Основы эконометрики

Изучение основных разделов эконометрики: парная и множественная регрессия и корелляция, системы эконометрических уравнений, временные ряды. По всем разделам представлены тесты и варианты контрольных работ, по 10 вариантам рассмотрены типовые задачи.

Рубрика Экономико-математическое моделирование
Вид учебное пособие
Язык русский
Дата добавления 09.06.2009
Размер файла 3,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Рис. A.4.

Общая «замазанная» площадь, как всегда, равна единице, поскольку совокупная вероятность равна единице. Площадь треугольника равна половине произведения основания на высоту, поэтому получаем:

, (A.12)

и высота при 65°F равна 0,20.

Предположим вновь, что мы хотим знать вероятность нахождения температуры в промежутке между 65 и 70°F. Она представлена заштрихованной площадью на рис. A.5, и если вы немного помните геометрию, то сможете проверить, что она равна 0,75. Если вы предпочитаете процентное измерение, то это означает, что с вероятностью 75% температура попадет в диапазон 65-70°F и только с вероятностью 25% - в диапазон 70-75F.

Рис. A.5.

В данном случае функция плотности вероятности записывается как , где

. (A.13)

Прежде чем продолжить изложение, упомянем о хорошей и плохой новостях. «Плохая новость» - это то, что если вы хотите рассчитать вероятности для более сложных функций с криволинейными графиками, то элементарная геометрия становится неприменимой. Вообще говоря, вы должны воспользоваться интегральным исчислением или специальными таблицами (если последние существуют). Интегральное исчисление используется также и при определении математического ожидания и дисперсии непрерывной случайной величины.

«Хорошая новость» - в том, что специальные таблицы существуют для всех функций, которые будут интересовать нас на практике. Кроме того, математическое ожидание и дисперсия имеют практически тот же смысл для непрерывных случайных величин, что и для дискретных, для них верны те же самые правила.

Постоянная и случайная составляющие случайной переменной

Часто вместо рассмотрения случайной величины как единого целого можно и удобно разбить ее на постоянную и чисто случайную составляющие, где постоянная составляющая всегда есть ее математическое ожидание. Если - случайная переменная и - ее математическое ожидание, то декомпозиция случайной величины записывается следующим образом:

, (A.14)

где - чисто случайная составляющая.

Конечно, можно было бы посмотреть на это по-другому и сказать, что случайная составляющая определяется как разность между и

. (A.15)

Из определения следует, что математическое ожидание величины равно нулю:

.

Поскольку весь разброс значений обусловлен , неудивительно, что теоретическая дисперсия равна теоретической дисперсии . Последнее нетрудно доказать. По определению,

и

.

Таким образом, может быть эквивалентно определена как дисперсия или .

Обобщая, можно утверждать, что если - случайная переменная, определенная по формуле (A.14), где - заданное число и - случайный член с и , то математическое ожидание величины равно , а дисперсия - .

Способы оценивания и оценки

До сих пор мы предполагали, что имеется точная информация о рассматриваемой случайной переменной, в частности - об ее распределении вероятностей (в случае дискретной переменной) или о функции плотности распределения (в случае непрерывной переменной). С помощью этой информации можно рассчитать теоретическое математическое ожидание, дисперсию и любые другие характеристики, в которых мы можем быть заинтересованы.

Однако на практике, за исключением искусственно простых случайных величин (таких, как число выпавших очков при бросании игральной кости), мы не знаем точного вероятностного распределения или плотности распределения вероятностей. Это означает, что неизвестны также и теоретическое математическое ожидание, и дисперсия. Мы, тем не менее, можем нуждаться в оценках этих или других теоретических характеристик генеральной совокупности.

Процедура оценивания всегда одинакова. Берется выборка из наблюдений, и с помощью подходящей формулы рассчитывается оценка нужной характеристики. Нужно следить за терминами, делая важное различие между способом или формулой оценивания и рассчитанным по ней для данной выборки числом, являющимся значением оценки. Способ оценивания - это общее правило, или формула, в то время как значение оценки - это конкретное число, которое меняется от выборки к выборке.

В табл. A.6 приведены формулы оценивания для двух важнейших характеристик генеральной совокупности. Выборочное среднее обычно дает оценку для математического ожидания, а формула - оценку дисперсии генеральной совокупности.

Таблица A.6

Характеристики генеральной совокупности

Формулы оценивания

Среднее,

Дисперсия,

Отметим, что это обычные формулы оценки математического ожидания и дисперсии генеральной совокупности, однако не единственные. Возможно, вы настолько привыкли использовать в качестве оценки для , что даже не задумывались об альтернативах. Конечно, не все формулы оценки, которые можно представить, одинаково хороши. Причина, по которой в действительности используется , в том, что эта оценка в наилучшей степени соответствует двум очень важным критериям - несмещенности и эффективности. Эти критерии будут рассмотрены ниже.

Оценки как случайные величины

Получаемая оценка представляет частный случай случайной переменной. Причина здесь в том, что сочетание значений в выборке случайно, поскольку - случайная переменная и, следовательно, случайной величиной является и функция набора ее значений. Возьмем, например, - оценку математического ожидания:

.

Выше мы показали, что величина в -м наблюдении может быть разложена на две составляющие: постоянную часть и чисто случайную составляющую :

. (A.17)

Следовательно,

, (A.18)

где - выборочное среднее величин .

Отсюда можно видеть, что , подобно , имеет как фиксированную, так и чисто случайную составляющие. Ее фиксированная составляющая - , то есть математическое ожидание , а ее случайная составляющая - , то есть среднее значение чисто случайной составляющей в выборке.

Функции плотности вероятности для и показаны на одинаковых графиках (рис. A.6). Как показано на рисунке, величина считается нормально распределенной. Можно видеть, что распределения, как , так и , симметричны относительно - теоретического среднего. Разница между ними в том, что распределение уже и выше. Величина , вероятно, должна быть ближе к , чем значение единичного наблюдения , поскольку ее случайная составляющая есть среднее от чисто случайных составляющих в выборке, которые, по-видимому, «гасят» друг друга при расчете среднего. Далее теоретическая дисперсия величины составляет лишь часть теоретической дисперсии .

Рис. A.6.

Величина - оценка теоретической дисперсии - также является случайной переменной. Вычитая (A.18) из (A.17), имеем:

.

Следовательно,

.

Таким образом, зависит от (и только от) чисто случайной составляющей наблюдений в выборке. Поскольку эти составляющие меняются от выборки к выборке, также от выборки к выборке меняется и величина оценки .

