Использование факторного анализа для построения рейтинга банков
Методология факторного анализа. Построение корреляционной и ковариационной матрицы, максимизирование полученной функции, формула критерия Варимакса. Компьютерная реализация метода. Матрица факторного отображения и графическое представление результатов.
Рубрика | Экономико-математическое моделирование |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 19.03.2010 |
Размер файла | 171,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
7
Министерство образования и науки республики Беларусь
Белорусский государственный университет
Кафедра МО САПР
Использование факторного анализа для построения рейтинга банков
Курсовая работа
студентов второй группы
третьего курса
факультета прикладной
математики и информатики
Бескоровайного А.А. и
Лейнова В. А.
Научный руководитель:
Ковалев М.М.
Минск, 1997
Введение
В факторном анализе предполагается, что наблюдаемые переменные являются линейной комбинацией некоторых латентных (гипотетических или ненаблюдаемых) факторов. Некоторые из этих факторов допускаются общими для двух и более переменных, а другие -- характерными для каждого параметра в отдельности.
Применительно к построению банковских рейтингов реальную картину состояния дает методика, основанная на применении двухфакторного анализа, которая позволяет представить банки точками на плоскости, координатными осями которой являются [построенные] факторы, что особенно удобно для составления динамических рейтингов, когда при анализе состояния системы во времени точки, указывающие на состояние банков, превращаются в диаграммы.
Методология факторного анализа
Необходимо попытаться наиболее полно проанализировать разнообразные показатели, характеризующие в нашем случае состояние банков. Для этого необходимо свести их к меньшему числу некоторых факторов. Представим каждый рейтинговый показатель zj как линейную комбинацию гипотетических факторов:
Zj=aj1F1+aj2F2+...+ajmFm (j=1,2...n), где
Fi - значение i-го фактора для данной (j-ой) компоненты;
aji - вес фактора i в компоненте j;
m - количество факторов;
n - количество показателей.
Можно выделить следующие этапы построения факторной матрицы:
1. Создаем исходную матрицу {{xij}} размерности (n * m), где m - количество характеристик, а n - количество исследуемых банков.
2. Строим корреляционную матрицу R={{rij}},
имеющую размерность m * m:
2.1 Строим ковариационную матрицу: C=XT*X/n :
2.2 Строим корреляционную матрицу:
2.3
R={{rij}},
2.3 На основе построенной корреляционной матрицы строим редуцированную корреляционную матрицу:
3. В методе главных факторов на 1-ом этапе вычислений ищут коэффициенты при первом факторе так, чтобы сумма вкладов в суммарную общность была максимальной
Максимум V1 должен быть обеспечен при условии
Чтобы максимизировать функцию n переменных воспользуемся методом множителей Лагранжа, с помощью которого приходим к выводу, что искомая функция является ничем иным как максимальным собственным значением уравнения
det(R-E)=0 (2),
где R- редуцированная корреляционная матрица, полученная в пункте 2. Далее, подставив найденное значение 1 и получив одно из возможных решений (q11 ,q21, ... ,qn1) уравнения (2), являющихся в свою очередь собственным вектором, соответствующим данному собственному значению и, для удовлетворения выражению (1), разделив на корень из суммы их квадратов и умножив на квадратный корень из собственного значения, получим
что представляет собой искомый коэффициент при факторе F1 в факторном отображении пункта 1.
1 вычисляется по формуле:
1=max{p1j}, где вектор p=R*q1
Вектор q1 находится при помощи следующего итерационного процесса:
Вычисляем R, R2, R4,... до тех пор, пока не будет выполняться условие |(i)-(i/2)|<, где (i) вектор, j-ый элемент которого равен частному от деления суммы j-ой строки матрицы Ri на максимальную из сумм элементов строк матрицы Ri , а в качестве берется заранее выбранная точность вычислений. По окончании процесса в качестве вектора q берется вектор a(i).
4.Для определения коэффициентов при втором факторе F2 необходимо максимизировать функцию
что делается аналогично вычислениям для 1-го фактора, только вместо матрицы R используется матрица
Полученную факторную матрицу размерности m*2 вращаем путем умножения на матрицу поворота
,
где -угол поворота, изменяющийся от 0 до /2 с шагом /720.
Окончательный поворот будет произведен на угол, при котором выполнится критерий Варимакс:
Где r -- число факторов.
Умножив справа исходную матрицу Х на построенную пов, получим окончательную матрицу, показывающую расположение банков в новых координатах (факторах F1 , F2).
Описание программы
Для компьютерной реализации описанного выше метода нами, с помощью среды Delphi 2.0, была создана программа rating, функционирующая под управлением операционной системы Windows-95.
1. После запуска программа предлагает пользователю загрузить исходные данные о состоянии банков за некоторые периоды времени. Исходные файлы хранятся в специальном формате (см. приложение 1).
