Методы корреляции
Анализ собственно-корреляционных параметрических методов изучения связи, оценка существенности корреляции. Понятие регрессионного анализа и оценка параметров уравнений регрессии. Вычисление значений линейного и множественного коэффициентов корреляции.
Рубрика | Экономико-математическое моделирование |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 14.10.2009 |
Размер файла | 60,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Собственно-корреляционные параметрические методы изучения связи. Оценка существенности корреляции
Все явления общественной жизни взаимосвязаны и взаимообусловлены. Задача статистики состоит в том, чтобы выявить и измерить связи и зависимости между изучаемыми явлениями.
Взаимосвязанные признаки подразделяются на факторные (под их воздействием изменяются другие, зависящие от них признаки) и результативные.
Связи по степени тесноты могут быть функциональными (при которых определенному значению факторного признака соответствует строго определенное значение результативного признака; для выявления такой связи достаточно одного наблюдения), статистическими (когда одному и тому же значению факторного признака могут соответствовать несколько значений результативного признака; эти связи проявляются в массе случаев и при этом в среднем). Функциональные связи иначе называются полными, а статистические - неполными или корреляционными.
Корреляционная зависимость проявляется только в средних величинах и выражает числовое отношение между ними в виде тенденции к возрастанию или убыванию одной переменной величины при возрастании или убывании другой.
Корреляционная связь является свободной, неполной и неточной связью.
Поскольку корреляционная связь является статистической, первым условием возможности ее изучения является общее условие всякого статистического исследования: наличие данных по достаточно большой совокупности явлений. По отдельным явлениям можно получить совершенно превратное представление о связи признаков, ибо в каждом отдельном явлении значения признаков кроме закономерной составляющей имеют случайное отклонение (вариацию).
Вторым условием закономерного проявления корреляционной связи служит условие, обеспечивающее надежное выражение закономерности в средней величине. Кроме уже указанного большого числа единиц совокупности для этого необходима достаточная качественная однородность совокупности. Нарушение этого условия может извратить параметры корреляции.
Прямые и обратные связи. В зависимости от направления действия, функциональные и стахостические связи могут быть прямые и обратные. При прямой связи направление изменения результативного признака совпадает с направлением изменения признака-фактора, то есть с увеличением факторного признака увеличивается и результативный, и, наоборот, с уменьшением факторного признака уменьшается и результативный признак. В противном случае между рассматриваемыми величинами существуют обратные связи. Например, чем выше квалификация рабочего (разряд), тем выше уровень производительности труда - прямая связь. А чем выше производительность труда, тем ниже себестоимость единицы продукции - обратная связь.
Прямолинейные и криволинейные связи. По аналитическому выражению (форме) связи могут быть прямолинейными и криволинейными. При прямолинейной связи с возрастанием значения факторного признака происходит непрерывное возрастание (или убывание) значений результативного признака. Математически такая связь представляется уравнением прямой, а графически - прямой линией. Отсюда ее более короткое название - линейная связь. При криволинейных связях с возрастанием значения факторного признака возрастание (или убывание) результативного признака происходит неравномерно, или же направление его изменения меняется на обратное. Геометрически такие связи представляются кривыми линиями (гиперболой, параболой и т.д.).
Однофакторные и многофакторные связи. По количеству факторов, действующих на результативный признак, связи различаются: однофакторные (один фактор) и многофакторные (два и более факторов). Однофакторные (простые) связи обычно называются парными (т.к. рассматривается пара признаков). Например, корреляционная связь между прибылью и производительностью труда. В случае многофакторной (множественной) связи имеют в виду, что все факторы действуют комплексно, то есть одновременно и во взаимосвязи. Например, корреляционная связь между производительностью труда и уровнем организации труда, автоматизации производства, квалификации рабочих, производственным стажем, простоями и другими факторными признаками. С помощью множественной корреляции можно охватить весь комплекс факторных признаков и объективно отразить существующие множественные связи.
Для изучения, измерения и количественного выражения взаимосвязей между явлениями статистикой применяются различные методы, такие как: метод сопоставления параллельных рядов, балансовый, графический, методы аналитических группировок, дисперсионного и корреляционного анализа
Метод параллельных рядов заключается в том, что полученные в результате сводки и обработки материалы располагают в виде параллельных рядов и сопоставляют их между собой для установления характера и тесноты связи.