Несмещенность

Поскольку оценки являются случайными переменными, их значения лишь по случайному совпадению могут в точности равняться характеристикам генеральной совокупности. Обычно будет присутствовать определенная ошибка, которая может быть большой или малой, положительной или отрицательной, в зависимости от чисто случайных составляющих величин в выборке.

Хотя это и неизбежно, на интуитивном уровне желательно, тем не менее, чтобы оценка в среднем за достаточно длительный период была аккуратной. Выражаясь формально, мы хотели бы, чтобы математическое ожидание оценки равнялось бы соответствующей характеристике генеральной совокупности. Если это так, то оценка называется несмещенной. Если это не так, то оценка называется смещенной, и разница между ее математическим ожиданием и соответствующей теоретической характеристикой генеральной совокупности называется смещением.

Начнем с выборочного среднего. Является ли оно несмещенной оценкой теоретического среднего? Равны ли и ? Да, это так, что непосредственно вытекает из (A.18).

Величина включает две составляющие - и . Значение равно средней чисто случайных составляющих величин в выборке, и, поскольку математическое ожидание такой составляющей в каждом наблюдении равно нулю, математическое ожидание равно нулю. Следовательно,

. (A.19)

Тем не менее полученная оценка - не единственно возможная несмещенная оценка . Предположим для простоты, что у нас есть выборка всего из двух наблюдений - и . Любое взвешенное среднее наблюдений и было бы несмещенной оценкой, если сумма весов равна единице. Чтобы показать это, предположим, что мы построили обобщенную формулу оценки:

. (A.20)

Математическое ожидание равно:

. (A.21)

Если сумма и равна единице, то мы имеем и является несмещенной оценкой .

Таким образом, в принципе число несмещенных оценок бесконечно. Как выбрать одну из них? Почему в действительности мы всегда используем выборочное среднее с ? Возможно, вы полагаете, что было бы несправедливым давать разным наблюдениям различные веса или что подобной асимметрии следует избегать в принципе. Мы, однако, не заботимся здесь о справедливости или о симметрии как таковой. Дальше мы увидим, что имеется и более осязаемая причина.

До сих пор мы рассматривали только оценки теоретического среднего. Выше утверждалось, что величина , определяемая в соответствии с табл. А.6, является оценкой теоретической дисперсии . Можно показать, что математическое ожидание равно , и эта величина является несмещенной оценкой теоретической дисперсии, если наблюдения в выборке независимы друг от друга. Доказательство этого математически несложно, но трудоемко, и поэтому мы его опускаем.

Эффективность

Несмещенность - желательное свойство оценок, но это не единственное такое свойство. Еще одна важная их сторона - это надежность. Конечно, немаловажно, чтобы оценка была точной в среднем за длительный период, но, как однажды заметил Дж. М. Кейнс, «в долгосрочном периоде мы все умрем». Мы хотели бы, чтобы наша оценка с максимально возможной вероятностью давала бы близкое значение к теоретической характеристике, что означает желание получить функцию плотности вероятности, как можно более «сжатую» вокруг истинного значения. Один из способов выразить это требование - сказать, что мы хотели бы получить сколь возможно малую дисперсию.

Предположим, что мы имеем две оценки теоретического среднего, рассчитанные на основе одной и той же информации, что обе они являются несмещенными и что их функции плотности вероятности показаны на рис. A.7. Поскольку функция плотности вероятности для оценки более «сжата», чем для оценки , с ее помощью мы скорее получим более точное значение. Формально говоря, эта оценка более эффективна.

Рис. A.7.

Важно заметить, что мы использовали здесь слово «скорее». Даже хотя оценка более эффективна, это не означает, что она всегда дает более точное значение. При определенном стечении обстоятельств значение оценки может быть ближе к истине. Однако вероятность того, что оценка окажется более точной, чем , составляет менее 50%.

Это напоминает вопрос о том, пользоваться ли ремнями безопасности при управлении автомобилем. Множество обзоров в разных странах показало, что значительно менее вероятно погибнуть или получить увечья в дорожном происшествии, если воспользоваться ремнями безопасности. В то же время не раз отмечались странные случаи, когда не сделавший этого индивид чудесным образом уцелел, но погиб бы, будучи пристегнут ремнями. Упомянутые обзоры не отрицают этого. В них лишь делается вывод, что преимущество на стороне тех, кто пользуется ремнями безопасности. Подобным же преимуществом обладает и эффективная оценка. (Неприятный комментарий: в тех странах, где пользование ремнями безопасности сделано обязательным, сократилось предложение для трансплантации почек людей, ставших жертвами аварий.)

Мы говорили о желании получить оценку как можно с меньшей дисперсией, и эффективная оценка - это та, у которой дисперсия минимальна. Сейчас мы рассмотрим дисперсию обобщенной оценки теоретического среднего и покажем, что она минимальна в том случае, когда оба наблюдения имеют равные веса.

Если наблюдения и независимы, теоретическая дисперсия обобщенной оценки равна:

. (A.21)

Мы уже выяснили, что для несмещенности оценки необходимо равенство единице суммы и . Следовательно, для несмещенных оценок и

. (A.22)

Поскольку мы хотим выбрать так, чтобы минимизировать дисперсию, нам нужно минимизировать при этом . Эту задачу можно решить графически или с помощью дифференциального исчисления. В любом случае минимум достигается при . Следовательно, также равно 0,5.

Итак, мы показали, что выборочное среднее имеет наименьшую дисперсию среди оценок рассматриваемого типа. Это означает, что оно имеет наиболее «сжатое» вероятностное распределение вокруг истинного среднего и, следовательно (в вероятностном смысле), наиболее точно. Строго говоря, выборочное среднее - это наиболее эффективная оценка среди всех несмещенных оценок. Конечно, мы показали это только для случая с двумя наблюдениями, но сделанные выводы верны для выборок любого размера, если наблюдения не зависят друг от друга.

Два заключительных замечания: во-первых, эффективность оценок можно сравнивать лишь тогда, когда они используют одну и ту же информацию, например один и тот же набор наблюдений нескольких случайных переменных. Если одна из оценок использует в 10 раз больше информации, чем другая, то она вполне может иметь меньшую дисперсию, но было бы неправильно считать ее более эффективной. Во-вторых, мы ограничиваем понятие эффективности сравнением распределений несмещенных оценок. Существуют определения эффективности, обобщающие это понятие на случай возможного сравнения смещенных оценок, но в этом пособии мы придерживаемся данного простого определения.

