Автокорреляция и ее виды
Понятие автокорреляции остатков. Методы исключения тенденции. Метод отклонений от тренда. Метод последовательных разностей. Включение в модель регрессии фактора времени. Критерий Дарбина–Уотсона. Виды и методы определения автокорреляции остатков.
Рубрика | Экономико-математическое моделирование |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 02.02.2010 |
Размер файла | 714,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
Государственное образовательное учреждение высшего профессионального образования
РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГУМАНИТАРНЫЙ УНИВЕРСИТЕТ
ИНСТИТУТ ЭКОНОМИКИ, УПРАВЛЕНИЯ И ПРАВА
ФАКУЛЬТЕТ УПРАВЛЕНИЯ
«Автокорелляция и каковы ее виды»
Контрольная работа по «эконометрике»
Содержание
- Введение
- 1. Понятие автокорреляции остатков
- 2. Методы исключения тенденции
- 2.1 Метод отклонений от тренда
- 2.2 Метод последовательных разностей
- 2.3 Включение в модель регрессии фактора времени
- 3. Автокорреляция в остатках. Критерий Дарбина-Уотсона
- 4. Виды и методы определения автокорреляции остатков
- 5. 0ценивание параметров уравнения регрессии при наличии автокорреляции в остатках
- Список использованной литературы
- Приложение А
- Введение
- Модели, построенные по данным, характеризующим один объект за ряд последовательных моментов (периодов), называются моделями временных рядов. Временной ряд - это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов. Применение традиционных методов корреляционно-регрессионного анализа для изучения причинно-следственных зависимостей переменных, представленных в форме временных рядов, может привести к ряду серьезных проблем, возникающих как на этапе построения, так и на этапе анализа эконометрических моделей. В первую очередь эти проблемы связаны со спецификой временных рядов как источника данных в эконометрическом моделировании.
- Предполагается, что в общем случае каждый уровень временного ряда содержит три основные компоненты: тенденцию (Т), циклические или сезонные колебания (S) и случайную компоненту (E). Если временные ряды содержат сезонные или циклические колебания, то перед проведением дальнейшего исследования взаимосвязи необходимо устранить сезонную или циклическую компоненту из уровней каждого ряда, поскольку ее наличие приведет к завышению истинных показателей силы и связи изучаемых временных рядов в случае, если оба ряда содержат циклические колебания одинаковой периодичности, либо к занижению этих показателей в случае, если сезонные или циклические колебания содержит только один из рядов или периодичность колебаний в рассматриваемых временных рядах различна. Устранение сезонной компоненты из уровней временных рядов можно проводить в соответствии с методикой построения аддитивной и мультипликативной моделей. Если рассматриваемые временные ряды имеют тенденцию, коэффициент корреляции по абсолютной величине будет высоким, что в данном случае есть результат того, что х и у зависят от времени, или содержат тенденцию. Для того чтобы получить коэффициенты корреляции, характеризующие причинно-следственную связь между изучаемыми рядами, следует избавиться от так называемой ложной корреляции, вызванной наличием тенденции в каждом ряде. Влияние фактора времени будет выражено в корреляционной зависимости между значениями остатков ?t за текущий и предыдущие моменты времени, которая получила название «автокорреляция в остатках».?
- 1. Понятие автокорреляции остатков
- Автокорреляция -- это взаимосвязь последовательных элементов временного или пространственного ряда данных. В эконометрических исследованиях часто возникают и такие ситуации, когда дисперсия остатков постоянная, но наблюдается их ковариация. Это явление называют автокорреляцией остатков.
- Автокорреляция остатков чаще всего наблюдается тогда, когда эконометрическая модель строится на основе временных рядов. Если существует корреляция между последовательными значениями некоторой независимой переменной, то будет наблюдаться и корреляция последовательных значений остатков. Автокорреляция может быть также следствием ошибочной спецификации эконометрической модели. Кроме того, наличие автокорреляции остатков может означать, что необходимо ввести в модель новую независимую переменную.
- Автокорреляция в остатках есть нарушение одной из основных предпосылок МНК - предпосылки о случайности остатков, полученных по уравнению регрессии. Один из возможных путей решения этой проблемы состоит в применении к оценке параметров модели обобщенного МНК. При построении уравнения множественной регрессии по временным рядам данных возникает также проблема мультиколлинеарности факторов, входящих в уравнение регрессии, в случае если эти факторы содержат тенденцию.