Балансовый метод состоит в том, что данные взаимосвязанных показателей изображаются в виде таблицы и располагаются таким образом, чтобы итоги между отдельными ее частями были равны, т.е. чтобы баланс. Балансовый метод используется для характеристики взаимосвязи между производством и распределением продуктов, денежными доходами и расходами населения и т.д. почти все внутренние и внешние хозяйственные связи выражаются в виде балансов.
Метод аналитических группировок. Сущность метода аналитических группировок состоит в том, что единицы статистической совокупности группируются, как правило, по факторному признаку и для каждой группы рассчитывается средняя или относительная величина по результативному признаку. Затем изменения средних или относительных значений результативного признака сопоставления с изменениями факторного признака для выявления характера связи между ними.
Корреляционно-регрессионный анализ. Корреляционная связь - связь, проявляющаяся при достаточно большом числе наблюдений в виде определенной зависимости между средним значением результативного признака и признаками-факторами.
Изучение корреляционных связей сводится в основном к решению следующих задач:
- выявление наличия (или отсутствия) корреляционной связи между изучаемыми признаками. Эта задача может быть решена на основе параллельного сопоставления (сравнения) значенийхиууnединиц совокупности; с помощью группировок; построения и анализа специальных корреляционных таблиц; а также построения диаграмм рассеяния;
- измерение тесноты связи между двумя (и более) признаками с помощью специальных коэффициентов. Эта часть исследования называется корреляционный анализ;
- определение уравнения регрессии - математической модели, в которой среднее значение результативного признакаурассматривается как функция одной или нескольких переменных - факторных признаков. Эта часть исследования называется регрессионный анализ.
Задача корреляционного анализа - измерение тесноты связи между варьируемыми признаками и оценка факторов, оказывающих наибольшее влияние.
Задача регрессионного анализа - выбор типа модели (формы связи), устанавливающих степени влияния независимых переменных.
Связь признаков проявляется в их согласованной вариации, при этом одни признаки выступают как факторные, а другие - как результативные. Причинно-следственная связь факторных и результативных признаков характеризуется по степени:
- тесноты;
- направлению;
- аналитическому выражению.
Регрессионный анализ. Для оценки параметров уравнений регрессии наиболее часто используется метод наименьших квадратов (МНК), суть которого заключается в следующем требовании: искомые теоретические значения результативного признака должны быть такими, при которых бы обеспечивалась минимальная сумма квадратов их отклонений от эмпирических (фактических) значений, т.е.
.
При изучении связей показателей применяются различного вида уравнения прямолинейной и криволинейной связи. Так, при анализе прямолинейной зависимости применяется уравнение:
При криволинейной зависимости применяется ряд математических функций:
полулогарифмическая
показательная
степенная
параболическая
гиперболическая
Наиболее часто используемая форма связи между коррелируемыми признаками - линейная, при парной корреляции выражается уравнением,где а0 - среднее значение в точкеx=0, поэтому экономической интерпретации коэффициента нет; а1 - коэффициент регрессии, показывает, на сколько изменяется в среднем значение результативного признака при увеличении факторного на единицу собственного измерения.
Система нормальных уравнений МНК для линейной парной регрессии имеет следующий вид:
Отсюда можно выразить коэффициенты регрессии:
;
.
Для практического использования регрессионных моделей необходима проверка их адекватности. При численности объектов анализа до 30 единиц возникает необходимость проверить, насколько вычисленные параметры характерны для отображаемого комплекса условий, не являются ли полученные значения параметров результатом действия случайных причин. Значимость коэффициентов регрессии применительно к совокупностиn<30определяется с помощью t-критерия Стьюдента. При этом вычисляются фактические значения t-критерия:
для параметра а0: ,
для параметра а1: .
-
среднее квадратическое отклонение результативного признака от выровненных значений .
-
среднее квадратическое отклонение факторного признака от общей средней .
Полученные по формуламфактические значения и сравниваются с критическим , который получают по таблице Стьюдента с учетом принятого уровня значимости и числа степеней свободы н (н=n-k-1, где n - число наблюдений, k - число факторов, включенных в уравнение регрессии). Рассчитанные параметры а0 и а1 уравнения регрессии признаются типичными, если t фактическое больше t критического.