Противоречия между несмещенностью и минимальной дисперсией

В данном обзоре мы уже выяснили, что для оценки желательны несмещенность и наименьшая возможная дисперсия. Эти критерии совершенно различны, и иногда они могут противоречить друг другу. Может случиться так, что имеются две оценки теоретической характеристики, одна из которых является несмещенной ( на рис. A.8), другая же смещена, но имеет меньшую дисперсию ().

Рис. A.8.

Оценка хороша своей несмещенностью, но преимуществом оценки является то, что ее значения практически всегда близки к истинному значению. Какую из них вы бы выбрали?

Данный выбор зависит от обстоятельств. Если возможные ошибки вас не очень тревожат при условии, что за длительный период они «погасят» друг друга, то, по-видимому, вы выберете . С другой стороны, если для вас приемлемы малые ошибки, но неприемлемы большие, то вам следует выбрать .

Формально говоря, выбор определяется функцией потерь, стоимостью сделанной ошибки как функцией ее размера. Обычно выбирают оценку, дающую наименьшее ожидание потерь, и делается это путем взвешивания функции потерь по функции плотности вероятности. (Если вы не любите риск, то можете также пожелать учесть дисперсию потерь.)

Влияние увеличения размера выборки на точность оценок

Будем по-прежнему предполагать, что мы исследуем случайную переменную с неизвестным математическим ожиданием и теоретической дисперсией и что для оценивания используется . Каким образом точность оценки зависит от числа наблюдений ?

Ответ неудивителен: при увеличении оценка , вообще говоря, становится более точной. В единичном эксперименте большая по размеру выборка необязательно даст более точную оценку, чем меньшая выборка, - всегда может присутствовать элемент везения, - но общая тенденция должна быть именно такой. Поскольку дисперсия выражается формулой (доказательство этого факта мы опускаем), она тем меньше, чем больше размер выборки, и, значит, тем сильнее «сжата» функция плотности вероятности для .

Это показано на рис. A.9. Мы предполагаем, что нормально распределена со средним 25 и стандартным отклонением 50. Если размер выборки равен 25, то стандартное отклонение величины , равное , составит: . Если размер выборки равен 100, то это стандартное отклонение равно 5. На рис. А.9 показаны соответствующие функции плотности вероятности. Вторая () выше первой в окрестности , что говорит о более высокой вероятности получения с ее помощью аккуратной оценки. За пределами этой окрестности вторая функция всюду ниже первой.

Рис. A.9.

Чем больше размер выборки, тем уже и выше будет график функции плотности вероятности для . Если становится действительно большим, то график функции плотности вероятности будет неотличим от вертикальной прямой, соответствующей . Для такой выборки случайная составляющая становится действительно очень малой, и поэтому обязательно будет очень близкой к . Это вытекает из того факта, что стандартное отклонение , равное , становится очень малым при больших .

В пределе, при стремлении к бесконечности, стремится к нулю и стремится в точности к .

Состоятельность

Вообще говоря, если предел оценки по вероятности равен истинному значению характеристики генеральной совокупности, то эта оценка называется состоятельной. Иначе говоря, состоятельной называется такая оценка, которая дает точное значение для большой выборки независимо от входящих в нее конкретных наблюдений.

В большинстве конкретных случаев несмещенная оценка является и состоятельной. Для этого можно построить контрпримеры, но они, как правило, будут носить искусственный характер.

Иногда бывает, что оценка, смещенная на малых выборках, является состоятельной (иногда состоятельной может быть даже оценка, не имеющая на малых выборках конечного математического ожидания). На рис. A.10 показано, как при различных размерах выборки может выглядеть распределение вероятностей. Тот факт, что при увеличении размера выборки распределение становится симметричным вокруг истинного значения, указывает на асимптотическую несмещенность. То, что в конечном счете оно превращается в единственную точку истинного значения, говорит о состоятельности оценки.

Рис. A.10.

Оценки, типа показанных на рис. A.10, весьма важны в регрессионном анализе. Иногда невозможно найти оценку, несмещенную на малых выборках. Если при этом вы можете найти хотя бы состоятельную оценку, это может быть лучше, чем не иметь никакой оценки, особенно если вы можете предположить направление смещения на малых выборках.

Нужно, однако, иметь в виду, что состоятельная оценка в принципе может на малых выборках работать хуже, чем несостоятельная (например, иметь большую среднеквадратичную ошибку), и поэтому требуется осторожность. Подобно тому, как вы можете предпочесть смещенную оценку несмещенной, если ее дисперсия меньше, вы можете предпочесть состоятельную, но смещенную оценку несмещенной или несостоятельную оценку им обеим (также в случае меньшей дисперсии).

Приложение B

Тестовые задания

Парная регрессия и корреляция

1. Наиболее наглядным видом выбора уравнения парной регрессии является:

а) аналитический;

б) графический;

в) экспериментальный (табличный).

2. Рассчитывать параметры парной линейной регрессии можно, если у нас есть:

а) не менее 5 наблюдений;

б) не менее 7 наблюдений;

в) не менее 10 наблюдений.

3. Суть метода наименьших квадратов состоит в:

а) минимизации суммы остаточных величин;

б) минимизации дисперсии результативного признака;

в) минимизации суммы квадратов остаточных величин.

4. Коэффициент линейного парного уравнения регрессии:

а) показывает среднее изменение результата с изменением фактора на одну единицу;

б) оценивает статистическую значимость уравнения регрессии;

в) показывает, на сколько процентов изменится в среднем результат, если фактор изменится на 1%.

5. На основании наблюдений за 50 семьями построено уравнение регрессии , где - потребление, - доход. Соответствуют ли знаки и значения коэффициентов регрессии теоретическим представлениям?

а) да;

б) нет;

в) ничего определенного сказать нельзя.

6. Суть коэффициента детерминации состоит в следующем:

а) оценивает качество модели из относительных отклонений по каждому наблюдению;

б) характеризует долю дисперсии результативного признака , объясняемую регрессией, в общей дисперсии результативного признака;

в) характеризует долю дисперсии , вызванную влиянием не учтенных в модели факторов.

7. Качество модели из относительных отклонений по каждому наблюдению оценивает:

а) коэффициент детерминации ;

б) -критерий Фишера;

в) средняя ошибка аппроксимации .

