |
… |
xmjl,…,xmjk |
… |
xmll,…,xmlk |
Двухфакторная дисперсионная модель имеет вид:
xijk=м+Fi+Gj+Iij+еijk, (15)
где xijk - значение наблюдения в ячейке ij с номером k;
м - общая средняя;
Fi - эффект, обусловленный влиянием i-го уровня фактора А;
Gj - эффект, обусловленный влиянием j-го уровня фактора В;
Iij - эффект, обусловленный взаимодействием двух факто-ров, т.е. отклонение от средней по наблюдениям в ячейке ij от суммы первых трех слагаемых в модели (15);
еijk - возмущение, обусловленное вариацией переменной внутри отдельной ячейки.
Предполагается, что еijk имеет нормальный закон распределения N(0; с2), а все математические ожидания F*, G*, Ii*, I*j равны нулю.
Групповые средние находятся по формулам:
- в ячейке:
,
по строке:
по столбцу:
общая средняя:
В таблице 1.3 представлен общий вид вычисления значений, с помощью дисперсионного анализа.
Таблица 1.3 - Базовая таблица дисперсионного анализа
Компоненты дисперсии |
Сумма квадратов |
Число степеней свободы |
Средние квадраты |
|
Межгрупповая (фактор А) |
m-1 |
|||
Межгрупповая (фактор B) |
l-1 |
|||
Взаимодействие |
(m-1)(l-1) |
|||
Остаточная |
mln - ml |
|||
Общая |
mln - 1 |
Проверка нулевых гипотез HA, HB, HAB об отсутствии влияния на рассматриваемую переменную факторов А, B и их взаимодействия AB осуществляется сравнением отношений , , (для модели I с фиксированными уровнями факторов) или отношений , , (для случайной модели II) с соответствующими табличными значениями F - критерия Фишера - Снедекора. Для смешанной модели III проверка гипотез относительно факторов с фиксированными уровнями производится также как и в модели II, а факторов со случайными уровнями - как в модели I.
Если n=1, т.е. при одном наблюдении в ячейке, то не все нулевые гипотезы могут быть проверены так как выпадает компонента Q3 из общей суммы квадратов отклонений, а с ней и средний квадрат , так как в этом случае не может быть речи о взаимодействии факторов.
С точки зрения техники вычислений для нахождения сумм квадратов Q1, Q2, Q3, Q4, Q целесообразнее использовать формулы:
Q3 = Q - Q1 - Q2 - Q4.
Отклонение от основных предпосылок дисперсионного анализа -- нормальности распределения исследуемой переменной и равенства дисперсий в ячейках (если оно не чрезмерное) -- не сказывается существенно на результатах дисперсионного анализа при равном числе наблюдений в ячейках, но может быть очень чувствительно при неравном их числе. Кроме того, при нерав-ном числе наблюдений в ячейках резко возрастает сложность аппарата дисперсионного анализа. Поэтому рекомендуется пла-нировать схему с равным числом наблюдений в ячейках, а если встречаются недостающие данные, то возмещать их средними значениями других наблюдений в ячейках. При этом, однако, искусственно введенные недостающие данные не следует учитывать при подсчете числа степеней свободы.
2 Применение дисперсионного анализа в различных процессах и исследованиях
2.1 Использование дисперсионного анализа при изучении миграционных процессов
Миграция - сложное социальное явление, во многом определяющее экономическую и политическую стороны жизни общества. Исследование миграционных процессов связано с выявлением факторов заинтересованности, удовлетворенности условиями труда, и оценкой влияния полученных факторов на межгрупповое движение населения.
лij=ciqijaj,
где лij - интенсивность переходов из исходной группы i (выхода) в новую j (входа);
ci - возможность и способности покинуть группу i (ci?0);
qij - привлекательность новой группы по сравнению с исходной (0?qij?1);
aj - доступность группы j (aj?0).
