Нечеткая логика
Понятие и основные характеристики нечетких множеств, их примеры и методы построения функций принадлежности. Операции над ними и наглядное представление. Переменные, высказывания и модели систем, множества в системах управления: преимущества и применение.
Рубрика | Экономико-математическое моделирование |
Вид | реферат |
Язык | русский |
Дата добавления | 17.04.2009 |
Размер файла | 258,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
29
Содержание
Введение
1. Нечеткие множества
2. Основные характеристики нечетких множеств
2.1 Примеры нечетких множеств
2.2 Методы построения функций принадлежности нечетких множеств
3. Операции над нечеткими множествами
3.1 Примеры
3.2 Наглядное представление операций над нечеткими множествами
3.3 Свойства операций ? и ?
4. Нечеткая и лингвистическая переменные
4.1 Пример
5. Нечеткие высказывания и нечеткие модели систем
5.1 Высказывания на множестве значений фиксированной лингвистической переменной
6. Нечеткие множества в системах управления
6.1 Общая структура нечеткого микроконтроллера
7. Преимущества нечетких систем
8. Применение нечетких систем
Введение
Наверное, самым впечатляющим у человеческого интеллекта является способность принимать правильные решения в условиях неполной и нечеткой информации. Построение моделей приближенных размышлений человека и использование их в компьютерных системах представляет сегодня одну из важнейших проблем науки.
Основы нечеткой логики были заложены в конце 60-х лет в работах известного американского математика Латфи Заде. Исследования такого рода было вызвано возрастающим неудовольствием экспертными системами. Хваленый "искусственный интеллект", который легко справлялся с задачами управления сложными техническими комплексами, был беспомощным при простейших высказываниях повседневной жизни, типа "Если в машине перед тобой сидит неопытный водитель - держись от нее подальше". Для создания действительно интеллектуальных систем, способных адекватно взаимодействовать с человеком, был необходим новый математический аппарат, который переводит неоднозначные жизненные утверждения в язык четких и формальных математических формул. Первым серьезным шагом в этом направлении стала теория нечетких множеств, разработанная Заде. Его работа "Fuzzy Sets", опубликованная в 1965 году в журнале "Information and Control", заложила основы моделирования интеллектуальной деятельности человека и стала начальным толчком к развитию новой математической теории. Он же дал и название для новой области науки - "fuzzy logic" (fuzzy - нечеткий, размытый, мягкий).
Чтобы стать классиком, надо немного опередить свое время. Существует легенда о том, каким образом была создана теория "нечетких множеств". Один раз Заде имел длинную дискуссию со своим другом относительно того, чья из жен более привлекательна. Термин "привлекательная" является неопределенным и в результате дискуссии они не смогли прийти к удовлетворительному итогу. Это заставило Загде сформулировать концепцию, которая выражает нечеткие понятия типа "привлекательная" в числовой форме.
Дальнейшие работы профессора Латфи Заде и его последователей заложили фундамент новой теории и создали предпосылки для внедрения методов нечеткого управления в инженерную практику.
Аппарат теории нечетких множеств, продемонстрировав ряд многообещающих возможностей применения - от систем управления летательными аппаратами до прогнозирования итогов выборов, оказался вместе с тем сложным для воплощения. Учитывая имеющийся уровень технологии, нечеткая логика заняла свое место среди других специальных научных дисциплин - где-то посредине между экспертными системами и нейронными сетями.
Свое второе рождение теория нечеткой логики пережила в начале восьмидесятых годов, когда несколько групп исследователей (в основном в США и Япони) всерьез занялись созданием электронных систем различного применения, использующих нечеткие управляющие алгоритмы. Теоретические основы для этого были заложены в ранних работах Коско и других ученых.
Третий период начался с конца 80-х годов и до сих пор. Этот период характеризуется бумом практического применения теории нечеткой логики в разных сферах науки и техники. До 90-ого года появилось около 40 патентов, относящихся к нечеткой логике (30 - японских). Сорок восемь японских компаний создают лабораторию LIFE (Laboratory for International Fuzzy Engineering), японское правительство финансирует 5-летнюю программу по нечеткой логике, которая включает 19 разных проектов - от систем оценки глобального загрязнения атмосферы и предвидения землетрясений до АСУ заводских цехов. Результатом выполнения этой программы было появление целого ряда новых массовых микрочипов, базирующихся на нечеткой логике. Сегодня их можно найти в стиральных машинах и видеокамерах, цехах заводов и моторных отсеках автомобилей, в системах управления складскими роботами и боевыми вертолетами.