8. Значимость уравнения регрессии в целом оценивает:

а) -критерий Фишера;

б) -критерий Стьюдента;

в) коэффициент детерминации .

9. Классический метод к оцениванию параметров регрессии основан на:

а) методе наименьших квадратов:

б) методе максимального правдоподобия:

в) шаговом регрессионном анализе.

10. Остаточная сумма квадратов равна нулю:

а) когда правильно подобрана регрессионная модель;

б) когда между признаками существует точная функциональная связь;

в) никогда.

11. Объясненная (факторная) сумма квадратов отклонений в линейной парной модели имеет число степеней свободы, равное:

а) ;

б) ;

в) .

12. Остаточная сумма квадратов отклонений в линейной парной модели имеет число степеней свободы, равное:

а) ;

б) ;

в) .

13. Общая сумма квадратов отклонений в линейной парной модели имеет число степеней свободы, равное:

а) ;

б) ;

в) .

14. Для оценки значимости коэффициентов регрессии рассчитывают:

а) -критерий Фишера;

б) -критерий Стьюдента;

в) коэффициент детерминации .

15. Какое уравнение регрессии нельзя свести к линейному виду:

а) ;

б) :

в) .

16. Какое из уравнений является степенным:

а) ;

б) :

в) .

17. Параметр в степенной модели является:

а) коэффициентом детерминации;

б) коэффициентом эластичности;

в) коэффициентом корреляции.

18. Коэффициент корреляции может принимать значения:

а) от -1 до 1;

б) от 0 до 1;

в) любые.

19. Для функции средний коэффициент эластичности имеет вид:

а) ;

б) ;

в) .

20. Какое из следующих уравнений нелинейно по оцениваемым параметрам:

а) ;

б) ;

в) .

Множественная регрессия и корреляция

1. Добавление в уравнение множественной регрессии новой объясняющей переменной:

а) уменьшает значение коэффициента детерминации;

б) увеличивает значение коэффициента детерминации;

в) не оказывает никакого влияние на коэффициент детерминации.

2. Скорректированный коэффициент детерминации:

а) меньше обычного коэффициента детерминации;

б) больше обычного коэффициента детерминации;

в) меньше или равен обычному коэффициенту детерминации;

3. С увеличением числа объясняющих переменных скорректированный коэффициент детерминации:

а) увеличивается;

б) уменьшается;

в) не изменяется.

4. Число степеней свободы для остаточной суммы квадратов в линейной модели множественной регрессии равно:

а) ;

б) ;

в) .

5. Число степеней свободы для общей суммы квадратов в линейной модели множественной регрессии равно:

а) ;

б) ;

в) .

6. Число степеней свободы для факторной суммы квадратов в линейной модели множественной регрессии равно:

а) ;

б) ;

в) .

7. Множественный коэффициент корреляции . Определите, какой процент дисперсии зависимой переменной объясняется влиянием факторов и :

а) 90%;

б) 81%;

в) 19%.

8. Для построения модели линейной множественной регрессии вида необходимое количество наблюдений должно быть не менее:

а) 2;

б) 7;

в) 14.

9. Стандартизованные коэффициенты регрессии :

а) позволяют ранжировать факторы по силе их влияния на результат;

б) оценивают статистическую значимость факторов;

в) являются коэффициентами эластичности.

10. Частные коэффициенты корреляции:

а) характеризуют тесноту связи рассматриваемого набора факторов с исследуемым признаком;

б) содержат поправку на число степеней свободы и не допускают преувеличения тесноты связи;

в) характеризуют тесноту связи между результатом и соответствующим фактором при элиминировании других факторов, включенных в уравнение регрессии.

11. Частный -критерий:

а) оценивает значимость уравнения регрессии в целом;

б) служит мерой для оценки включения фактора в модель;

в) ранжирует факторы по силе их влияния на результат.

12. Несмещенность оценки параметра регрессии, полученной по МНК, означает:

а) что она характеризуется наименьшей дисперсией;

б) что математическое ожидание остатков равно нулю;

в) увеличение ее точности с увеличением объема выборки.

13. Эффективность оценки параметра регрессии, полученной по МНК, означает:

а) что она характеризуется наименьшей дисперсией;

б) что математическое ожидание остатков равно нулю;

в) увеличение ее точности с увеличением объема выборки.

14. Состоятельность оценки параметра регрессии, полученной по МНК, означает:

а) что она характеризуется наименьшей дисперсией;

б) что математическое ожидание остатков равно нулю;

в) увеличение ее точности с увеличением объема выборки.

15. Укажите истинное утверждение:

а) скорректированный и обычный коэффициенты множественной детерминации совпадают только в тех случаях, когда обычный коэффициент множественной детерминации равен нулю;

б) стандартные ошибки коэффициентов регрессии определяются значениями всех параметров регрессии;

в) при наличии гетероскедастичности оценки параметров регрессии становятся смещенными.

16. При наличии гетероскедастичности следует применять:

а) обычный МНК;

б) обобщенный МНК;

в) метод максимального правдоподобия.

17. Фиктивные переменные - это:

а) атрибутивные признаки (например, как профессия, пол, образование), которым придали цифровые метки;

б) экономические переменные, принимающие количественные значения в некотором интервале;

в) значения зависимой переменной за предшествующий период времени.

18. Если качественный фактор имеет три градации, то необходимое число фиктивных переменных:

а) 4;

б) 3;

в) 2.

Системы эконометрических уравнений

1. Наибольшее распространение в эконометрических исследованиях получили:

а) системы независимых уравнений;

б) системы рекурсивных уравнений;

в) системы взаимозависимых уравнений.

2. Эндогенные переменные - это:

а) предопределенные переменные, влияющие на зависимые переменные, но не зависящие от них, обозначаются через .;

б) зависимые переменные, число которых равно числу уравнений в системе и которые обозначаются через ;

в) значения зависимых переменных за предшествующий период времени.

3. Экзогенные переменные - это:

а) предопределенные переменные, влияющие на зависимые переменные, но не зависящие от них, обозначаются через ;

б) зависимые переменные, число которых равно числу уравнений в системе и которые обозначаются через ;

в) значения зависимых переменных за предшествующий период времени.

4. Лаговые переменные - это:

а) предопределенные переменные, влияющие на зависимые переменные, но не зависящие от них, обозначаются через .;

б) зависимые переменные, число которых равно числу уравнений в системе и которые обозначаются через ;

в) значения зависимых переменных за предшествующий период времени.