- 2. Методы исключения тенденции
- Сущность всех методов исключения тенденции заключается в том, чтобы устранить или зафиксировать воздействие фактора времени на формирование уровней ряда. Основные методы исключения тенденции можно разделить на две группы.
- Первая группа - это методы, основанные на преобразовании уровней исходного ряда в новые переменные, не содержащие тенденции. Полученные переменные используются далее для анализа взаимосвязи изучаемых временных рядов. Эти методы предполагают непосредственное устранение трендовой компоненты Т из каждого уровня временного ряда. Два основных метода в данной группе - это метод последовательных разностей и метод отклонений от трендов.
- Вторая группа - это методы, основанные на изучении взаимосвязи исходных уровней временных рядов при элиминировании воздействия фактора времени на зависимую и независимые переменные модели. В первую очередь, это метод включения в модель регрессии по временным рядам фактора времени. Рассмотрим методику применения, преимущества и недостатки каждого из перечисленных выше методов.
2.1 Метод отклонений от тренда
Пусть имеются два временных ряда хt и уt, каждый из которых содержит трендовую компоненту Т и случайную компоненту ?. Проведение аналитического выравнивания по каждому из этих рядов позволяет найти параметры соответствующих уравнений трендов и определить расчетные по тренду уровни x t € и y t € соответственно. Эти расчетные значения можно принять за оценку трендовой компоненты Т каждого ряда. Поэтому влияние тенденции можно устранить путем вычитания расчетных значений уровней ряда из фактических. Эту процедуру проделывают для каждого временного ряда в модели.
Дальнейший анализ взаимосвязи рядов проводят с использованием не исходных уровней, а отклонений от тренда и y t - y t € при условии, что последние не содержат тенденции. Т. е. уравнение регрессии строится в виде
y t - y t € ??a ??b ??( x t???x t €) (2.1)
2.2 Метод последовательных разностей
Если временной ряд содержит ярко выраженную полиномиальную тенденцию (в виде полинома от t), то с целью устранения тенденции можно применить метод последовательных разностей, заключающийся в замене исходных уровней ряда последовательными разностями соответствующих порядков (порядок разности равен порядку полинома).
Если временной ряд содержит ярко выраженную линейную тенденцию, ее можно устранить путем замены исходных уровней ряда цепными абсолютными приростами - первыми последовательными разностями
?yt = уt - уt-1. (2.2)
Если временной ряд содержит тенденцию в форме параболы второго порядка, то для ее устранения можно заменить исходные уровни ряда на вторые разности
?2yt = ?уt - ?уt-1. (2.3)
Если тенденции временного ряда соответствует экспоненциальный или степенной тренд, метод последовательных разностей следует применять не к исходным уровням ряда, а к их логарифмам.
При всей своей простоте метод последовательных разностей имеет два существенных недостатка. Во-первых, его применение связано с сокращением числа пар наблюдений, по которым строится уравнение регрессии, и, следовательно, с потерей числа степеней свободы. Во-вторых, использование вместо исходных уровней временных рядов их приростов или ускорений приводит к потере информации, содержащейся в исходных данных.
2.3 Включение в модель регрессии фактора времени
В корреляционно-регрессионном анализе устранить воздействие какого-либо фактора можно, если зафиксировать воздействие этого фактора на результат и другие включенные в модель факторы. Этот прием широко используется в анализе временных рядов, когда тенденция фиксируется через включение фактора времени в модель в качестве независимой переменной. Модель вида
yt = a +b1 ·xt + b2 ·t + ?t, (2.4)
относится к группе моделей, включающих фактор времени. Очевидно, что число независимых переменных в такой модели может быть больше единицы. Кроме того, это могут быть не только текущие, но и лаговые значения независимой переменной, а также лаговые значения результативной переменной.
Преимущество данной модели по сравнению с методами отклонений от трендов и последовательных разностей в том, что она позволяет учесть всю информацию, содержащуюся в исходных данных, поскольку значения хt и уt есть уровни исходных временных рядов. Кроме того, модель строится по всей совокупности данных за рассматриваемый период в отличие от метода последовательных разностей, который приводит к потере числа наблюдений. Параметры а и b модели с включением фактора времени определяются обычным МНК.