В США развитие нечеткой логики идет по пути создания систем для большого бизнеса и военных. Нечеткая логика применяется при анализе новых рынков, биржевой игре, оценки политических рейтингов, выборе оптимальной ценовой стратегии и т.п. Появились и коммерческие системы массового применения.
Смещение центра исследований нечетких систем в сторону практических применений привело к постановке целого ряда проблем, в частности:
· новые архитектуры компьютеров для нечетких вычислений;
· элементная база нечетких компьютеров и контроллеров;
· инструментальные средства разработки;
· инженерные методы расчета и разработки нечетких систем управления, и т.п..
1. Нечеткие множества
Пусть E - универсальное множество, x - элемент E, а R - определенное свойство. Обычное (четкое) подмножество A универсального множества E, элементы которого удовлетворяют свойство R, определяется как множество упорядоченной пары A = {?A (х)/х}, где ?A(х) - характеристическая функция, принимающая значение 1, когда x удовлетворяет свойство R, и 0 - в другом случае.
Нечеткое подмножество отличается от обычного тем, что для элементов x из E нет однозначного ответа "нет" относительно свойства R. В связи с этим, нечеткое подмножество A универсального множества E определяется как множество упорядоченной пари A = {?A(х)/х}, где ?A(х) - характеристическая функция принадлежности (или просто функция принадлежности), принимающая значение в некотором упорядоченном множестве M (например, M = [0,1]).
Функция принадлежности указывает степень (или уровень) принадлежности элемента x к подмножеству A. Множество M называют множеством принадлежностей. Если M = {0,1}, тогда нечеткое подмножество A может рассматриваться как обычное или четкое множество.
Рассмотрим множество X всех чисел от 0 до 10. Определим подмножество A множества X всех действительных чисел от 5 до 8.
A = [5,8]
Покажем функцию принадлежности множества A, эта функция ставит в соответствие число 1 или 0 каждому элементу в X, в зависимости от того, принадлежит данный элемент подмножеству A или нет. Результат представлен на следующем рисунке:
Можно интерпретировать элементы, соответствующие 1, как элементы, находящиеся в множестве A, а элементы, соответствующие 0, как элементы, не находящиеся в множестве A.
Эта концепция используется в многих областях. Но существуют ситуации, в которых данной концепции будет не хватать гибкости.
В данном примере опишем множество молодых людей. Формально можно записать так
B = {множество молодых людей}
Поскольку, вообще, возраст начинается с 0, то нижняя граница этого множества должна быть нулем. Верхнюю границу определить сложнее. Сначала установим верхнюю границу, скажем, равную 20 годам. Таким образом, имеем B как четко ограниченный интервал, буквально: B = [0,20]. Возникает вопрос: почему кто-то в свой двадцатилетний юбилей - молодой, а сразу на следующий день уже не молодой? Очевидно, это структурная проблема, и если передвинуть верхнюю границу в другую точку, то можно задать такой же вопрос.
Более естественный путь создания множества B состоит в ослаблении строгого деления на молодых и не молодых. Сделаем это, вынося не только четкие суждения "Да, он принадлежит множеству молодых людей" или "Нет, она не принадлежит множеству молодых людей", но и гибкие формулировки "Да, он принадлежит к довольно молодым людям" или "Нет, он не очень молодой".
Рассмотрим как с помощью нечеткого множества определить выражение "он еще молодой".
В первом примере мы кодировали все элементы множества с помощью 0 ли 1. Простым способом обобщить данную концепцию является введение значений между 0 и 1. Реально можно даже допустить бесконечное число значений между 0 и 1, в единичном интервале I = [0, 1].
Интерпретация чисел при соотношении всех элементов множества становится теперь сложнее. Конечно, число 1 соответствует элементу, принадлежащему множеству B, а 0 означает, что элемент точно не принадлежит множеству B. Все другие значения определяют степень принадлежности к множеству B.
Для наглядности приведем характеристическую функцию множества молодых людей, как и в первом примере.
Пусть E = {x1, x2, x3, x4, x5 }, M = [0,1]; A - нечеткое множество, для которого ?A(x1)=0,3; ?A(x2)=0; ?A(x3)=1; ?A(x4)=0,5; ?A(x5)=0,9
Тогда A можно представить в виде:
A = {0,3/x1; 0/x2; 1/x3; 0,5/x4; 0,9/x5 } или
A = 0,3/x1 + 0/x2 + 1/x3 + 0,5/x4 + 0,9/x5,
(знак "+" является операцией не сложения, а объединения) или
|
x1 |
x2 |
x3 |
x4 |
x5 |
|
A = |
0,3 |
0 |
1 |
0,5 |
0,9 |
2. Основные характеристики нечетких множеств
Пусть M = [0,1] и A - нечеткое множество с элементами из универсального множества E и множеством принадлежностей M
· Величина ?A(x) называется высотою нечеткого множества A. Нечеткое множество A является нормальным, если его высота равняется 1, то есть верхняя граница ее функции принадлежности равняется 1 ( ?A(x)=1). При ?A(x)<1 нечеткое множество называется субнормальным.