5. Для определения параметров структурную форму модели необходимо преобразовать в:

а) приведенную форму модели;

б) рекурсивную форму модели;

в) независимую форму модели.

6. Модель идентифицируема, если:

а) число приведенных коэффициентов меньше числа структурных коэффициентов;

б) если число приведенных коэффициентов больше числа структурных коэффициентов;

в) если число параметров структурной модели равно числу параметров приведенной формы модели.

7. Модель неидентифицируема, если:

а) число приведенных коэффициентов меньше числа структурных коэффициентов;

б) если число приведенных коэффициентов больше числа структурных коэффициентов;

в) если число параметров структурной модели равно числу параметров приведенной формы модели.

8. Модель сверхидентифицируема, если:

а) число приведенных коэффициентов меньше числа структурных коэффициентов;

б) если число приведенных коэффициентов больше числа структурных коэффициентов;

в) если число параметров структурной модели равно числу параметров приведенной формы модели.

9. Уравнение идентифицируемо, если:

а) ;

б) ;

в) .

10. Уравнение неидентифицируемо, если:

а) ;

б) ;

в) .

11. Уравнение сверхидентифицируемо, если:

а) ;

б) ;

в) .

12. Для определения параметров точно идентифицируемой модели:

а) применяется двушаговый МНК;

б) применяется косвенный МНК;

б) ни один из существующих методов применить нельзя.

13. Для определения параметров сверхидентифицируемой модели:

а) применяется двушаговый МНК;

б) применяется косвенный МНК;

б) ни один из существующих методов применить нельзя.

14. Для определения параметров неидентифицируемой модели:

а) применяется двушаговый МНК;

б) применяется косвенный МНК;

б) ни один из существующих методов применить нельзя.

Временные ряды

1. Аддитивная модель временного ряда имеет вид:

а) ;

б) ;

в) .

2. Мультипликативная модель временного ряда имеет вид:

а) ;

б) ;

в) .

3. Коэффициент автокорреляции:

а) характеризует тесноту линейной связи текущего и предыдущего уровней ряда;

б) характеризует тесноту нелинейной связи текущего и предыдущего уровней ряда;

в) характеризует наличие или отсутствие тенденции.

4. Аддитивная модель временного ряда строится, если:

а) значения сезонной компоненты предполагаются постоянными для различных циклов;

б) амплитуда сезонных колебаний возрастает или уменьшается;

в) отсутствует тенденция.

5. Мультипликативная модель временного ряда строится, если:

а) значения сезонной компоненты предполагаются постоянными для различных циклов;

б) амплитуда сезонных колебаний возрастает или уменьшается;

в) отсутствует тенденция.

6. На основе поквартальных данных построена аддитивная модель временного ряда. Скорректированные значения сезонной компоненты за первые три квартала равны: 7 - I квартал, 9 - II квартал и -11 - III квартал. Значение сезонной компоненты за IV квартал есть:

а) 5;

б) -4;

в) -5.

7. На основе поквартальных данных построена мультипликативная модель временного ряда. Скорректированные значения сезонной компоненты за первые три квартала равны: 0,8 - I квартал, 1,2 - II квартал и 1,3 - III квартал. Значение сезонной компоненты за IV квартал есть:

а) 0,7;

б) 1,7;

в) 0,9.

8. Критерий Дарбина-Уотсона применяется для:

а) определения автокорреляции в остатках;

б) определения наличия сезонных колебаний;

в) для оценки существенности построенной модели.

Приложение C

Вопросы к экзамену

1. Определение эконометрики. Эконометрический метод и этапы эконометрического исследования.

2. Парная регрессия. Способы задания уравнения парной регрессии.

3. Линейная модель парной регрессии. Смысл и оценка параметров.

4. Оценка существенности уравнения в целом и отдельных его параметров (-критерий Фишера и -критерий Стьюдента).

5. Прогноз по линейному уравнению регрессии. Средняя ошибка аппроксимации.

6. Нелинейная регрессия. Классы нелинейных регрессий.

7. Регрессии нелинейные относительно включенных в анализ объясняющих переменных.

8. Регрессии нелинейные по оцениваемым параметрам.

9. Коэффициенты эластичности для разных видов регрессионных моделей.

10. Корреляция и -критерий Фишера для нелинейной регрессии.

11. Отбор факторов при построении уравнения множественной регрессии.

12. Оценка параметров уравнения множественной регрессии.

13. Множественная корреляция.

14. Частные коэффициенты корреляции.

15. -критерий Фишера и частный -критерий Фишера для уравнения множественной регрессии.

16. -критерий Стьюдента для уравнения множественной регрессии.

17. Фиктивные переменные во множественной регрессии.

18. Предпосылки МНК: гомоскедастичность и гетероскедастичность.

19. Предпосылки МНК: автокорреляция остатков.

20. Обобщенный МНК.

21. Общие понятия о системах эконометрических уравнений.

22. Структурная и приведенная формы модели.

23. Проблема идентификации. Необходимое условие идентифицируемости.

24. Проблема идентификации. Достаточное условие идентифицируемости.

25. Методы оценки параметров структурной формы модели.

26. Основные элементы временного ряда.

27. Автокорреляция уровней временного ряда и выявление его структуры.

28. Моделирование сезонных колебаний: аддитивная модель временного ряда.

29. Моделирование сезонных колебаний: мультипликативная модель временного ряда.

30. Критерий Дарбина-Уотсона.

Приложение D

Варианты индивидуальных заданий

D.1. Парная регрессия и корреляция

Пример. По территориям региона приводятся данные за 199X г.

Таблица D.1

Номер региона

Среднедушевой прожиточный минимум в день одного трудоспособного, руб.,

Среднедневная заработная плата, руб.,

1

78

133

2

82

148

3

87

134

4

79

154

5

89

162

6

106

195

7

67

139

8

88

158

9

73

152

10

87

162

11

76

159

12

115

173

Требуется:

1. Построить линейное уравнение парной регрессии от .

2. Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации.

3. Оценить статистическую значимость параметров регрессии и корреляции с помощью -критерия Фишера и -критерия Стьюдента.

4. Выполнить прогноз заработной платы при прогнозном значении среднедушевого прожиточного минимума , составляющем 107% от среднего уровня.

5. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал.

6. На одном графике построить исходные данные и теоретическую прямую.

Решение

1. Для расчета параметров уравнения линейной регрессии строим расчетную таблицу D.2.