Интерпретация параметров уравнения регрессии - это параметр b1 показывающий, насколько в среднем изменится значение результативного признака уt при увеличении фактора на единицу при неизменной величине других факторов. И параметр b2 показывающий, насколько в среднем за год изменится значение результативного признака уt за счет воздействия всех факторов, кроме фактора хt.
3. Автокорреляция в остатках. Критерий Дарбина-Уотсона
Рассмотрим уравнение регрессии вида
(3.1)
где k - число независимых переменных модели.
Для каждого момента (периода) времени t = 1,..., n значение компоненты определяется из соотношения
(3.2)
Рассматривая последовательность остатков как временной ряд, можно построить график их зависимости от времени. В соответствии с предпосылками МНК остатки должны быть случайными. Однако при моделировании временных рядов нередко встречается ситуация, когда остатки содержат тенденцию или циклические колебания. Что свидетельствует о том, что каждое следующее значение остатков зависит от предшествующих. В этом случае говорят о наличии автокорреляции остатков.
Автокорреляция остатков может быть вызвана несколькими причинами имеющими различную природу:
1) наличие ошибок измерения в значениях результативного признака;
2) модель может не включать фактор, окапывающий существенное воздействие на результат, влияние которого отражается в остатках, вследствие чего последние могут оказаться автокоррелированными. Очень часто этим фактором является фактор времени t. Кроме того, в качестве таких существенных факторов могут выступать лаговые значения переменных, включенных в модель;
3) модель не учитывает несколько второстепенных факторов, совместное влияние которых на результат существенно ввиду совпадения тенденций их изменения или фаз циклических колебаний;
4) неправильная спецификация функциональной формы модели. В этом случае следует изменить форму связи факторных и результативного признаков, а не использовать специальные методы расчета параметров уравнения регрессии при наличии автокорреляции остатков.
4. Виды и методы определения автокорреляции остатков
Существуют два наиболее распространенных метода определения автокорреляции остатков. Первый метод -- это построение графика зависимости остатков от времени и визуальное определение наличия или отсутствия автокорреляции. Второй метод - использование критерия Дарбина -- Уотсона и расчет величины
(4.1)
Согласно (4.1) величина d есть отношение суммы квадратов разностей последовательных значений остатков к остаточной сумме квадратов по модели регрессии. Практически во всех статистических ППП значение критерия Дарбина - Уотсона указывается наряду с коэффициентом детерминации, значениями t- и F-критериев.
Коэффициент автокорреляции остатков первого порядка определяется как
где
(4.2)
Между критерием Дарбина-Уотсона и коэффициентом автокорреляции остатков первого порядка имеет место следующее соотношение:
Таким образом, если в остатках существует полная положительная автокорреляция и = 1, то d = 0. Если в остатках полная отрицательная автокорреляция, то = - 1 и, следовательно, d = 4. Если автокорреляция остатков отсутствует, то = 0 и d = 2. Следовательно, 0 ??d ??4.
Алгоритм выявления автокорреляции остатков на основе критерия Дарбина-Уотсона следующий. Выдвигается гипотеза Н0 об отсутствии автокорреляции остатков. Альтернативные гипотезы Н1 и Н1* состоят, соответственно, в наличии положительной или отрицательной автокорреляции в остатках. Далее по таблице (приложение А) определяются критические значения критерия Дарбина-Уотсона dL и dU для заданного числа наблюдений n, числа независимых переменных модели k и уровня значимости a. По этим значениям числовой промежуток [0;4] разбивают на пять отрезков. Принятие или отклонение каждой из гипотез с вероятностью (1-a) рассматривается на рис. 4.1.
Рис. 4.1. Механизм проверки гипотезы о наличии автокорреляции остатков
Если фактическое значение критерия Дарбина - Уотсона попадает в зону неопределенности, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу H0.
Пример 4.1. Проверка гипотезы о наличии автокорреляции в остатках.
Исходные данные, значения ?t и результаты промежуточных расчетов
представлены в табл. 4.1.