· Нечеткое множество является пустым, если ?x?E ? A(x)=0. Непустое субнормальное множество можно нормализировать по формуле
?A(x) :=
· Нечеткое множество является унимодальным, если ?A(x)=1 лишь для одного x из E.
· Носителем нечеткого множества A является обычное подмножество со свойством ?A(x)>0, то есть носитель A = {x/?A(x)>0} ? x?E.
· Элементы x?E, для которых ?A(x)=0,5 называются точками перехода множества A.
2.1 Примеры нечетких множеств
1. Пусть E = {0,1,2,..,10}, M =[0,1]. Нечеткое множество "несколько" можно определить таким образом:
"несколько" = 0,5/3+0,8/4+1/5+1/6+0,8/7+0,5/8;
ее характеристики: высота = 1, носитель={3,4,5,6,7,8}, точки перехода - {3,8}.
2. Пусть E = {0,1,2,3,...,n,...}. Нечеткое множество "малый" можно определить:
?"малый"(x)=
3. Пусть E = {1,2,3,...,100} и соответствует понятию "возраст", тогда нечеткое множество "молодой", можно определить с помощью
?"молодой"(x) =
Нечеткое множество "молодой" на универсальном множестве E' ={Иванов, Петров, Сидоров,...} задается с помощью функции принадлежности ?"молодой"(x) на E = {1,2,3,..100} (возраст), что называется относительно E' функцией совместимости, при этом:
?"молодой"(Сидоров) = ?"молодой"(x), где x - возраст Сидорова.
4. Пусть E = {Запорожец, Жигули, Мерседес,...} - множество марок автомобилей, а E' = [0,µ] - универсальное множество "стоимость", тогда на E' мы можем определить нечеткие множества типа: "для небогатых ", "для среднего класса", "престижные", с функциями принадлежности типа:
Имея эти функции и зная цены автомобилей из E в данный момент времени, определим на E' нечеткие множества с этими же названиями.
Так, например, нечеткое множество "для небогатых", заданное на универсальном множестве E = {Запорожец, Жигули, Мерседес,....} выглядит таким образом:
Аналогично можно определить нечеткое множество "скоростные", "средние", "тихоходные" и т.д.
2.2 Методы построения функций принадлежности нечетких множеств
В приведенных выше примерах использованы прямые методы, когда эксперт или просто задает для любого x?E значение ?A(x), или определяет функцию принадлежности. Как правило, прямые методы задания функции принадлежности используются для измеримых понятий, таких как скорость, час, расстояние, давление, температура и т.д., то есть когда выделяются полярные значения.
Во многих задачах при характеристике объекта можно выделить набор признаков и для любого из них определить полярные значения, отвечающие значениям функции принадлежности, 0 или 1.
Например, в задаче распознавания лица можно выделить следующие пункты:
|
|
0 |
1 |
|
x1 |
высота лба |
низкий |
широкий |
|
x2 |
профиль носа |
курносый |
горбатый |
|
x3 |
длина носа |
короткий |
длинный |
|
x4 |
разрез глаз |
узкий |
широкий |
|
x5 |
цвет глаз |
светлый |
темный |
|
x6 |
форма подбородка |
острый |
квадратный |
|
x7 |
толщина губ |
тонкие |
толстые |
|
x8 |
цвет лица |
темный |
светлый |
|
x9 |
овал лица |
овальное |
квадратное |
Для конкретного лица А эксперт, исходя из приведенной шкалы, задает ?A(x)? [0,1], формируя векторную функцию принадлежности { ?A(x1), ?A(x2),... ?A(x9)}.
Косвенные методы определения значений функции принадлежности используются в случаях, когда нет элементарных измеримых свойств для определения нечеткого множества. Как правило, это методы попарных сравнений. Если бы значение функций принадлежности были известны, например, ?A(xi) = wi, i=1,2,...,n, тогда попарные сравнения можно представить матрицей отношений A = {aij}, где aij=wi/wj (операция деления).
3. Операции над нечеткими множествами
Содержание
Пусть A и B - нечеткие множества на универсальном множестве E.