Таблица D.2

1

78

133

10374

6084

17689

149

-16

12,0

2

82

148

12136

6724

21904

152

-4

2,7

3

87

134

11658

7569

17956

157

-23

17,2

4

79

154

12166

6241

23716

150

4

2,6

5

89

162

14418

7921

26244

159

3

1,9

6

106

195

20670

11236

38025

174

21

10,8

7

67

139

9313

4489

19321

139

0

0,0

8

88

158

13904

7744

24964

158

0

0,0

9

73

152

11096

5329

23104

144

8

5,3

10

87

162

14094

7569

26244

157

5

3,1

11

76

159

12084

5776

25281

147

12

7,5

12

115

173

19895

13225

29929

183

-10

5,8

Итого

1027

1869

161808

89907

294377

1869

0

68,9

Среднее значение

85,6

155,8

13484,0

7492,3

24531,4

-

-

5,7

12,84

16,05

-

-

-

-

-

-

164,94

257,76

-

-

-

-

-

-

;

.

Получено уравнение регрессии: .

С увеличением среднедушевого прожиточного минимума на 1 руб. среднедневная заработная плата возрастает в среднем на 0,89 руб.

2. Тесноту линейной связи оценит коэффициент корреляции:

; .

Это означает, что 51% вариации заработной платы () объясняется вариацией фактора - среднедушевого прожиточного минимума.

Качество модели определяет средняя ошибка аппроксимации:

.

Качество построенной модели оценивается как хорошее, так как не превышает 8-10%.

3. Оценку значимости уравнения регрессии в целом проведем с помощью -критерия Фишера. Фактическое значение -критерия:

.

Табличное значение критерия при пятипроцентном уровне значимости и степенях свободы и составляет . Так как , то уравнение регрессии признается статистически значимым.

Оценку статистической значимости параметров регрессии проведем с помощью -статистики Стьюдента и путем расчета доверительного интервала каждого из показателей.

Табличное значение -критерия для числа степеней свободы и составит .

Определим случайные ошибки , , :

;

;

.

Тогда

;

;

.

Фактические значения -статистики превосходят табличное значение:

; ; ,

поэтому параметры , и не случайно отличаются от нуля, а статистически значимы.

Рассчитаем доверительные интервалы для параметров регрессии и . Для этого определим предельную ошибку для каждого показателя:

;

.

Доверительные интервалы

Анализ верхней и нижней границ доверительных интервалов приводит к выводу о том, что с вероятностью параметры и , находясь в указанных границах, не принимают нулевых значений, т.е. не являются статистически незначимыми и существенно отличны от нуля.

4. Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Если прогнозное значение прожиточного минимума составит: руб., тогда прогнозное значение заработной платы составит: руб.

5. Ошибка прогноза составит:

6.

.

Предельная ошибка прогноза, которая в случаев не будет превышена, составит:

.

Доверительный интервал прогноза:

руб.;

руб.

Выполненный прогноз среднемесячной заработной платы является надежным () и находится в пределах от 131,66 руб. до 190,62 руб.

6. В заключение решения задачи построим на одном графике исходные данные и теоретическую прямую (рис. D.1):

7.

Рис. D.1.

Варианты индивидуальных заданий

Задача 1. По территориям региона приводятся данные за 199X г. (см. таблицу своего варианта).

Требуется:

1. Построить линейное уравнение парной регрессии от .

2. Рассчитать линейный коэффициент парной корреляции и среднюю ошибку аппроксимации.

3. Оценить статистическую значимость параметров регрессии и корреляции с помощью -критерия Фишера и -критерия Стьюдента.

4. Выполнить прогноз заработной платы при прогнозном значении среднедушевого прожиточного минимума , составляющем 107% от среднего уровня.

5. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал.

6. На одном графике построить исходные данные и теоретическую прямую.

Вариант 1

Номер региона

Среднедушевой прожиточный минимум в день одного трудоспособного, руб.,

Среднедневная заработная плата, руб.,

1

81

124

2

77

131

3

85

146

4

79

139

5

93

143

6

100

159

7

72

135

8

90

152

9

71

127

10

89

154

11

82

127

12

111

162

Вариант 2

Номер региона

Среднедушевой прожиточный минимум в день одного трудоспособного, руб.,

Среднедневная заработная плата, руб.,

1

74

122

2

81

134

3

90

136

4

79

125

5

89

120

6

87

127

7

77

125

8

93

148

9

70

122

10

93

157

11

87

144

12

121

165

Вариант 3

Номер региона

Среднедушевой прожиточный минимум в день одного трудоспособного, руб.,

Среднедневная заработная плата, руб.,

1

77

123

2

85

152

3

79

140

4

93

142

5

89

157

6

81

181

7

79

133

8

97

163

9

73

134

10

95

155

11

84

132

12

108

165

Вариант 4

Номер региона

Среднедушевой прожиточный минимум в день одного трудоспособного, руб.,

Среднедневная заработная плата, руб.,

1

83

137

2

88

142

3

75

128

4

89

140

5

85

133

6

79

153

7

81

142

8

97

154

9

79

132

10

90

150

11

84

132

12

112

166

Вариант 5

Номер региона

Среднедушевой прожиточный минимум в день одного трудоспособного, руб.,

Среднедневная заработная плата, руб.,

1

79

134

2

91

154

3

77

128

4

87

138

5

84

133

6

76

144

7

84

160

8

94

149

9

79

125

10

98

163

11

81

120

12

115

162

Вариант 6

Номер региона

Среднедушевой прожиточный минимум в день одного трудоспособного, руб.,

Среднедневная заработная плата, руб.,

1

92

147

2

78

133

3

79

128

4

88

152

5

87

138

6

75

122

7

81

145

8

96

141

9

80

127

10

102

151

11

83

129

12

94

147

Вариант 7

Номер региона

Среднедушевой прожиточный минимум в день одного трудоспособного, руб.,

Среднедневная заработная плата, руб.,

1

75

133

2

78

125

3

81

129

4

93

153

5

86

140

6

77

135

7

83

141

8

94

152

9

88

133

10

99

156

11

80

124

12

112

156

Вариант 8

Номер региона

Среднедушевой прожиточный минимум в день одного трудоспособного, руб.,

Среднедневная заработная плата, руб.,

1

69

124

2

83

133

3

92

146

4

97

153

5

88

138

6

93

159

7

74

145

8

79

152

9

105

168

10

99

154

11

85

127

12

94

155

Вариант 9

Номер региона

Среднедушевой прожиточный минимум в день одного трудоспособного, руб.,

Среднедневная заработная плата, руб.,

1

78

133

2

94

139

3

85

141

4

73

127

5

91

154

6

88

142

7

73

122

8

82

135

9

99

142

10

113

168

11

69

124

12

83

130

Вариант 10

Номер региона

Среднедушевой прожиточный минимум в день одного трудоспособного, руб.,

Среднедневная заработная плата, руб.,

1

97

161

2

73

131

3

79

135

4

99

147

5

86

139

6

91

151

7

85

135

8

77

132

9

89

161

10

95

159

11

72

120

12

115

160

D.2. Множественная регрессия и корреляция

Пример. По предприятиям региона изучается зависимость выработки продукции на одного работника (тыс. руб.) от ввода в действие новых основных фондов ( от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих ().