2. Данные загружаются в таблицы (по годам), где и могут быть просмотрены (см. приложение 2)
В прилагаемом ниже примере исходными данными является файл по состоянию на 1995 код со следующими показателями, характеризующими банки :
a1=Активы
a2=Капитал
a3=Капитал/активы в %
a4=.Вложения в другие банки
a5=Вложения в экономику
a6=Вложения всего
3. По нажатию соответствующей кнопки на панели управления программой, будут построены и отображены матрицы факторного отображения (см приложение 4) ,за каждый из периодов времени. Данные матрицы образуются из факторных матриц, описывающих вклад каждого из показателей в общий фактор (см. приложение 3)
4. По желанию пользователя может быть построен график, показывающий положение банков на факторной плоскости и динамику их развития во времени (см. приложение 5).
Приложение
1. Формат файлов
Файлы, используемые в нашей программе представляют собой текстовые файлы, в которых в качестве разделителей используются пробелы.
В первом столбце файла хранятся названия обрабатываемых банков, а в первой строке - названия показателей, характеризующих их деятельность.
2. Таблица исходных данных
3. Факторная матрица
Показатель |
F1 |
F2 |
|
a1=Активы |
0.940 |
0.264 |
|
a2=Капитал |
0.949 |
0.198 |
|
a3=Капитал/активы в % |
0.829 |
0.436 |
|
a4=Вложения в другие банки |
0.602 |
0.539 |
|
a5=Вложения в экономику |
0.834 |
0.425 |
|
a6=Вложения всего |
0.922 |
0.335 |
4.Матрица факторного отображения
5. Графическое представление
Прямоугольной областью обозначается положение банка на факторной плоскости по состоянию на 1995 год, а круглой областью такого же цвета обозначается положение того же банка по состоянию на 1996 год.
Подобные документы
Основная терминология, понятие и методы факторного анализа. Основные этапы проведения факторного анализа и методика Чеботарева. Практическая значимость факторного анализа для управления предприятием. Метода Лагранжа в решении задач факторного анализа.
контрольная работа [72,9 K], добавлен 26.11.2008Моделирование. Детерминизм. Задачи детерминированного факторного анализа. Способы измерения влияния факторов в детерминированном анализе. Расчёт детерминированных экономико-математических моделей и методов факторного анализа на примере РУП "ГЗЛиН".
курсовая работа [246,7 K], добавлен 12.05.2008Факторный анализ. Задачи факторного анализа. Методы факторного анализа. Детерминированный факторный анализ. Модели детерминированного факторного анализа. Способы оценки влияния факторов детерминированном факторном анализе. Стохастический анализ.
курсовая работа [150,0 K], добавлен 03.05.2007Нахождение оптимальных условий для производства мясных рубленых полуфабрикатов. Проведение факторного эксперимента. Сбор априорной информации, выбор параметров. Построение матрицы планирования эксперимента, проверка адекватности математической модели.
курсовая работа [42,1 K], добавлен 03.11.2014Проверка однородности дисперсии и эффективности математической модели. Перевод уравнения регрессии из кодированных обозначений факторов в натуральные. Построение графиков зависимости выходной величины от управляемых факторов. Упрессовка сырого шпона.
курсовая работа [85,8 K], добавлен 13.01.2015Составление матрицы плана факторного эксперимента и разработка матрицы его базисных функций. Написание алгебраического полинома плана и корреляционный анализ результатов эксперимента. Функция ошибки и среднеквадратичное отклонение регрессионной модели.
контрольная работа [698,2 K], добавлен 13.06.2014Основные задачи оценки экономических явлений и процессов. Проведение детерминированного факторного анализа и приемы математического моделирования факторной системы. Суть метода последовательного элиминирования факторов. Оперативный контроль затрат.
шпаргалка [1,1 M], добавлен 08.12.2010- Построение неполной квадратичной регрессионной модели по результатам полного факторного эксперимента
Принципы решения многофакторных оптимизационных задач методом крутого восхождения. Схема многофакторного эксперимента по взвешиванию образцов с равномерным и неравномерным дублированием: предпосылки регрессионного анализа, расчет дисперсии и регрессии.
курсовая работа [195,9 K], добавлен 22.03.2011 Построение эконометрической модели. Описания, анализ и прогнозирование явлений и процессов в экономике. Использование регрессионных моделей. Построение корреляционной матрицы. Коэффициент множественной детерминации. Значение статистики Дарбина-Уотсона.
курсовая работа [61,0 K], добавлен 10.03.2013Раскрытие содержания математического моделирования как метода исследования и прогнозирования развития объектов народного хозяйства. Алгоритмы, модели и функции процедуры Эйткена. Оценивание ковариационной матрицы вектора при оценке объектов недвижимости.
статья [56,4 K], добавлен 14.10.2012