Говорят, что A содержится в B, если ?x ?E ?A(x) <?B(x).
Обозначение: A ? B.
Иногда используют термин "доминирование", то есть в случае если A ? B, говорят, что B доминирует A.
Равенство
A и B равны, если ?x?E ?A(x) = ?B (x).
Обозначение: A = B.
Дополнение
Пусть M = [0,1], A и B - нечеткие множества, заданные на E. A и B дополняют друг друга, если
?x????A(x) = 1 - ? B(x).
Обозначение: B = или A =
Очевидно, что = A. (Дополнение определено для M = [0,1], но очевидно, что его можно определить для любого упорядоченного M).
Пересечение
A?B - наибольшее нечеткое подмножество, которое содержится одновременно в A и B.
?A?B(x) = min( ?A(x), ?B(x)).
Объединение
А ? В - наименьшее нечеткое подмножество, которое включает как А, так и В, с функцией принадлежности:
?A? B(x) = max(?A(x), ? B(x)).
Разность
А - B = А? с функцией принадлежности:
?A-B(x) = ?A ? (x) = min( ?A(x), 1 - ??B(x)).
Дизъюнктивная сумма
А?B = (А - B)?(B - А) = (А ? ) ?( ??B) с функцией принадлежности:
?A-B(x) = max{[min{??A(x), 1 - ?B(x)}];[min{1 - ?A(x), ?B(x)}] }
3.1 Примеры
Пусть:
A = 0,4/ x1 + 0,2/ x2+0/ x3+1/ x4;
B = 0,7/ x1+0,9/ x2+0,1/ x3+1/ x4;
C = 0,1/ x1+1/ x2+0,2/ x3+0,9/ x4.
Здесь:
1. A?B, то есть A содержится в B или B доминирует A, С несравнимо ни с A, ни с B, то есть пари {A, С} и {A, С} - пары недоминируемых нечетких множеств.
2. A ? B ?C.
3. = 0,6/ x1 + 0,8/x2 + 1/x3 + 0/x4;
= 0,3/x1 + 0,1/x2 + 0,9/x3 + 0/x4.
4. A?B = 0,4/x1 + 0,2/x2 + 0/x3 + 1/x4.
5. А?С = 0,7/x1 + 0,9/x2 + 0,1/x3 + 1/x4.
6. А - С = А? = 0,3/x1 + 0,1/x2 + 0/x3 + 0/x4;
В - А = ? С = 0,6/x1 + 0,8/x2 + 0,1/x3 + 0/x4.
7. А ? В = 0,6/x1 + 0,8/x2 + 0,1/x3 + 0/x4.
3.2 Наглядное представление операций над нечеткими множествами
Для нечетких множеств можно применить визуальное представление. Рассмотрим прямоугольную систему координат, на оси ординат которой откладываются значение ?A(x), на оси абсцисс в произвольном порядке расположены элементы E. Если E по своей природе упорядочено, то этот порядок желательно сохранить в расположении элементов на оси абсцисс. Такое представление делает наглядными простые операции над нечеткими множествами.
Пусть A нечеткий интервал между 5 до 8 и B нечеткое число около 4, как показано на рисунке.
Проиллюстрируем нечеткое множество между 5 и 8 И (AND) около 4 (синяя линия).
Нечеткое множество между 5 и 8 ИЛИ (OR) около 4 показано на следующем рисунке (снова синяя линия).
Следующий рисунок иллюстрирует операцию отрицания. Синяя линия - это ОТРИЦАНИЕ нечеткого множества A.
На следующем рисунке заштрихованная часть соответствует нечеткому множеству A и изображает область значений А и всех нечетких множеств, содержащихся в A. Остальные рисунки изображают соответственно , A?, A?.
3.3 Свойства операций ? и ?
Пусть А, В, С - нечеткие множества, тогда выполняются следующие свойства:
· - коммутативность;
· - ассоциативность;
· - идемпотентность;
· - дистрибутивность;
· A?? = A, где ? - пустое множество, то есть m?(x) = 0 ?x?E;
· A?? = ?;
· A?E = A, где E - универсальное множество;
· A?E = E;
· - теоремы де Моргана.
В отличие от четких множеств, для нечетких множеств в общем случае:
· A????,
· A???E.
(Что, в частности, проиллюстрировано выше в примере представления нечетких множеств).
· CON(A) = A2 - операция концентрирования,
· DIL(A) = A0,5 - операция размывания,
которые используются при работе с лингвистическими переменными.