Номер предприятия

Номер предприятия

1

7,0

3,9

10,0

11

9,0

6,0

21,0

2

7,0

3,9

14,0

12

11,0

6,4

22,0

3

7,0

3,7

15,0

13

9,0

6,8

22,0

4

7,0

4,0

16,0

14

11,0

7,2

25,0

5

7,0

3,8

17,0

15

12,0

8,0

28,0

6

7,0

4,8

19,0

16

12,0

8,2

29,0

7

8,0

5,4

19,0

17

12,0

8,1

30,0

8

8,0

4,4

20,0

18

12,0

8,5

31,0

9

8,0

5,3

20,0

19

14,0

9,6

32,0

10

10,0

6,8

20,0

20

14,0

9,0

36,0

Требуется:

1. Построить линейную модель множественной регрессии. Записать стандартизованное уравнение множественной регрессии. На основе стандартизованных коэффициентов регрессии и средних коэффициентов эластичности ранжировать факторы по степени их влияния на результат.

2. Найти коэффициенты парной, частной и множественной корреляции. Проанализировать их.

3. Найти скорректированный коэффициент множественной детерминации. Сравнить его с нескорректированным (общим) коэффициентом детерминации.

4. С помощью -критерия Фишера оценить статистическую надежность уравнения регрессии и коэффициента детерминации .

5. С помощью частных -критериев Фишера оценить целесообразность включения в уравнение множественной регрессии фактора после и фактора после .

6. Составить уравнение линейной парной регрессии, оставив лишь один значащий фактор.

Решение

Для удобства проведения расчетов поместим результаты промежуточных расчетов в таблицу:

1

2

3

4

5

6

7

8

9

10

1

7,0

3,9

10,0

27,3

70,0

39,0

15,21

100,0

49,0

2

7,0

3,9

14,0

27,3

98,0

54,6

15,21

196,0

49,0

3

7,0

3,7

15,0

25,9

105,0

55,5

13,69

225,0

49,0

4

7,0

4,0

16,0

28,0

112,0

64,0

16,0

256,0

49,0

5

7,0

3,8

17,0

26,6

119,0

64,6

14,44

289,0

49,0

6

7,0

4,8

19,0

33,6

133,0

91,2

23,04

361,0

49,0

7

8,0

5,4

19,0

43,2

152,0

102,6

29,16

361,0

64,0

8

8,0

4,4

20,0

35,2

160,0

88,0

19,36

400,0

64,0

9

8,0

5,3

20,0

42,4

160,0

106,0

28,09

400,0

64,0

10

10,0

6,8

20,0

68,0

200,0

136,0

46,24

400,0

100,0

11

9,0

6,0

21,0

54,0

189,0

126,0

36,0

441,0

81,0

12

11,0

6,4

22,0

70,4

242,0

140,8

40,96

484,0

121,0

13

9,0

6,8

22,0

61,2

198,0

149,6

46,24

484,0

81,0

1

2

3

4

5

6

7

8

9

10

14

11,0

7,2

25,0

79,2

275,0

180,0

51,84

625,0

121,0

15

12,0

8,0

28,0

96,0

336,0

224,0

64,0

784,0

144,0

16

12,0

8,2

29,0

98,4

348,0

237,8

67,24

841,0

144,0

17

12,0

8,1

30,0

97,2

360,0

243,0

65,61

900,0

144,0

18

12,0

8,5

31,0

102,0

372,0

263,5

72,25

961,0

144,0

19

14,0

9,6

32,0

134,4

448,0

307,2

92,16

1024,0

196,0

20

14,0

9,0

36,0

126,0

504,0

324,0

81,0

1296,0

196,0

Сумма

192

123,8

446

1276,3

4581

2997,4

837,74

10828,0

1958,0

Ср. знач.

9,6

6,19

22,3

63,815

229,05

149,87

41,887

541,4

97,9

Найдем средние квадратические отклонения признаков:

;

;

.

1. Вычисление параметров линейного уравнения множественной регрессии.

Для нахождения параметров линейного уравнения множественной регрессии

необходимо решить следующую систему линейных уравнений относительно неизвестных параметров , , :

либо воспользоваться готовыми формулами:

; ;

.

Рассчитаем сначала парные коэффициенты корреляции:

;

;

.

Находим

;

;

.

Таким образом, получили следующее уравнение множественной регрессии:

.

Коэффициенты и стандартизованного уравнения регрессии находятся по формулам:

;

.

Т.е. уравнение будет выглядеть следующим образом:

.

Так как стандартизованные коэффициенты регрессии можно сравнивать между собой, то можно сказать, что ввод в действие новых основных фондов оказывает большее влияние на выработку продукции, чем удельный вес рабочих высокой квалификации.

Сравнивать влияние факторов на результат можно также при помощи средних коэффициентов эластичности:

.

Вычисляем:

; .

Т.е. увеличение только основных фондов (от своего среднего значения) или только удельного веса рабочих высокой квалификации на 1% увеличивает в среднем выработку продукции на 0,61% или 0,20% соответственно. Таким образом, подтверждается большее влияние на результат фактора , чем фактора .

2. Коэффициенты парной корреляции мы уже нашли:

; ; .

Они указывают на весьма сильную связь каждого фактора с результатом, а также высокую межфакторную зависимость (факторы и явно коллинеарны, т.к. ). При такой сильной межфакторной зависимости рекомендуется один из факторов исключить из рассмотрения.

Частные коэффициенты корреляции характеризуют тесноту связи между результатом и соответствующим фактором при элиминировании (устранении влияния) других факторов, включенных в уравнение регрессии.

При двух факторах частные коэффициенты корреляции рассчитываются следующим образом:

;

.

