Расчет коэффициентов корелляции и регрессии

Математическое определение тарифов страхования от пожаров в зависимости от нанесенного ущерба и расстояния до пожарной станции. Расчет частных коэффициентов эластичности и коэффициентов корреляции при определении цен и дивидендов по обыкновенным акциям.

Рубрика Экономико-математическое моделирование
Вид контрольная работа
Язык русский
Дата добавления 07.11.2009
Размер файла 109,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Задание 9

Администрация страховой компании приняла решение о введении нового вида услуг - страхование на случай пожара. С целью определения тарифов по выборке из 10 случаев пожаров анализируется зависимость стоимости ущерба, нанесенного пожаром от расстояния до ближайшей пожарной станции:

№ п/п

Общая сумма ущерба, млн.руб.

26,2

17,8

31,3

23,1

27,5

36,0

14,1

22,3

19,6

31,3

Расстояние до ближайшей станции, км

3,4

1,8

4,6

2,3

3,1

5,5

0,7

3,0

2,6

4,3

9.1. Построить диаграмму рассеяния результирующей величины (общая сумма ущерба) и независимой переменной (расстояние до ближайшей станции)

На основании диаграммы рассеяния можно сделать вывод, что между факторным (Х) и результативным (Y) признаками существует прямая зависимость.

9.2. Определить параметры а и b уравнения парной линейной регрессии:

где n - число наблюдений в совокупности (в нашем случае 10)

a и b - искомые параметры

x и y - фактические значения факторного и результативного признаков.

Для определения сумм составим расчетную таблицу из пяти граф, в графе 6 дадим выравненное значение y (y).

В графах 7,8,9 рассчитаем суммы, которые использованы в формулах пунктов 4,5 данной задачи.

X

Y

x·y

y

(y-y)

(x-x)

(y-y)І

1

2

3

4

5

6

7

8

9

3,4

26,2

11,56

686,44

89,08

26,20

0,00

0,0729

1,6384

1,8

17,8

3,24

316,84

32,04

18,70

0,81

1,7689

36,6884

4,6

31,3

21,16

979,69

143,98

31,80

0,25

2,1609

47,3344

2,3

23,1

5,29

533,61

53,13

21,00

4,41

0,6889

15,3664

3,1

27,5

9,61

756,25

85,25

?????

7,29

0,0009

0,0144

5,5

36

30,25

1296

198

36,00

0,00

5,6169

122,7664

0,7

14,1

0,49

198,81

9,87

13,50

0,36

5,9049

130,4164

3

22,3

9

497,29

66,9

24,30

4,00

0,0169

0,3844

2,6

19,6

6,76

384,16

50,96

22,40

7,84

0,2809

6,3504

4,3

31,3

18,49

979,69

134,59

30,40

0,81

1,3689

30,0304

?

31,3

249,2

115,85

6628,78

863,8

249,1

25,77

17,881

390,9900

Коэффициент регрессии (b) показывает абсолютную силу связи между вариацией x и вариацией y. Применительно к данной задаче можно сказать, что при применении расстояния до ближайшей пожарной станции на 1 км общая сумма ущерба изменяется в среднем на 4,686 млн.руб.

Таким образом, управление регрессии имеет следующий вид:

9.3. Рассчитать линейный коэффициент корелляции

Линейный коэффициент корреляции определяется по формуле:

В соответствии со шкалой Чеддока можно говорить о высокой тесноте связи между y и x, r = 0.957.

Квадрат коэффициента корреляции называется коэффициентом детерминации

Это означает, что доля вариации y объясненная вариацией фактора x включенного в уравнение регрессии равна 91,6%, а остальные 8,4% вариации приходятся на долю других факторов, не учтенных в уравнении регрессии.

9.4. Проверить статистическую значимость коэффициента регрессии «b» с помощью t-критерия Стъюдента

Статистическую значимость коэффициента регрессии «b» проверяем с помощью t-критерия Стьюдента. Для этого сначала определяем остаточную сумму квадратов:

и ее среднее квадратическое отклонение:

Найдем стандартную ошибку коэффициента регрессии по формуле:

Фактическое значение t-критерия Стьюдента для коэффициента регрессии «b» рассчитывается как

Полученное фактическое значение tb сравнивается с критическим tk , который получается по таблице Стьюдента с учетом принятого уровня значимости L=0,05 (для вероятности 0,95) и числа степеней свободы

Полученный коэффициент регрессии признается типичным, т.к. tb?tk 11,05?2,3

9.5. Оценить статистическую значимость построенной модели регрессии в целом с помощью F-критерия Фишера

Оценка статистической значимости построенной модели регрессии в целом производится с помощью F-критерия Фишера

Фактическое значение критерия для уравнения определяется как

Fфакт сравнивается с критическим значением Fк, которое определяется по таблице F-критерия с учетом принятого уровня значимости L=0,05 (для вероятности 0,95) и числа степеней свободы:

Следовательно, при Fфакт>Fк уравнении регрессии в целом признается существенным.