Если считать численность группы i равной ni, то оценкой случайной величины нij - числа переходов из i в j - будет niciqijaj:
нij? niлij=niciqijaj. (16)
На практике для отдельного человека вероятность p перехода в другую группу мала, а численность рассматриваемой группы n велика. В этом случае действует закон редких событий, то есть пределом нij является распределение Пуассона с параметром м=np:
С ростом м распределение приближается к нормальному. Преобразованную же величину vнij можно считать нормально распределенной.
Если прологарифмировать выражение (16) и сделать необходимые замены переменных, то можно получить модель дисперсионного анализа:
ln?нij=Ѕlnнij=Ѕ(lnni+lnci+lnqij+lnaj)+еij,
Xi,j=2ln?нij-lnni-lnqij,
Ci=lnci,
Aj=lnaj--,
Xi,j=Ci+Aj+е.
Значения Ci и Aj позволяют получить модель двухфакторного дисперсионного анализа с одним наблюдением в клетке. Обратным преобразованием из Ci и Aj вычисляются коэффициенты ci и aj.
При проведении дисперсионного анализа в качестве значений результативного признака Y следует взять величины:
Yij=Xi,j-X,
Х=(Х1,1+Х1,2+:+Хmi,mj)/mimj,
где mimj- оценка математического ожидания Хi,j;
Хmi и Хmj - соответственно количество групп выхода и входа.
Уровнями фактора I будут mi групп выхода, уровнями фактора J - mj групп входа. Предполагается mi=mj=m. Встает задача проверки гипотез HI и HJ о равенствах математических ожиданий величины Y при уровнях Ii и при уровнях Jj, i,j=1,…,m. Проверка гипотезы HI основывается на сравнении величин несмещенных оценок дисперсии sI2 и so2. Если гипотеза HI верна, то величина F(I)= sI 2/so2 имеет распределение Фишера с числами степеней свободы k1=m-1 и k2=(m-1)(m-1). Для заданного уровня значимости б находится правосторонняя критическая точка xпр,бкр. Если числовое значение F(I)чис величины попадает в интервал (xпр,бкр, +?), то гипотеза HI отвергается и считается, что фактор I влияет на результативный признак. Степень этого влияния по результатам наблюдений измеряется выборочным коэффициентом детерминации, который показывает, какая доля дисперсии результативного признака в выборке обусловлена влиянием на него фактора I. Если же F(I)чис<xпр,бкр, то гипотеза HI не отвергаются и считаются, что влияние фактора I не подтвердилось. Аналогично проверяется гипотеза HJ о влиянии фактора J /4/.
2.2 Принципы математико-статистического анализа данных медико биологических исследований
В зависимости от поставленной задачи, объема и характера материала, вида данных и их связей находится выбор методов математической обработки на этапах как предварительного (для оценки характера распределения в исследуемой выборке), так и окончательного анализа в соответствии с целями исследования. Крайне важным аспектом является проверка однородности выбранных групп наблюдения, в том числе контрольных, что может быть проведено или экспертным путем, или методами многомерной статистики (например, с помощью кластерного анализа). Но первым этапом является составление вопросника, в котором предусматривается стандартизованное описание признаков. В особенности при проведении эпидемиологических исследований, где необходимо единство в понимании и описании одних и тех же симптомов разными врачами, включая учет диапазонов их изменений (степени выраженности). В случае существенности различий в регистрации исходных данных (субъективная оценка характера патологических проявлений различными специалистами) и невозможности их приведения к единому виду на этапе сбора информации, может быть затем осуществлена так называемая коррекция ковариант, которая предполагает нормализацию переменных, т.е. устранение ненормальностей показателей в матрице данных. "Согласование мнений" осуществляется с учетом специальности и опыта врачей, что позволяет затем сравнивать полученные ими результаты обследования между собой. Для этого могут использоваться многомерный дисперсионный и регрессионный анализы.