Таблица 4.1 - Расчет критерия Дарбина-Уотсона для модели зависимости потребления от дохода
Фактическое значение критерия Дарбина-Уотсона для этой модели составляет d = 4,1233/1,6624 = 2,48. Сформулируем гипотезы:
Н0 - в остатках нет автокорреляции;
Н1 - в остатках есть положительная автокорреляция;
Н1* - в остатках есть отрицательная автокорреляция.
Зададим уровень значимости a = 0,05. По таблицам значений критерия Дарбина-Уотсона определим для числа наблюдений n = 7 и числа независимых переменных модели k' = 1 критические dL = 0,700 и dU = 1,356. Получим следующие промежутки внутри интервала [0;4]
Рис. 4.2. Промежутки внутри интервала [0; 4]
Фактическое значение d = 2,48 попадает в промежуток от dU до 4 - dU. Следовательно, нет оснований отклонять гипотезу H0 об отсутствии автокорреляции в остатках.
Есть несколько существенных ограничений на применение критерия Дарбина-Уотсона. Во-первых, он неприменим к моделям, включающим в качестве независимых переменных лаговые значения результативного признака, т. е. к моделям авторегрессии. Во-вторых, методика расчета и использования критерия Дарбина - Уотсона направлена только на выявление автокорреляции остатков первого порядка. При проверке остатков на автокорреляцию более высоких порядков следует применять другие методы. В-третьих, критерий Дарбина-Уотсона дает достоверные результаты только для больших выборок.
1. 0ценивание параметров уравнения регрессии при наличии автокорреляции в остатках
Обратимся к уравнению регрессии
(5.1)
Примем некоторые допущения относительно этого уравнения:
1. пусть уt и хt не содержат тенденции, например, представляют собой отклонения выравненных по трендам значений от исходных уровней временных рядов;
2. пусть оценки а и b параметров уравнения регрессии найдены обычным МНК;
3. пусть критерий Дарбина - Уотсона показал наличие автокорреляции в остатках первого порядка.
Основной подход к оценке параметров модели регрессии в случае, когда имеет место автокорреляция остатков, заключается в следующем: исходная модель регрессии (5.1) с помощью замены переменных приводится к виду
(5.2)
где
(5.3)
Здесь - коэффициент автокорреляции первого порядка.
Поскольку ut, - случайная ошибка, то для оценки параметров преобразованного уравнения можно применять обычный МНК.
Итак, если остатки по исходному уравнению регрессии содержат автокорреляцию, то для оценки параметров уравнения используют обобщенный МНК.
Его реализация разбивается на следующие этапы:
1. Перейти от исходных переменных уt и хt к переменным у't их't по формулам (5.3).
2. Применив обычный МНК к уравнению (5.2), определить оценки параметров а' и b.
3. Рассчитать параметр а исходного уравнения из соотношения (4.9) как
(5.4)
4. Выписать исходное уравнение (5.1).
Обобщенный метод наименьших квадратов аналогичен методу последовательных разностей. Однако мы вычитаем из уt (или хt) не все значение предыдущего уровня уt-1 (или xt-1), а некоторую его долю r?1· уt-1 (или r?1· xt-1). Если r?1 = 1, то данный метод есть просто метод первых разностей, так как
Поэтому в случае, если значение критерия Дарбина - Уотсона близко к нулю, применение метода первых разностей вполне обоснованно.
Основная проблема, связанная с применением данного метода, заключается в том, как получить оценку r?1. Основными способами являются оценка этого коэффициента непосредственно по остаткам, полученным по исходному уравнению регрессии, и получение его приближенного значения из соотношения между коэффициентом автокорреляции остатков первого порядка и критерием Дарбина-Уотсона
Список использованной литературы
1. Анатольев С. Эконометрика для продолжающих (Эконометрика-3). Курс лекций, М.: Российская Экономическая Школа, 2002-2003
2. Анатольев С. Эконометрика для подготовленных (Эконометрика-4). Курс лекций, М.: Российская Экономическая Школа, 2003.
3. Давнис В.В., Тинякова В.И., Мокшина С.И., Воищева О.С., Щекунских С.С. Эконометрика сложных экономических процессов, Воронеж: ВГУ, 2004.
4. Давнис В.В., Тинякова В.И. Компьютерный практикум по эконометрическому моделированию, Воронеж: ВГУ, 2003.
5. Доугерти Кр. Введение в эконометрику, М.: ИНФРА-М, 1997.