Умножение на число
Если ? - положительное число, такое, что ? ? A(x)?1, тогда нечеткое множество ?A имеет функцию принадлежности: ??A(x) = ??A(x).
4. Нечеткая и лингвистическая переменные
При описании объектов и явлений с помощью нечетких множеств используется понятие нечеткой и лингвистической переменных.
Нечеткая переменная характеризуется тройкой <?, X, A>, где
· ? - имя переменной,
· X - универсальное множество (область определения ?),
· A - нечеткое множество на X, описывающее ограничение (то есть ? A(x)) на значение нечеткой переменной ?.
Лингвистической переменной называется набор <? ,T,X,G,M>, где
· ? - имя лингвистической переменной;
· Т - множество его значений (терм-множество), представляющие имена нечетких переменных, областью определения, которых является множество X. Множество T называется базовым терм-множеством лингвистической переменной;
· G - синтаксическая процедура, позволяющая оперировать элементами терм-множества T, в частности, генерировать новые термы (значения). Множество T?G(T), где G(T) - множество сгенерированных термов, называется расширенным терм-множеством лингвистической переменной;
· М - семантическая процедура, позволяющая преобразовать новое значение лингвистической переменной, образованной процедурой G, в нечеткую переменную, то есть сформировать соответствующее нечеткое множество.
Во избежание большого количества символов:
· символ ? используют как для названия самой переменной, так и для всех его значений;
· для обозначения нечеткого множества и его названия пользуются одним символом, например, терм "молодой", является значением лингвистической переменной b = "возраст", и одновременно нечетким множеством М ("молодой").
Присваивание нескольких значений символам предполагает, что контекст допускает неопределенности.
4.1 Пример
Пусть эксперт определяет толщину изделия, с помощью понятия "маленькая толщина", "средняя толщина" и "большая толщина", при этом минимальная толщина равняется 10 мм, а максимальная - 80 мм.
Формализация этого описания может быть проведена с помощью лингвистической переменной <?, T, X, G, M>, где
· ? - толщина изделия;
· T - {"маленькая толщина", "средняя толщина", "большая толщина"};
· X - [10, 80];
· G - процедура образования новых термов с помощью связок "и", "или" и модификаторов типа "очень", "не", "слегка" и др. Например, "маленькая или средняя толщина", "очень маленькая толщина" и др.;
· М - процедура задания на X = [10, 80] нечетких подмножеств А1="маленькая толщина", А2 = "средняя толщина", А3="большая толщина", а также нечетких множеств для термов из G(T) соответственно правилам трансляции нечетких связок и модификаторов "и", "или", "не", "очень", "слегка", операции над нечеткими множествами вида: А ? C, А? C, , CON А = А2 , DIL А = А0,5 і ін.
Вместе с рассмотренными выше базовыми значениями лингвистической переменной "толщина" (Т={"маленькая толщина", "средняя толщина", "большая толщина"}) существуют значения, зависящие от области определения Х. В данном случае значения лингвистической переменной "толщина изделия" могут быть определены как "около 20 мм", "около 50 мм", "около 70 мм", то есть в виде нечетких чисел.
Функции принадлежности нечетких множеств:
"маленькая толщина" = А1 , "средняя толщина"= А2, " большая толщина"= А3.
Функция принадлежности:
нечеткое множество "маленькая или средняя толщина" = А1?А1.
5. Нечеткие высказывания и нечеткие модели систем
Нечеткими высказываниями будем называть высказывания следующего вида:
1. Высказывание <? есть ?'>, где ? - имя лингвистической переменной, ?' - ее значение, которому соответствует нечеткое множество на универсальном множестве Х. Например, высказывание <давление большое> предполагает, что лингвистической переменной "давление" предоставляется значение "большой", для которого на универсальном множестве Х переменной "давление" определено, соответственно данному значению "большой", нечеткое множество.
2. Высказывание <? есть m?'>, где m - модификатор, которому соответствуют слова "ОЧЕНЬ", "БОЛЕЕ ИЛИ МЕНЕЕ", "НАМНОГО БОЛЬШЕ" и др.
3. Сложные высказывания, образованные из высказываний вида 1. и 2. и союзов "И", "ИЛИ", "ЕСЛИ.., ТОГДА...", "ЕСЛИ.., ТОГДА.., ИНАЧЕ".
5.1 Высказывания на множестве значений фиксированной лингвистической переменной
Если значения фиксированной лингвистической переменной соответствуют нечетким множествам одного универсального множества Х, можно отождествлять модификаторы "очень" или "нет" с операциями "CON" и "дополнение", а союзы "И", "ИЛИ" с операциями "пересечение" и "объединение" над нечеткими множествами.