Признаки могут быть как однотипными, что бывает редко, так и разнотипными. Под этим термином понимается их различная метрологическая оценка. Количественные или числовые признаки - это замеренные в определенной шкале и в шкалах интервалов и отношений (I группа признаков). Качественные, ранговые или балльные используются для выражения медицинских терминов и понятий не имеющих цифровых значений (например, тяжесть состояния) и замеряются в шкале порядка (II группа признаков). Классификационные или номинальные (например, профессия, группа крови) - это замеренные в шкале наименований (III группа признаков).
Во многих случаях делается попытка анализа крайне большого числа признаков, что должно способствовать повышению информативности представленной выборки. Однако выбор полезной информации, то есть осуществление отбора признаков является операцией совершенно необходимой, поскольку для решения любой классификационной задачи должны быть отобраны сведения, несущие полезную для данной задачи информацию. В случае, если это не осуществлено по каким-то причинам исследователем самостоятельно или отсутствуют достаточно обоснованные критерии для снижения размерности пространства признаков по содержательным соображениям, борьба с избыточностью информации осуществляется уже формальными методами путем оценки информативности.
Дисперсионный анализ позволяет определить влияние разных факторов (условий) на исследуемый признак (явление), что достигается путем разложения совокупной изменчивости (дисперсии, выраженной в сумме квадратов отклонений от общего среднего) на отдельные компоненты, вызванные влиянием различных источников изменчивости.
С помощью дисперсионного анализа исследуются угрозы заболевания при наличии факторов риска. Концепция относительного риска рассматривает отношение между пациентами с определенной болезнью и не имеющими ее. Величина относительного риска дает возможность определить, во сколько раз увеличивается вероятность заболеть при его наличии, что может быть оценено с помощью следующей упрощенной формулы:
r' = a*d / b*c,
где a - наличие признака в исследуемой группе;
b - отсутствие признака в исследуемой группе;
c - наличие признака в группе сравнения (контрольной);
d - отсутствие признака в группе сравнения (контрольной).
Показатель атрибутивного риска (rA) служит для оценки доли заболеваемости, связанной с данным фактором риска:
,
где Q - частота признака, маркирующего риск, в популяции;
r' - относительный риск.
Выявление факторов, способствующих возникновению (проявлению) заболевания, т.е. факторов риска может осуществляться различными способами, например, путем оценки информативности с последующим ранжированием признаков, что однако не указывает на совокупное действие отобранных параметров, в отличие от применения регрессионного, факторного анализов, методов теории распознавания образов, которые дают возможность получать "симптомокомплексы" риск-факторов. Кроме того, более сложные методы позволяют анализировать и непрямые связи между факторами риска и заболеваниями.
2.3 Биотестирование почвы
Многообразные загрязняющие вещества, попадая в агроценоз, могут претерпевать в нем различные превращения, усиливая при этом свое токсическое действие. По этой причине оказались необходимыми методы интегральной оценки качества компонентов агроценоза. Исследования проводили на базе многофакторного дисперсионного анализа в 11-ти польном зернотравянопропашном севообороте. В опыте изучалось влияние следующих факторов: плодородие почвы (А), система удобрений (В), система защиты растений (С). Плодородие почвы, система удобрений и система защиты растений изучались в дозах 0, 1, 2 и 3. Базовые варианты были представлены следующими комбинациями:
000 - исходный уровень плодородия, без применения удобрений и средств защиты растений от вредителей , болезней и сорняков;
111 - средний уровень плодородия почвы, минимальная доза удобрения, биологическая защита растений от вредителей и болезней;
222 - исходный уровень плодородия почвы, средняя доза удобрений, химическая защита растений от сорняков;
333 - высокий уровень плодородия почвы, высокая доза удобрений, химическая защита растений от вредителей и болезней.
Изучались варианты, где представлен только один фактор:
200 - плодородие:
020 - удобрения;
002 - средства защиты растений.
А также варианты с различным сочетанием факторов - 111, 131, 133, 022, 220, 202, 331, 313, 311.
Целью исследования являлось изучение торможения хлоропластов и коэффициента мгновенного роста, как показателей загрязнения почвы, в различных вариантах многофакторного опыта.