Корреляционный анализ позволяет установить тесноту связи между факторами и решить следующие задачи:
- ответить на вопрос: существует ли связь?
- выявить изменение связи в различных ситуациях реальных данных;
- определить наиболее значимые факторы в результативном признаке;
Различают:
- парную корреляцию - это зависимость между результативным и факторным признаком;
- частную корреляцию - это зависимость между результативным и одним факторным признаком при фиксированном значении других факторных признаков;
- множественную - многофакторное влияние в статической модели .
К простейшим показателям тесной связи относятся:
- линейный коэффициент корреляции К.Пирсона;
- коэффициент детерминации;
- коэффициенты корреляции знаков - для оценки тесноты связи качественных признаков (непараметрические методы), Г. Фехнера, К. Спирмэна, М. Кэндэла.
Теснота связи при линейной зависимости измеряется с помощью линейного коэффициента корреляции, который рассчитывается по одной из формул:
.
а также
Или
.
Корреляционный анализ выполняет оценку адекватности регрессионной модели, но путем установления тесноты связи.
Оценка линейного коэффициента корреляции
Значение r |
Характер связи |
Интерпретация связи |
|
r = 0 |
Отсутствует |
Изменение x не влияет на изменения y |
|
0 < r < 1 |
Прямая |
С увеличением x увеличивается y |
|
-1 > r > 0 |
Обратная |
С увеличением x уменьшается y и наоборот |
|
r = 1 |
Функциональная |
Каждому значению факторного признака строго соответствует одно значение результативного |
Значимость линейного коэффициента корреляции проверяется на основе t-критерия Стьюдента. Для этого определяется фактическое значение критерия :
,
Вычисленное по формулезначение сравнивается с критическим , который получают по таблице Стьюдента с учетом принятого уровня значимости и числа степеней свободы н.
Коэффициент корреляции считается статистически значимым, если tрасч превышает ( tрасч > ).
Универсальным показателем тесноты связи является теоретическое корреляционное отношение:
,
где - общая дисперсия эмпирических значений y, характеризует вариацию результативного признака за счет всех факторов, включая х;
- факторная дисперсия теоретических значений результативного признака, отражает влияние фактора х на вариацию у;
- остаточная дисперсия эмпирических значений результативного признака, отражает влияние на вариацию у всех остальных факторов кроме х.
По правилу сложения дисперсий:
,т.е..
Оценка связи на основе теоретического корреляционного отношения (шкала Чеддока)
Значение |
Характер связи |
Значение |
Характер связи |
||
з = 0 |
Отсутствует |
0,5 ? з < 0,7 |
Заметная |
||
0 < з < 0,2 |
Очень слабая |
0,7 ? з < 0,9 |
Сильная |
||
0,2 ? з < 0,3 |
Слабая |
0,9 ? з < 1 |
Весьма сильная |
||
0,3 ? з < 0,5 |
Умеренная |
з = 1 |
Функциональная |
Для линейной зависимости теоретическое корреляционное отношение тождественно линейному коэффициенту корреляции, т.е. з = |r|.
Множественный коэффициент корреляции в случае зависимости результативного признака от двух факторов вычисляется по формуле:
,
где - парные коэффициенты корреляции между признаками.
Множественный коэффициент корреляции изменяется в пределах от 0 до 1 и по определению положителен: .
Значимость коэффициента множественной детерминации, а соответственно и адекватность всей модели и правильность выбора формы связи можно проверить с помощью критерия Фишера:
,
где R2 - коэффициент множественной детерминации (R2 );
k - число факторных признаков, включенных в уравнение регрессии.
Связь считается существенной, еслиFрасч > Fтабл- табличного значения F-критерия для заданного уровня значимостиби числе степеней свободы
н1 = k, н2 = n - k - 1.
Частные коэффициенты корреляции характеризуют степень тесноты связи результативного признака и фактора, при элиминировании его взаимосвязи с остальными факторами, включенными в анализ. В случае зависимости у от двух факторных признаков частные коэффициенты корреляции рассчитываются:
;,
где r - парные коэффициенты корреляции между указанными в индексе переменными.
В первом случае исключено влияние факторного признака х2, во втором - х1.