Для иллюстрации понятия лингвистической переменной мы в качестве примера рассматривали лингвистическую переменную "толщина изделия" с базовым терм-множеством Т = {"маленькая", "средняя", "большая"}. При этом на Х = [10, 80] мы определили нечеткие множества А1, А2, А3, соответствующие базовым значениям: "маленькая", "средняя", "большая".
В этом случае высказыванию <толщина изделия очень маленькая> отвечает нечеткое множество CONA = A2; высказыванию <толщина изделия не большая или средняя> - нечеткое множество А2? ; высказыванию <толщина изделия не маленькая и не большая> А1? .
6. Нечеткие множества в системах управления
Наиболее важным применением теории нечетких множеств являются контроллеры нечеткой логики. Их функционирование несколько отличается от работы обычных контроллеров; для описания системы вместо дифференционных уравнений используются знания экспертов. Эти знания могут быть выражены с помощью лингвистических переменных, которые описаны нечеткими множествами.
6.1 Общая структура нечеткого микроконтроллера
Общая структура микроконтроллера, использующего нечеткую логику, показана на рис.1. Она содержит:
· блок фаззификации;
· базу знаний;
· блок решений;
· блок дефаззификации.
Блок фаззификации преобразует четкие величины, измеренные на выходе объекта управления, в нечеткие величины, которые описаны лингвистическими переменными в базе знаний.
Блок решений использует нечеткие условные ( if - then ) правила, заложенные в базу знаний, для преобразования нечетких входных данных в необходимые управляющие влияния, которые также носят нечеткий характер.
Блок дефаззификации превращает нечеткие данные с выхода блока решений в четкую величину, которая используется для управления объектом.
Рис. 1. Общая структура нечеткого микроконтроллера
В качестве примера известных микроконтроллеров, использующих нечеткую логику можно назвать 68HC11, 68HC12 фирмы Motorola, MCS-96 фирмы Intel, а также некоторые другие.
Все системы с нечеткой логикой функционируют по одному принципу: показания измерительных приборов: фаззифицируются (превращаются в нечеткий формат), обрабатываются, дефаззифицируются и в виде обычных сигналов подаются на исполнительные устройства.
Рассмотрим случай управления мобильным роботом, задачей которого является объезд препятствий. Введем две лингвистические переменные: ДИСТАНЦИЯ (расстояние от робота до препятствия) и НАПРАВЛЕНИЕ (угол между продольной осью робота и направлением к препятствию).
Рассмотрим лингвистическую переменную ДИСТАНЦИЯ. Ее значения можно определить термами ДАЛЕКО, СРЕДНЕ, БЛИЗКО и ОЧЕНЬ БЛИЗКО. Для физической реализации лингвистической переменной необходимо определить точные физические значения термов этой переменной. Пусть переменная ДИСТАНЦИЯ может принимать любые значения из диапазона от нуля до бесконечности. Согласно теории нечетких множеств, в таком случае каждому значению расстояния из указанного диапазона может быть поставлено в соответствие некоторое число от нуля до единицы, которая определяет степень принадлежности данного физического расстояния (допустим 40 см) до того или другого терма лингвистической переменной ДИСТАНЦИЯ. Степень принадлежности определяем функцией принадлежности М(d), где d - расстояние до препятствия. В нашем случае расстояние 40 см. Можно задать степень принадлежности до терма ОЧЕНЬ БЛИЗКО равное 0,7 , а до терма БЛИЗКО - 0,3 (рис. 2.). Конкретное определение степени принадлежности проходит только при работе с экспертами.
Рис. 2. Лингвистическая переменная и функция принадлежности
Переменной НАПРАВЛЕНИЕ, которая принимает значения в диапазоне от 0 до 360 градусов, зададим термы ЛЕВЫЙ, ПРЯМОЙ и ПРАВЫЙ.
Теперь необходимо задать исходные переменные. В данном примере достаточно одной, которую назовем РУЛЕВОЙ УГОЛ. Она может содержать термы: РЕЗКО ВЛЕВО, ВЛЕВО, ПРЯМО, ВПРАВО, РЕЗКО ВПРАВО. Связь между входом и выходом запоминается в таблице нечетких правил.
Таблица нечетких правил
Дистанция |
||||||
Очень близко |
Близко |
Средне |
Далеко |
|||
направление |
Правый |
Резко влево |
Резко влево |
Влево |
Прямо |
|
Прямой |
Резко влево |
Влево |
Влево |
прямо |
||
Левый |
Резко вправо |
Резко вправо |
Вправо |
прямо |
Каждая запись в данной таблице соответствует своему нечеткому правилу, например "Если дистанция близко и направление правое , тогда рулевой угол резко влево".