По исходным данным полагают, что расстояние до ближайшей пожарной станции уменьшится на 5% от своего среднего уровня

Следовательно, значения факторного признака для точечного прогноза:

а точечный прогноз:

Строим доверительный интервал прогноза ущерба с вероятностью 0,95 (L=0,05) по формуле

Табличное значение t-критерия Стьюдента для уровня значимости L=0,05 и числа степеней свободы п-2=10-2=8,

Стандартная ошибка точечного прогноза рассчитываемая по формуле

Отсюда доверительный интервал составляет:

Из полученных результатов видно, что интервал от 19,8 до 28,6 млн. руб. ожидаемой величины ущерба довольно широкий. Значительная неопределенность прогноза линии регрессии, это видно из формулы связана прежде всего с малым объемом выборки (n=10), а также тем, что по мере удаления xk от ширина доверительного интервала увеличивается.

Задание 10

Имеются следующие данные о ценах и дивидендах по обыкновенным акциям, также о доходности компании.

цена акции лоллар США

доходность капитала %

уровень дивидендов %

1

25

15,2

2,6

2

20

13,9

2,1

3

15

15,8

1,5

4

34

12,8

3,1

5

20

6,9

2,5

6

33

14,6

3,1

7

28

15,4

2,9

8

30

17,3

2,8

9

23

13,7

2,4

10

24

12,7

2,4

11

25

15,3

2,6

12

26

15,2

2,8

13

26

12

2,7

14

20

15,3

1,9

15

20

13,7

1,9

16

13

13,3

1,6

17

21

15,1

2,4

18

31

15

3

19

26

11,2

3,1

20

11

12,1

2

Построить линейное уравнение множественной регрессии и пояснить экономический смысл его параметров

Составим расчетную таблицу

y

X1

X2

X2*X2

X1*X1

y*X1

y*x2

X1*X2

1

25

15,2

2,6

6,76

231,04

380

65

39,52

2

20

13,9

2,1

4,41

193,21

278

42

29,19

3

15

15,8

1,5

2,25

249,64

237

22,5

23,7

4

34

12,8

3,1

9,61

163,84

435,2

105,4

39,68

5

20

6,9

2,5

6,25

47,61

138

50

17,25

6

33

14,6

3,1

9,61

213,16

481,8

102,3

45,26

7

28

15,4

2,9

8,41

237,16

431,2

81,2

44,66

8

30

17,3

2,8

7,84

299,29

519

84

48,44

9

23

13,7

2,4

5,76

187,69

315,1

55,2

32,88

10

24

12,7

2,4

5,76

161,29

304,8

57,6

30,48

11

25

15,3

2,6

6,76

234,09

382,5

65

39,78

12

26

15,2

2,8

7,84

231,04

395,2

72,8

42,56

13

26

12

2,7

7,29

144

312

70,2

32,4

14

20

15,3

1,9

3,61

234,09

306

38

29,07

15

20

13,7

1,9

3,61

187,69

274

38

26,03

16

13

13,3

1,6

2,56

176,89

172,9

20,8

21,28

17

21

15,1

2,4

5,76

228,01

317,1

50,4

36,24

18

31

15

3

9

225

465

93

45

19

26

11,2

3,1

9,61

125,44

291,2

80,6

34,72

20

11

12,1

2

4

146,41

133,1

22

24,2

итого

471

276,5

49,4

126,7

3916,59

6569,1

1216

682,34

Определяем

По данным таблицы составим систему нормальных уравнений с тремя неизвестными:

Разделим каждое уравнение на коэффициент при a.

Вычтем первое уравнение из второго и третьего

Разделим каждое уравнение на коэффициент при b1

Сложим оба уравнения и найдем

Таким образом, уравнение множественной регрессии имеет вид

Экономический смысл коэффициентов b1 и b2 в том, что это показатели силы связи, характеризующие изменение цены акции при изменении какого-либо факторного признака на единицу своего измерения при фиксированном влиянии другого фактора. Так, при изменении доходности капитала на один процентный пункт, цена акции измениться в том же направлении на 0,686 долларов; при изменении уровня дивидендов на один процентный пункт цена акции изменится в том же направлении на 11,331 доллара.

Рассчитать частные коэффициенты эластичности

Будем рассчитывать частные коэффициенты эластичности для среднего значения фактора и результата:

Э- эластичность цены акции по доходности капитала

Э- эластичность цены акции по уровню дивидендов

Определить стандартизованные коэффициенты регрессии

Формулы определения:

где j- порядковый номер фактора

- среднее квадратическое отклонение j-го фактора (вычислено раньше)

=2,168 = ,0484

- среднее квадратическое отклонение результативного признака

=6,07

Сделать вывод о силе связи результата с каждым из факторов

Коэффициенты эластичности факторов х1 и х2 говорят о том, что при отклонении величины соответствующего фактора от его средней величины на 1% (% как относительная величина) и при отвлечении от сопутствующего отклонения другого фактора входящего в уравнение множественной регрессии, цена акции отклонится от своего среднего значения на 0,403% при действии фактора х1 (доходность капитала) и на 1,188% при действии фактора х2 (уровень дивидендов).