Торможение фототаксиса хлоропластов ряски малой исследовали в различных горизонтах почвы: 0-20, 20-40 см. Анализ изменчивости фототаксиса в разных вариантах опыта показал достоверное влияние каждого из факторов (плодородия почвы, системы удобрений и системы защиты растений). Доля в общей дисперсии плодородия почвы составила 39,7%, системы удобрений - 30,7%, системы защиты растений - 30,7 %.
Для исследования совокупного влияния факторов на торможение фототаксиса хлоропластов использовались различные сочетания вариантов опыта: в первом случае - 000, 002, 022, 222, 220, 200, 202, 020, во втором случае - 111, 333, 331, 313, 133, 311, 131.
Результаты двухфакторного дисперсионного анализа свидетельствуют о достоверном влиянии взаимодействующих системы удобрений и системы защиты растений на различия в фототаксисе для первого случая (доля в общей дисперсии составила 10,3%). Для второго случая обнаружено достоверное влияние взаимодействующих плодородия почвы и системы удобрений (53,2%).
Трехфакторный дисперсионный анализ показал в первом случае достоверное влияние взаимодействия всех трех факторов. Доля в общей дисперсии составила 47,9%.
Коэффициент мгновенного роста исследовали в различных вариантах опыта 000, 111, 222, 333, 002, 200, 220. Первый этап тестирования - до внесения гербицидов на посевах озимой пшеницы (апрель), второй этап - после внесения гербицидов (май) и последний - на момент уборки (июль). Предшетвенники - подсолнечник и кукуруза на зерно.
Появление новых листецов наблюдали после короткой лаг-фазы с периодом суммарного удвоения сырой массы 2 - 4 суток.
В контроле и в каждом варианте на основании полученных результатов рассчитывали коэффициент мгновенного роста популяции r и далее рассчитывали время удвоения численности листецов (t удв ).
tудв=ln2/r.
Расчет этих показателей был проведен в динамике с анализом почвенных образцов. Анализ данных показал, что время удвоения популяции рясок до обработки почвы было наименьшем по сравнению с данными после обработки и на момент уборки. В динамике наблюдений больший интерес вызывает отклик почвы после внесения гербицида и на момент уборки. Прежде всего взаимодействие с удобрениями и уровнем плодородия.
Подчас получить прямой отклик на внесение химических препараратов может быть осложнено взаимодействием препарата с удобрениями, как органическими, так и минеральными. Полученные данные позволили проследить динамику отклика вносимых препаратов, во всех вариантах с химическими средствами защиты, где отмечается приостановка роста индикатора.
Данные однофакторного дисперсионного анализа показали достоверное влияние каждого показателя на темпы роста ряски малой на первом этапе. На втором этапе эффект различий по плодородию почвы составил 65,0 %, по системе удобрений и системе защиты растений - по 65,0%. Факторы показали достоверные различия среднего по коэффициенту мгновенного роста варианта 222 и вариантов 000, 111, 333. На третьем этапе доля в общей дисперсии плодородия почвы составила 42,9%, системы удобрений и системы защиты растений - по 42,9%. Отмечено достоверное различие по средним значениям вариантов 000 и 111, вариантов 333 и 222.
Исследуемые образцы почвы с вариантов полевого мониторинга отличаются друг от друга по показателю торможение фототаксиса. Отмечено влияние факторов плодородия, система удобрений и средства защиты растений с долями 30,7 и 39,7% при однофакторном анализе, при двух факторном и трехфакторном - зарегистрировали совместное влияние факторов.
Анализ результатов опыта показал незначительные различия между горизонтами почвы по показателю - торможение фототаксиса. Отличия отмечены по средним значениям.
На всех вариантах, где имеются средства защиты растений наблюдается изменения положения хлоропластов и приостановка роста ряски малой /6/.
2.4 Грипп вызывает повышенную выработку гистамина
Исследователи из детской больницы в Питсбурге (США) получили первые доказательства того, что при острых респираторных вирусных инфекциях повышается уровень гистамина. Несмотря на то, что и раньше предполагалось, что гистамин играет определенную роль в возникновении симптомов острых респираторных инфекциях верхних дыхательных путей.