Таким образом, мобильный робот с нечеткой логикой будет работать по следующему принципу: данные от сенсоров про расстояние до препятствия и направление к нему будут фаззифицированы, обработаны согласно табличным правилам, дефаззифицированы, и полученные данные, в виде управляющих сигналов поступают на приводы робота.
7. Преимущества нечетких систем
Коротко перечислим преимущества fuzzy-систем по сравнению с другими:
· возможность оперировать нечеткими входными данными: например, непрерывно изменяющиеся во времени значения (динамические задачи), значения, которые невозможно задать однозначно (результаты статистических опросов, рекламные компании и т.д.);
· возможность нечеткой формализации критериев оценки и сравнения: оперирование критериями "большинство", "возможно", преимущественно" и т.д.;
· возможность проведения качественных оценок как входных данных, так и выходных результатов: вы оперируете не только значениями данных, но и их степенью достоверности (не путать с вероятностью!) и ее распределением;
· возможность проведения быстрого моделирования сложных динамических систем и их сравнительный анализ с заданной степенью точности: оперируя принципами поведения системы, описанными fuzzy-методами, вы во-первых, не тратите много времени на выяснение точных значений переменных и составление описывающих уравнений, во-вторых, можете оценить разные варианты выходных значений.
8. Применение нечетких систем
Что касается отечественного рынка коммерческих систем на основе нечеткой логики, то его формирование началось в середине 1995 года. Популярными являются следующие пакеты:
· CubiCalc 2.0 RTC - одна из мощных коммерческих экспертных систем на основе нечеткой логики, позволяющая создавать собственные прикладные экспертные системы ;
· CubiQuick - дешевая "университетская" версия пакета CubiCalc ;
· RuleMaker - программа автоматического извлечения нечетких правил из входных данных ;
· FuziCalc - электронная таблица с нечеткими полями, позволяющая делать быстрые оценки при неточных данных без накопления погрешности;
· OWL - пакет, содержащий исходные тексты всех известных видов нейронных сетей, нечеткой ассоциативной памяти и т.д.
Основными потребителями нечеткой логики на рынке СНГ являются банкиры и финансисты, а также специалисты в области политического и экономического анализа. Они используют CubiCalc для создания моделей разных экономических, политических, биржевых ситуаций. Что же касается пакета FuziCalc, то он занял свое место на компьютерах больших банкиров и специалистов по чрезвычайным ситуациям - то есть тех, для кого важна скорость проведения расчетов в условиях неполноты и неточности входной информации. Однако можно с уверенностью сказать, что эпоха расцвета прикладного использования нечеткой логики на отечественном рынке еще впереди.
Сегодня элементы нечеткой логики можно найти в десятках промышленных изделий - от систем управления электропоездами и боевыми вертолетами до пылесосов и стиральных машин. Без применения нечеткой логики немыслимы современные ситуационные центры руководителей западных стран, где принимаются ключевые политические решения и моделируются разные кризисные ситуации. Одним из впечатляющих примеров масштабного применения нечеткой логики стало комплексное моделирование системы здравоохранения и социального обеспечения Великобритании (National Health Service - NHS), которое впервые позволило точно оценить и оптимизировать затраты на социальные нужды.
Не обошли средства нечеткой логики и программные системы, обслуживающих большой бизнес. Первыми, разумеется, были финансисты, задачи которых требуют ежедневного принятия правильных решений в сложных условиях непредвиденного рынка. Первый год использования системы Fuji Bank принес банку в среднем $770000 на месяц (и это только официально объявленная прибыль!).
Вслед за финансистами, обеспокоенные успехами японцев и потерей стратегической инициативы, когнитивными нечеткими схемами заинтересовались промышленные гиганты США. Motorola, General Electric, Otis Elevator, Pacific Gas & Electric, Ford и другие в начале 90-х начали инвестировать в разработку изделий, использующих нечеткую логику. Имея солидную финансовую "поддержку", фирмы, специализирующиеся на нечеткой логике, получили возможность адаптировать свои разработки для широкого круга применений. "Оружие элиты" вышло на массовый рынок.