Для оценки сравнительной силы влияния факторов, по каждому фактору рассчитывают частные коэффициенты эластичности:
,
где - среднее значение соответствующего факторного признака;
- среднее значение результативного признака;
- коэффициент регрессии приi-м факторном признаке.
Данный коэффициент показывает, на сколько процентов следует ожидать изменения результативного показателя при изменении фактора на 1% и неизменном значении других факторов.
Частный коэффициент детерминации показывает, на сколько процентов вариация результативного признака объясняется вариацией i-го признака, входящего в множественное уравнение регрессии, рассчитывается по формуле:
,
где - парный коэффициент корреляции между результативным и i-м факторным признаком;
- соответствующий стандартизованный коэффициент уравнения множественной регрессии:
.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
«Теория статистики», учебник под ред. Р.А. Шмойловой,
М.: Финансы и статистика, 2007. - 510 с.
«Практикум по теории статистики»., под ред. Р.А. Шмойловой,
М.: Финансы и статистика, 2004. - 456 с.
«Общая теория статистики» И.И. Елисеева, М.М. Юзбашев,
М.: Финансы и статистика, 2002. - 480 с.
«Теория статистики» В.М. Гусаров, М.: ЮНИТИ, 2001. - 247 с.
Журнал «Профиль», № 12, 25 марта 2008 г.
Подобные документы
Определение параметров линейной регрессии и корреляции с использованием формул и табличного процессора MS Excel. Методика расчета показателей парной нелинейной регрессии и корреляции. Вычисление значений линейных коэффициентов множественной детерминации.
контрольная работа [110,4 K], добавлен 28.07.2012Построение линейного уравнения парной регрессии, расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Определение коэффициентов корреляции и эластичности, индекса корреляции, суть применения критерия Фишера в эконометрике.
контрольная работа [141,3 K], добавлен 05.05.2010Расчет параметров линейной регрессии. Сравнительная оценка тесноты связи с помощью показателей корреляции, детерминации, коэффициента эластичности. Построение поля корреляции. Определение статистической надежности результатов регрессионного моделирования.
контрольная работа [71,7 K], добавлен 17.09.2016Определение методом регрессионного и корреляционного анализа линейных и нелинейных связей между показателями макроэкономического развития. Расчет среднего арифметического по столбцам таблицы. Определение коэффициента корреляции и уравнения регрессии.
контрольная работа [4,2 M], добавлен 14.06.2014Построение поля корреляции. Расчет параметров уравнений парной регрессии. Зависимость средней ожидаемой продолжительности жизни от некоторых факторов. Изучение "критерия Фишера". Оценка тесноты связи с помощью показателей корреляции и детерминации.
контрольная работа [173,8 K], добавлен 22.11.2010Построение поля корреляции и формулирование гипотезы о форме связи. Параметры уравнений линейной, степенной и гиперболической регрессии. Оценка тесноты связи с помощью показателей корреляции и детерминации. Оценка средней ошибки аппроксимации уравнения.
контрольная работа [136,3 K], добавлен 25.09.2014Построение поля корреляции и формулировка гипотезы о линейной форме связи. Расчет уравнений различных регрессий. Расчет коэффициентов эластичности, корреляции, детерминации и F-критерия Фишера. Расчет прогнозного значения результата и его ошибки.
контрольная работа [681,9 K], добавлен 03.08.2010Параметры парной линейной, линейно-логарифмической функции. Оценка статистической надёжности. Ошибка положения регрессии. Расчёт бета коэффициентов, уравнение множественной регрессии в стандартизованном масштабе. Задача на определение тесноты связи рядов.
контрольная работа [192,2 K], добавлен 23.06.2012Определение парных коэффициентов корреляции и на их основе факторов, оказывающих наибольшее влияние на результативный показатель. Анализ множественных коэффициентов корреляции и детерминации. Оценка качества модели на основе t-статистики Стьюдента.
лабораторная работа [890,1 K], добавлен 06.12.2014Оценка тесноты связи с помощью показателей корреляции и детерминации. Построение поля корреляции и расчёт параметров линейной регрессии. Результаты вычисления функций и нахождение коэффициента детерминации. Регрессионный анализ и прогнозирование.
курсовая работа [1,1 M], добавлен 07.08.2011