Ученых интересовало, почему многие люди применяют для самолечения «простудных» заболеваний и насморка антигистаминные препараты, которые во многих странах входят в категорию OTC, т.е. доступны без рецепта врача.
Целью проведенного исследования было определить, повышается ли продукция гистамина при экспериментальной инфекции, вызванной вирусом гриппа А.
15 здоровым добровольцам интраназально ввели вирус гриппа А, а затем наблюдали за развитием инфекции. Ежедневно в течение заболевания у добровольцев собиралась утренняя порция мочи, а затем проводилось определение гистамина и его метаболитов и рассчитывалось общее количество гистамина и его метаболитов, выделенных за сутки.
Заболевание развилось у всех 15 добровольцев. Дисперсионный анализ подтвердил достоверно более высокий уровень гистамина в моче на 2-5 сутки вирусной инфекции (p<0,02) - период, когда симптомы «простуды» наиболее выражены. Парный анализ показал, что наиболее значительно уровень гистамина повышается на 2 день заболевания. Кроме этого, оказалось, что суточное количество гистамина и его метаболитов в моче при гриппе примерно такое же, как и при обострении аллергического заболевания.
Результаты данного исследования служат первыми прямыми доказательствами того, что уровень гистамина повышается при острых респираторных инфекциях /7/.
2.5 Дисперсионный анализ в химии
Дисперсионный анализ - совокупность методов определения дисперсности, т. е. характеристики размеров частиц в дисперсных системах. Дисперсионный анализ включает различные способы определения размеров свободных частиц в жидких и газовых средах, размеров каналов-пор в тонкопористых телах (в этом случае вместо понятия дисперсности используют равнозначное понятие пористости), а также удельной поверхности. Одни из методов дисперсионного анализа позволяют получать полную картину распределения частиц по размерам (объёмам), а другие дают лишь усреднённую характеристику дисперсности (пористости).
К первой группе относятся, например, методы определения размеров отдельных частиц непосредственным измерением (ситовой анализ, оптическая и электронная микроскопия) или по косвенным данным: скорости оседания частиц в вязкой среде (седиментационный анализ в гравитационном поле и в центрифугах), величине импульсов электрического тока, возникающих при прохождении частиц через отверстие в непроводящей перегородке (кондуктометрический метод).
Вторая группа методов объединяет оценку средних размеров свободных частиц и определение удельной поверхности порошков и пористых тел. Средний размер частиц находят по интенсивности рассеянного света (нефелометрия), с помощью ультрамикроскопа, методами диффузии и т.д., удельную поверхность - по адсорбции газов (паров) или растворённых веществ, по газопроницаемости, скорости растворения и др. способами. Ниже приведены границы применимости различных методов дисперсионного анализа (размеры частиц в метрах):
Ситовой анализ - 10-2-10-4
Седиментационный анализ в гравитационном поле - 10-4-10-6
Кондуктометрический метод - 10-4-10-6
Микроскопия - 10-4-10-7
Метод фильтрации - 10-5-10-7
Центрифугирование - 10-6-10-8
Ультрацентрифугирование - 10-7-10-9
Ультрамикроскопия - 10-7-10-9
Нефелометрия - 10-7-10-9
Электронная микроскопия - 10-7-10-9
Метод диффузии - 10-7-10-10
Дисперсионный анализ широко используют в различных областях науки и промышленного производства для оценки дисперсности систем (суспензий, эмульсий, золей, порошков, адсорбентов и т.д.) с величиной частиц от нескольких миллиметров (10-3 м) до нескольких нанометров (10-9 м) /8/.
2.6 Использование прямого преднамеренного внушения в бодрствующем состоянии в методике воспитания физических качеств
Физическая подготовка - основополагающая сторона спортивной тренировки, так как в большей мере, чем другие стороны подготовки, характеризуется физическими нагрузками, воздействующими на морфофункциональные свойства организма. От уровня физической подготовленности зависят успешность технической подготовки, содержание тактики спортсмена, реализация личностных свойств в процессе тренировок и состязаний.