Если сравнить коэффициенты парной и частной корреляции, то можно увидеть, что из-за высокой межфакторной зависимости коэффициенты парной корреляции дают завышенные оценки тесноты связи. Именно по этой причине рекомендуется при наличии сильной коллинеарности (взаимосвязи) факторов исключать из исследования тот фактор, у которого теснота парной зависимости меньше, чем теснота межфакторной связи.

Коэффициент множественной корреляции определить через матрицу парных коэффициентов корреляции:

,

где

- определитель матрицы парных коэффициентов корреляции;

- определитель матрицы межфакторной корреляции.

;

.

Коэффициент множественной корреляции

.

Аналогичный результат получим при использовании других формул:

;

;

.

Коэффициент множественной корреляции показывает на весьма сильную связь всего набора факторов с результатом.

3. Нескорректированный коэффициент множественной детерминации оценивает долю вариации результата за счет представленных в уравнении факторов в общей вариации результата. Здесь эта доля составляет и указывает на весьма высокую степень обусловленности вариации результата вариацией факторов, иными словами - на весьма тесную связь факторов с результатом.

Скорректированный коэффициент множественной детерминации

определяет тесноту связи с учетом степеней свободы общей и остаточной дисперсий. Он дает такую оценку тесноты связи, которая не зависит от числа факторов и поэтому может сравниваться по разным моделям с разным числом факторов. Оба коэффициента указывают на весьма высокую (более ) детерминированность результата в модели факторами и .

4. Оценку надежности уравнения регрессии в целом и показателя тесноты связи дает -критерий Фишера:

.

В нашем случае фактическое значение -критерия Фишера:

.

Получили, что (при ), т.е. вероятность случайно получить такое значение -критерия не превышает допустимый уровень значимости . Следовательно, полученное значение не случайно, оно сформировалось под влиянием существенных факторов, т.е. подтверждается статистическая значимость всего уравнения и показателя тесноты связи .

5. С помощью частных -критериев Фишера оценим целесообразность включения в уравнение множественной регрессии фактора после и фактора после при помощи формул:

;

.

Найдем и .

;

.

Имеем

;

.

Получили, что . Следовательно, включение в модель фактора после того, как в модель включен фактор статистически нецелесообразно: прирост факторной дисперсии за счет дополнительного признака оказывается незначительным, несущественным; фактор включать в уравнение после фактора не следует.

Если поменять первоначальный порядок включения факторов в модель и рассмотреть вариант включения после , то результат расчета частного -критерия для будет иным. , т.е. вероятность его случайного формирования меньше принятого стандарта . Следовательно, значение частного -критерия для дополнительно включенного фактора не случайно, является статистически значимым, надежным, достоверным: прирост факторной дисперсии за счет дополнительного фактора является существенным. Фактор должен присутствовать в уравнении, в том числе в варианте, когда он дополнительно включается после фактора .

6. Общий вывод состоит в том, что множественная модель с факторами и с содержит неинформативный фактор . Если исключить фактор , то можно ограничиться уравнением парной регрессии:

, .

Варианты индивидуальных заданий

По 20 предприятиям региона изучается зависимость выработки продукции на одного работника (тыс. руб.) от ввода в действие новых основных фондов (% от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих (%) (смотри таблицу своего варианта).

Требуется:

1. Построить линейную модель множественной регрессии. Записать стандартизованное уравнение множественной регрессии. На основе стандартизованных коэффициентов регрессии и средних коэффициентов эластичности ранжировать факторы по степени их влияния на результат.


Подобные документы

  • Суть эконометрики как научной дисциплины, ее предмет и метод. Парная и множественная регрессия в экономических исследованиях. Регрессионные модели с переменной структурой. Обобщенный метод наименьших квадратов. Анализ систем экономических уравнений.

    реферат [279,2 K], добавлен 11.09.2013

  • Множественная корреляция и линейная регрессия. Оценка прогнозных качеств модели. Простейшие методы линеаризации. Вероятностный эксперимент, событие или вероятность. Фиктивные переменные в регрессионных моделях. Системы эконометрических уравнений.

    курс лекций [2,0 M], добавлен 13.02.2014

  • Взаимосвязи экономических переменных. Понятие эконометрической модели. Коэффициент корреляции и его свойства. Линейная парная регрессия. Метод наименьших квадратов. Основные предпосылки и принципы регрессионного анализа. Статистика Дарбина-Уотсона.

    шпаргалка [142,4 K], добавлен 22.12.2011

  • Содержание, цели и задачи эконометрики как научной дисциплины; ее составляющие. Описание этапов моделирования экономических процессов. Принципы построения спецификации неоклассической производной функции. Определение эндогенной и экзогенной переменных.

    презентация [2,8 M], добавлен 22.08.2015

  • Задачи эконометрики, ее математический аппарат. Взаимосвязь между экономическими переменными, примеры оценки линейности и аддитивности. Основные понятия и проблемы эконометрического моделирования. Определение коэффициентов линейной парной регрессии.

    контрольная работа [79,3 K], добавлен 28.07.2013

  • Методологические основы эконометрики. Проблемы построения эконометрических моделей. Цели эконометрического исследования. Основные этапы эконометрического моделирования. Эконометрические модели парной линейной регрессии и методы оценки их параметров.

    контрольная работа [176,4 K], добавлен 17.10.2014

  • Этапы и проблемы эконометрических исследований. Параметры парной линейной регрессии. Оценка тесноты связи с помощью показателей корреляции и детерминации. Расчет коэффициентов автокорреляции второго порядка для временного ряда расходов на потребление.

    контрольная работа [60,3 K], добавлен 05.01.2011

  • Определение, цели и задачи эконометрики. Этапы построения модели. Типы данных при моделировании экономических процессов. Примеры, формы и моделей. Эндогенные и экзогенные переменные. Построение спецификации неоклассической производственной функции.

    презентация [1010,6 K], добавлен 18.03.2014

  • Построение поля корреляции и формулирование гипотезы о форме связи. Параметры уравнений линейной, степенной и гиперболической регрессии. Оценка тесноты связи с помощью показателей корреляции и детерминации. Оценка средней ошибки аппроксимации уравнения.

    контрольная работа [136,3 K], добавлен 25.09.2014

  • Количественное выражение общих закономерностей, обусловленных экономической теорией. Механизм функционирования экономической или социально-экономической системы. Связь эконометрики с другими дисциплинами. Сущность эконометрической модели, ее специфика.

    презентация [107,3 K], добавлен 22.08.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.