Среди лидеров нового рынка выделяется американская компания Hyper Logic, основанная в 1987 году Фредом Уоткинсом (Fred Watkins). Сначала компания специализировалась на нейронных сетях, однако в скором времени целиком сконцентрировалась на нечеткой логике. Недавно вышла на рынок вторая версия пакета CubiCalc фирмы HyperLogic, которая является одной из мощнейших экспертных систем на основе нечеткой логики. Пакет содержит интерактивную оболочку для разработки нечетких экспертных систем и систем управления, а также run-time модуль, позволяющий оформлять созданные пользователем системы в виде отдельных программ.
Кроме Hyper Logic среди "патриархов" нечеткой логики можно назвать фирмы IntelligenceWare, InfraLogic, Aptronix. Всего же на мировом рынке представлено более 100 пакетов, которые так или иначе используют нечеткую логику. В трех десятках СУБД реализована функция нечеткого поиска. Собственные программы на основе нечеткой логики анонсировали такие гиганты как IBM, Oracle и другие.
На принципах нечеткой логики создан и один из российских программных продуктов - известный пакет "Бизнес-прогноз". Назначение этого пакета - оценка рисков и потенциальной прибыльности разных бизнес-планов, инвестиционных проектов и просто идей относительно развития бизнеса. "Ведя" пользователя по сценарию его замысла, программа задает ряд вопросов, которые допускают как точные количественные ответы, так и приближенные качественные оценки - типа "маловероятно", "степень риска высокая" и т.д. Обобщив всю полученную информацию в виде одной схемы бизнес-проекта, программа не только выносит окончательный вердикт о рискованности проекта и ожидаемых прибылей, но и указывает критические точки и слабые места в авторском замысле. От аналогичных иностранных пакетов "Бизнес-прогноз" отличается простотой, дешевизной и, разумеется, русскоязычным интерфейсом. Впрочем, программа "Бизнес-прогноз" - лишь первая ласточка, за которой неминуемо появятся новые разработки ученых СНГ.
Подобные документы
Понятия теории нечетких систем, фаззификация и дефаззификация. Представление работы нечетких моделей, задача идентификации математической модели нечеткого логического вывода. Построение универсального аппроксиматора на основе контроллера Мамдани-Сугено.
курсовая работа [897,5 K], добавлен 29.09.2010Понятие и структура интеллектуальной системы. Математическая теория нечетких множеств. Причины распространения системы Fuzzy-управления. Предпосылки для внедрения нечетких систем управления. Принципы построения системы управления на базе нечеткой логики.
реферат [68,3 K], добавлен 31.10.2015- Нечеткая логика. Моделирование оценки показателей проекта, с использованием теории нечетких множеств
Описание лингвистической переменной. Моделирование оценки показателей проекта. Построение функции принадлежности термов, используемых для лингвистической оценки переменной "рост мужчины". Нечеткое моделирование конкурентоспособности кинотеатров.
контрольная работа [281,6 K], добавлен 09.07.2014 Описание основных положений нечеткой логики: функций принадлежности, лингвистические переменные, база правил нечетких высказываний. Деревья решений и типы решаемых задач. Степень принадлежности примеров к атрибутам. Механизмы анализа нечеткой информации.
контрольная работа [1,4 M], добавлен 30.01.2015Исследование источников неопределенности в управлении сложными процессами. Неточность задания значений входных данных. Определение основных причин неопределенности. Характеристика понятия нечеткого множества. Описания нечетких моделей в принятии решений.
презентация [67,3 K], добавлен 15.10.2013Нечеткие множества. Основные понятия нечеткой логики, необходимые для моделирования процессов мыслительной деятельности человека. База правил. Формы многоугольных функций принадлежности. Гауссова функция. Системы нечеткого вывода в задачах управления.
реферат [844,8 K], добавлен 16.07.2016Анализ традиционных методов оценки экономической эффективности инвестиционных проектов в условиях риска и неопределенности. Применение теории нечетких множеств в оценке экономической эффективности и риска инвестиционных проектов.
реферат [109,0 K], добавлен 21.10.2006Построение матриц и функций принадлежности на основе парных сравнений мнения эксперта об относительному соответствию элементов множеству. Использование статистических данных, ранговых оценок и параметрического подхода. Понятие лингвистической переменной.
контрольная работа [65,5 K], добавлен 22.03.2011Моделирование экономических систем: основные понятия и определения. Математические модели и методы их расчета. Некоторые сведения из математики. Примеры задач линейного программирования. Методы решения задач линейного программирования.
лекция [124,5 K], добавлен 15.06.2004Определение, цели и задачи эконометрики. Этапы построения модели. Типы данных при моделировании экономических процессов. Примеры, формы и моделей. Эндогенные и экзогенные переменные. Построение спецификации неоклассической производственной функции.
презентация [1010,6 K], добавлен 18.03.2014