Одной из основных задач физической подготовки является воспитание физических качеств. В связи с этим возникает необходимость в разработке педагогических средств и методов, позволяющих учитывать возрастные особенности юных спортсменов, сохраняющих их здоровье, не требующих дополнительных затрат времени и в то же время стимулирующих рост физических качеств и, как следствие, - спортивного мастерства. Использование вербального гетеровоздействия в тренировочном процессе в группах начальной подготовки - одно из перспективных направлений исследований по данной проблеме.
Анализ теории и практики реализации внушающего вербального гетеровоздействия выявил основные противоречия:
- доказанность эффективного использования специфических методов вербального гетеровоздействия в тренировочном процессе и практическую невозможность их использования тренером;
- признание прямого преднамеренного внушения (далее ППВ) в бодрствующем состоянии как одного из основных методов вербального гетеровоздействия в педагогической деятельности тренера и отсутствие теоретического обоснования методических особенностей его применения в спортивной подготовке, и в частности в процессе воспитания физических качеств.
В связи с выявленными противоречиями и недостаточной разработанностью проблема использования системы методов вербального гетеровоздействия в процессе воспитания физических качеств спортсменов предопределила цель исследования - разработать рациональные целенаправленные методики ППВ в бодрствующем состоянии, способствующие совершенствованию процесса воспитания физических качеств на основе оценки психического состояния, проявления и динамики физических качеств дзюдоистов групп начальной подготовки.
С целью апробации и определения эффективности экспериментальных методик ППВ при воспитании физических качеств дзюдоистов был проведен сравнительный педагогический эксперимент, в котором приняли участие четыре группы - три экспериментальных и одна контрольная. В первой экспериментальной группе (ЭГ) использовалась методика ППВ М1, во второй - методика ППВ М2, в третьей - методика ППВ М3. В контрольной группе (КГ) методики ППВ не применялись.
Для определения эффективности педагогического воздействия методик ППВ в процессе воспитания у дзюдоистов физических качеств был проведен однофакторный дисперсионный анализ.
Степень влияния методики ППВ M1 в процессе воспитания:
- выносливости:
а) после третьего месяца составила 11,1%;
- скоростных способностей:
а) после первого месяца - 16,4%;
б) после второго - 26,5%;
в) после третьего - 34,8%;
- силы:
а) после второго месяца - 26, 7%;
б) после третьего - 35,3%;
- гибкости:
а) после третьего месяца - 20,8%;
- координационных способностей:
а) после второго месяца основного педагогического эксперимента степень влияния методики составила 6,4%;
б) после третьего - 10,2%.
Следовательно, существенные изменения в показателях уровня развития физических качеств с использованием методики ППВ М1 обнаружены в скоростных способностях и силе, степень влияния методики в данном случае наибольшая. Наименьшая степень влияния методики обнаружена в процессе воспитания выносливости, гибкости, координационных способностей, что дает основание говорить о недостаточной эффективности использования методики ППВ М1 при воспитании указанных качеств.
Степень влияния методики ППВ M2 в процессе воспитания:
- выносливости
а) после первого месяца эксперимента - 12,6%;
б) после второго - 17,8%;
в) после третьего - 20,3%.
- скоростных способностей:
а) после третьего месяца тренировочных занятий - 28%.
- силы:
а) после второго месяца - 27,9%;
б) после третьего - 35,9%.
- гибкости:
а) после третьего месяца тренировочных занятий - 14,9%;
- координационных способностей - 13,1%.
Полученный результат однофакторного дисперсионного анализа данной ЭГ позволяет сделать вывод о том, что методика ППВ М2 наиболее результативна при воспитании выносливости и силы. Менее эффективна она в процессе воспитания гибкости, скоростных и координационных способностей.