Таким образом сила влияния фактора х2 на результат (цену акции) больше, чем фактора х1, а сами факторы действуют в одном и том же положительном направлениии.

Количественно фактор х2 приблизительно в три раза сильнее влияет на результат чем фактор х1.

()

Анализ уравнения регрессии по стандартизованным коэффициентам показывает, что второй фактор влияет сильнее на результат, чем фактор х1 (), т.е. при учете вариации факторов их влияние более точно.

Определить парные и частные коэффициенты корреляции, а также множественный коэффициент корреляции

Парные коэффициенты корреляции определяются по формулам:

Частные коэффициенты корреляции определяются по ф-ле:

Множественный коэффициент корреляции определяется по формуле:

Матрица парных коэффициентов корреляции

Из таблицы видно, что в соответствии со шкалой Чеддока связь между и можно оценить как слабую, между и - как высокую, между и связь практически отсутствует.

Таким образом, по построенной модели можно сделать вывод об отсутствии в ней мультиколлениарности факторов.

Частные коэффициенты корреляции рассчитывались как оценки вклада во множественной коэффициент корреляции каждого из факторов ( и ). Они характеризуют связи между результативными признаками (ценой акции) и соответствующим фактором x.

Причина различий между значениями частных и парных коэффициентов корреляции состоит в том, что частный коэффициент отражает долю вариации результативного признака (цены акции), дополнительно объясняемой при включении фактора (или ) после другого фактора (или ) в уравнение регрессии, не объяснимой ранее включенным фактором (или ).


Подобные документы

  • Построение поля корреляции и формулировка гипотезы о линейной форме связи. Расчет уравнений различных регрессий. Расчет коэффициентов эластичности, корреляции, детерминации и F-критерия Фишера. Расчет прогнозного значения результата и его ошибки.

    контрольная работа [681,9 K], добавлен 03.08.2010

  • Определение параметров линейной регрессии и корреляции с использованием формул и табличного процессора MS Excel. Методика расчета показателей парной нелинейной регрессии и корреляции. Вычисление значений линейных коэффициентов множественной детерминации.

    контрольная работа [110,4 K], добавлен 28.07.2012

  • Эконометрическое моделирование стоимости квартир в московской области. Матрица парных коэффициентов корреляции. Расчет параметров линейной парной регрессии. Исследование динамики экономического показателя на основе анализа одномерного временного ряда.

    контрольная работа [298,2 K], добавлен 19.01.2011

  • Построение линейной модели зависимости цены товара в торговых точках. Расчет матрицы парных коэффициентов корреляции, оценка статистической значимости коэффициентов корреляции, параметров регрессионной модели, доверительного интервала для наблюдений.

    лабораторная работа [214,2 K], добавлен 17.10.2009

  • Построение линейного уравнения парной регрессии, расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Определение коэффициентов корреляции и эластичности, индекса корреляции, суть применения критерия Фишера в эконометрике.

    контрольная работа [141,3 K], добавлен 05.05.2010

  • Расчет коэффициентов уравнения регрессии и оценка их значимости. Определение среднеквадратичного отклонения и среднеквадратичной ошибки, вычисление коэффициентов регрессии. Определение критериев Стьюдента. Расчет статистических характеристик модели.

    контрольная работа [137,2 K], добавлен 14.09.2009

  • Расчет матрицы парных коэффициентов корреляции и статистической значимости коэффициентов регрессии. Оценка статистической значимости параметров регрессионной модели с помощью t-критерия. Уравнение множественной регрессии со статистически факторами.

    лабораторная работа [30,9 K], добавлен 05.12.2010

  • Определение парных коэффициентов корреляции и на их основе факторов, оказывающих наибольшее влияние на результативный показатель. Анализ множественных коэффициентов корреляции и детерминации. Оценка качества модели на основе t-статистики Стьюдента.

    лабораторная работа [890,1 K], добавлен 06.12.2014

  • Взаимосвязь между двумя выбранными переменными на фоне действия остальных показателей. Матрица парных коэффициентов корреляции. Уравнение множественной регрессии. Расчет коэффициентов для проверки наличия автокорреляция. Вариации зависимой переменной.

    контрольная работа [43,7 K], добавлен 03.09.2013

  • Оценка корреляционной матрицы факторных признаков. Оценки собственных чисел матрицы парных коэффициентов корреляции. Анализ полученного уравнения регрессии, определение значимости уравнения и коэффициентов регрессии, их экономическая интерпретация.

    контрольная работа [994,1 K], добавлен 29.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.