6. Елисеева И. И. Эконометрика, М.: Финансы и статистика, 2001.
7. Зандер Е.В. Эконометрика, Красноярск: КрасГУ, 2003.
8. Канторович Г. Г. Эконометрика, М.: ГУВШЭ, 2000.
9. Кремер Н. Ш., Путко Б. А. Эконометрика, М.: ЮНИТИ-ДАНА, 2002.
10. Магнус Я. Р. Эконометрика. Начальный курс, М.: Дело, 1997.
11. Носко В.П. Эконометрика: Введение в регрессионный анализ временных рядов, Москва, 2002.
12. Основы эконометрики: Учеб.-метод. пособие по курсу. Сост. Л.Н. Леванова, Саратов, 2003.
13. Суслов В.И., Ибрагимов Н.М., Талышева Л.П., Цыплаков А.А. Эконометрия, Новосибирск: СО РАН, 2005.
14. Шанченко Н. И. Эконометрика: лабораторный практикум, Ульяновск: УлГТУ, 2004.
Приложение А
Значения статистик Дарбина - Уотсона dL dU при 5%-ном уровне значимости
Подобные документы
Графический метод обнаружения автокорреляции. Критерии Дарбина-Уотсона. Построение уравнения линейной регрессии, его оценка с использованием матричной алгебры. Поиск стандартных ошибок коэффициентов. Статистическая значимость показателя детерминации.
контрольная работа [70,3 K], добавлен 05.12.2013Статистическая адекватность и проверка модели линейной регрессии на мультиколлинеарность. Исследование автокорреляции с помощью критерия Дарбина-Уотсона, тестов Сведа-Эйзенхарта и Бреуша-Годфри. Анализ гетероскедастичности и корректировка модели.
курсовая работа [1,5 M], добавлен 29.03.2015Эконометрическая модель и исследование проблемы автокорреляции случайных отклонений с помощью тестов Бреуша-Годфри, Сведа-Эйзенхарта и статистики Дарбина-Уотсона. Связь между реальным и номинальным обменными курсами на примере белорусского рубля.
курсовая работа [483,8 K], добавлен 19.12.2011Определение параметров уравнения линейной регрессии. Экономическая интерпретация коэффициента регрессии. Вычисление остатков, расчет остаточной суммы квадратов. Оценка дисперсии остатков и построение графика остатков. Проверка выполнения предпосылок МНК.
контрольная работа [1,4 M], добавлен 25.06.2010Вычисление уравнений регрессии для различных показателей продукции. Определение выборочной корреляции между двумя величинами. Расчет коэффициента детерминации и статистики Дарбина-Уотсона. Вычисление выборочной частной автокорреляции 1-го порядка.
контрольная работа [29,7 K], добавлен 07.05.2009Построение анализа случайной компоненты для проверки адекватности выбранных моделей реальному процессу (в частности, адекватности полученной кривой роста). Оценка параметров модели в условиях автокорреляции и определение критерия автокорреляции.
контрольная работа [44,0 K], добавлен 13.08.2010Построение качественной модели линейной регрессии и доказательство справедливости соответствующего ей теоретического уравнения экономической теории. Демонстрация работы тестов Бреуша-Годфри и Q-теста, позволяющих определить наличие автокорреляции.
курсовая работа [108,6 K], добавлен 02.11.2009Публикация данных: источники информации и влияние факторов на деятельность. Статистическая автокоррелированность ряда и проверка ее порядков, статистика Дарбина–Уотсона. Регрессионные зависимости и леммы эконометрической модели, доверительный интервал.
практическая работа [327,4 K], добавлен 15.03.2009Определение коэффициентов линейной регрессии. Проверка гипотезы о присутствии гомоскедастичности, наличии автокорреляции. Оценка статистической значимости эмпирических коэффициентов регрессии и детерминации. Прогнозирование объемов производства консервов.
контрольная работа [440,1 K], добавлен 15.04.2014Методика расчета параметров множественной регрессии и корреляции. Тест на выбор "длинной" или "короткой" регрессии. Тест Чоу на однородность зависимости объясняемой переменной от объясняющих. Тест Бреуша – Пагана. Тест Дарбина на наличие автокорреляции.
лекция [40,3 K], добавлен 13.02.2011