Степень влияния методики ППВ М3 в процессе воспитания:
- выносливости:
а) после первого месяца эксперимента 16,8%;
б) после второго - 29,5%;
в) после третьего - 37,6%.
- скоростных способностей:
а) после первого месяца - 26,3%;
б) после второго - 31,3%;
в) после третьего - 40,9%.
- силы:
а) после первого месяца - 18,7%;
б) после второго - 26,7%;
в) после третьего - 32,3%.
- гибкости:
а) после первого - изменений нет;
б) после второго - 16,9%;
в) после третьего - 23,5%.
- координационных способностей:
а) после первого месяца изменений нет;
б) после второго - 23,8%;
в) после третьего - 91% .
Таким образом, однофакторный дисперсионный анализ показал, что использование методики ППВ М3 в подготовительном периоде наиболее эффективно в процессе воспитания физических качеств, так как наблюдается увеличение степени ее влияния после каждого месяца педагогического эксперимента /9/.
2.7 Купирование острой психотической симптоматики у больных шизофренией атипичным нейролептиком
Цель исследования сводилась к изучению возможности применения рисполепта для купирования острых психозов у больных с диагнозом шизофрении (параноидный тип по МКБ-10) и шизоаффективного расстройства. При этом в качестве основного изучаемого критерия использовался показатель длительности сохранения психотической симптоматики в условиях фармакотерапии рисполептом (основная группа) и классическими нейролептиками.
Основные задачи исследования сводились к определению показателя длительности психоза (так называемый нетто-психоз), под которым понималось сохранение продуктивной психотической симптоматики с момента начала применения нейролептиков, выраженное в днях. Данный показатель был рассчитан отдельно для группы, принимавшей рисперидон, и отдельно для группы, принимавшей классические нейролептики.
Наряду с этим была поставлена задача по определению доли редукции продуктивной симптоматики под влиянием рисперидона в сравнении с классическими нейролептиками в разные сроки терапии.
В общей сложности изучены 89 больных (42 мужчины и 47 женщин) с острой психотической симптоматикой в рамках параноидной формы шизофрении (49 больных) и шизоаффективного расстройства (40 больных).
Первый эпизод и длительность заболевания до 1 года были зарегистрированы у 43 больных, тогда как в остальных случаях на момент исследования отмечались последующие эпизоды шизофрении при длительности заболевания свыше 1 года.
Терапию рисполептом получали 29 человек, среди которых с так называемым первым эпизодом было 15 больных. Терапию классическими нейролептиками получали 60 человек, среди которых с первым эпизодом было 28 человек. Доза рисполепта варьировала в диапазоне от 1 до 6 мг в сутки и в среднем составляла 4±0,4 мг/сут. Рисперидон принимали исключительно внутрь после еды один раз в сутки в вечернее время.
Терапия классическими нейролептиками включала применение трифлуоперазина (трифтазина) в суточной дозе до 30 мг внутримышечно, галоперидола в суточной дозе до 20 мг внутримышечно, триперидола в суточной дозе до 10 мг внутрь. Подавляющее большинство больных принимало классические нейролептики в виде монотерапии в течение первых двух недель, после чего переходили в случае необходимости (при сохранении бредовой, галлюцинаторной или другой продуктивной симптоматики) к сочетанию нескольких классических нейролептиков. При этом в качестве основного препарата оставался нейролептик с выраженным элективным антибредовым и антигаллюцинаторным аффектом (например, галоперидол или трифтазин), к нему присоединяли в вечернее время препарат с отчетливым гипноседативным эффектом (аминазин, тизерцин, хлорпротиксен в дозах до 50-100 мг/сут).
В группе, принимавшей классические нейролептики, был предусмотрен прием корректоров холинолитического ряда (паркопан, циклодол) в дозах до 10-12 мг/сут. Корректоры назначались в случае появления отчетливых побочных экстрапирамидных эффектов в виде острых дистоний, лекарственного паркинсонизма и акатизии.
В таблице 2.1 представлены данные по длительности психоза при лечении рисполептом и классическими нейролептиками.
Таблица 2.1 - Длительность психоза ("нетто-психоз") при лечении рисполептом и классическими нейролептиками
Группа больных |
Длительность терапии, дни |
Значимость различий, p |
||
рисполепт |
классические нейролептики |
|||
Вся выборка (n = 89) |
15,4±1,4 (n = 29) |
31,4±2,5 (n = 60) |
<0,001 |
|
Больные с 1-м эпизодом (n = 43) |
14,7±1,9 (n = 15) |
25,8±2,9 (n = 28) |
<0,002 |
|
Больные с последующими эпизодами (n = 46) |
16,3±2,0 (n = 14) |
35,1±3,8 (n = 32) |
<0,001 |
|
Больные с галлюцинаторно-параноидным синдромом (n = 49) |
15,2±1,5 (n = 23) |
34,7±4,4 (n = 26) |
<0,001 |
|
Больные с шизоаффективным синдромом (n = 40) |
16,5±3,8 (n = 6) |
28,9±2,9 (n = 34) |
<0,01 |
Подобные документы
Общая характеристика однофакторного дисперсионного анализа. Сущность двухфакторного дисперсионного анализа при перекрестной классификации факторов. Особенности дисперсионного анализа в системе MINITAB и формы выполнения работы в программе MS Excel.
методичка [440,7 K], добавлен 15.12.2008Дисперсионный анализ - исследование причин отклонений фактических затрат от нормативных. Схемы организации исходных данных с двумя и более факторами. Формулы расчета межгрупповой и внутригрупповой дисперсии. Задачи двухфакторного дисперсионного анализа.
курсовая работа [1,0 M], добавлен 16.01.2013Общее понятие, основные цели и задачи дисперсионного анализа. Компоненты изменчивости и методы их определения. Однофакторный дисперсионный анализ, его графическое изображение и области применения. Перечень формул вычисления для двухфакторного анализа.
презентация [576,2 K], добавлен 22.03.2015Равенство нулю математического ожидания случайной компоненты. Знакомство со статистическим методом однофакторного дисперсионного анализа, а также с реализацией его на ПК в различных программах. Сравнение IBM SPSS Statistics 20 и Microsoft Office 2013.
курсовая работа [1,3 M], добавлен 29.11.2014Анализ структуры взаимосвязей признаков по данным трехмерной таблицы сопряженности с помощью логлинейных моделей. Непараметрические методы проверки гипотез об однородности распределения двух совокупностей. Модели двухфакторного дисперсионного анализа.
отчет по практике [388,6 K], добавлен 01.10.2013Изучение показателей качества конструкционного газобетона как случайных величин. Проведение модульного эксперимента и дисперсионного анализа с целью определения достоверности влияния факторов на поведение выбранных показателей качества данной продукции.
курсовая работа [342,3 K], добавлен 08.05.2012Способы описания случайной величины, основные распределения и их генерация в Excel. Дисперсионный анализ как особая форма анализа регрессии. Применение элементов линейной алгебры в моделировании экономических процессов и решение транспортной задачи.
курс лекций [1,6 M], добавлен 05.05.2010Изучение сущности однофакторного дисперсионного анализа. Методы разбиения суммы квадратов и проверки значимости. Исследование вопроса планирования и организации отдельных этапов научных исследований, содержания и этапов научно-исследовательских работ.
курсовая работа [148,0 K], добавлен 27.12.2012Получение функции отклика показателя качества Y2 и формирование выборки объемом 15 и более 60. Зависимость выбранного Y от одного из факторов Х. Дисперсионный анализ и планирование эксперимента. Проведение корреляционного и регрессионного анализа.
курсовая работа [827,2 K], добавлен 19.06.2012Изучение и отработка навыков математического моделирования стохастических процессов; исследование реальных моделей и систем с помощью двух типов моделей: аналитических и имитационных. Основные методы анализа: дисперсионный, корреляционный, регрессионный.
курсовая работа [701,2 K], добавлен 19.01.2016