Логическое проектирование

Обзор методов логического проектирования и минимизации. Нормальные формы логических функций. Общие сведения о минимизации логических функций. Расчётный метод минимизации. Расчётно-табличный метод минимизации. Возможности программы Electronics Workbench.

Рубрика Экономико-математическое моделирование
Вид курсовая работа
Язык русский
Дата добавления 01.12.2008
Размер файла 114,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Содержание

1

Обзор методов логического проектирования и минимизации

1.1

Нормальные формы логических функций

1.2

Общие сведения о минимизации логических функций

1.3

Расчётный метод минимизации

1.4

Расчётно-табличный метод минимизации

2.

Возможности программы моделирования Electronics Workbench

2.1

Общие сведения об Electronics Workbench

2.2

Интерфейс Electronics Workbench

3.

Математические модели и эквивалентные схемы в программе логического проектирования

1. Обзор методов логического проектирования и минимизации

Термин “логическое проектирование” охватывает целый комплекс проблем, возникающих на одной из ранних стадий создания цифрового автомата. Одним из этапов логического проектирования является синтез его так называемых комбинационных устройств, который заключается в определении таких способов соединения некоторых простейших схем, называемых логическими элементами, при которых построенное устройство реализует поставленную задачу по преобразованию входной двоичной информации. В частности логическими элементами являются инвертор, конъюнктор и дизъюнктор. Поскольку эти элементы образуют функционально полный набор, то с их помощью можно построить комбинационное устройство (то есть устройство не обладающее памятью, в котором выходной сигнал в любой момент времени определяется только комбинацией входных сигналов), реализующее любой наперёд заданный закон преобразования двоичной информации .

Обычно логическое проектирование выполняется в следующей последовательности:

1) составление таблицы истинности синтезируемого узла согласно его определению, назначению и (словесному) описанию принципа работы ;

2) составление математической формулы для логической функции, описывающей работу синтезирующего узла, согласно имеющейся таблице истинности ;

3) анализ полученной функции с целью построения различных вариантов её математического выражения (на основании законов булевой алгебры) и нахождения наилучшего из них в соответствии с тем или иным критерием;

4) составление функциональной (логической) схемы узла из заранее заданного набора логических элементов .

1.1 Нормальные формы логических функций

Синтез комбинационных устройств обычно начинается с табулирования значений истинности всех входных и выходных величин. Табличное задание закона функционирования некоторого устройства является наиболее наглядным и универсальным средством описания его работы. Результатом рассматриваемого этапа является таблица истинности, связывающая все возможные комбинации значений аргументов и функций. Пусть, например, требуется синтезировать цифровое устройство, реализующее сложение двух двоичных цифр (полусумматор) .

1-й этап синтеза - даётся словесное описание полусумматора и принципа его работы. Он должен анализировать все комбинации входных сигналов (т. е. двоичных цифр 00, 01, 10, 11) и в соответствии с ними формировать на выходе двухразрядные суммы. В первом разряде результата формируется цифра переноса, а во втором - цифра многоразрядной суммы. Следовательно, синтезируемый полусумматор должен иметь два входа (n=2) и два выхода. Далее от нестрогого словесного описания переходим к строгому формальному описанию работы полусумматора на табличном языке. Таблица истинности (см. табл. 1.1) в общем случае при n входах имеет 2 в степени n комбинаций значений аргументов.

Таблица 1.1 Таблица истинности полусумматора.

1-я цифра слагаемое Х1

0

0

1

1

2-я цифра слагаемое Х2

0

1

0

1

Цифра переноса р

0

0

0

1

Цифра суммы s

0

1

1

0

2-й этап синтеза - для того чтобы показать методику перехода от таблицы истинности к аналитическому выражению, рассмотрим некоторую обобщённую таблицу истинности двух аргументов f(X1,X2) (см. табл. 1.2). Ограничение на число аргументов не является в данном случае существенным, но значительно упрощает все рассуждения .

Таблица 1.2 Обобщённая таблица истинности функции двух аргументов.

1-й логический аргумент Х1

0

0

1

1

2-й логический аргумент Х2

0

1

0

1

Логическая функция f(X1,X2)

f0

f1

f2

f3

Здесь f0=f(0,0); f1=(0,1); f2=(1,0); f3=(1,1) - конкретные реализации функции f(X1,X2) при определённых частных значениях аргументов X1 и X2. Они также являются двоичными переменными. Десятичные индексы при их символах числено равны тем двоичным числам, которые образуются соответствующими частными значениями аргументов. Кроме того, каждый десятичный индекс можно трактовать как номер некоторого столбца в Таблице 1.2, изменяющийся в пределах от 0 до 2n -1, так как обычно значения аргументов в таблице записываются таким образом, чтобы получающееся из них по вертикали двоичное число было равно номеру столбца. Исходя из вышеизложенного, уже можно перейти от табличной записи логической функции f(X1,X2) к аналитической :

f(X1,X2) = f0 при, х1=0, х2=0 ;

f1 при, х1=0, х2=1 ; (1.1)

f2 при, х1=1, х2=0 ;

f3 при, х1=1, х2=1 ;

Такая запись несколько удобнее и компактнее таблицы, однако, она всё-таки громоздка и плохо обозрима (особенно в случае большого числа аргументов). Но от неё можно перейти к записи другого вида, более удобной и компактной:

f (x1,x2)= x1x2f0+ x1x2f1+ x1x2f2+ x1x2f3 (1.2)

Правило построения каждого члена в этом предложении несложно; производится логическое умножение элементов каждого столбца табл.1.2, причём вместо 1 берётся символ соответствующего аргумента, а вместо 0 - его отрицание. Равносильность соотношений (1.1) и (1.2) простой подстановкой в выражение (1.2) всех возможных комбинаций значений аргумента xi .

Обобщив вышеизложенное можно сформулировать правило получения аналитической записи логической функции для некоторого комбинационного узла:

- для того чтобы получить аналитическое выражение функции, заданной таблично, нужно составить сумму конституент (см. ниже) единицы для тех наборов значений входных двоичных переменных, для которых реализации

функции fi равны 1, причём символ любой переменной в некоторой конституенте берётся со знаком отрицания, если конкретное значение переменной xi в рассматриваемом наборе имеет значение 0 .

Поскольку логическая сумма всех элементарных произведений наивысшего ранга n обязательно равна 1, какой бы набор значений входных переменных ни рассматривался, то эти произведения вполне логично называть конституентами (составляющими) единицы. Аналогично объясняется и название конституенты (составляющей) нуля, так как известно, что логическое произведение всех элементарных сумм наивысшего ранга тождественно равно нулю.

Все функции, полученные в соответствии с вышеизложенным правилом получения аналитической записи логической функции для некоторого комбинационного узла, независимо от числа аргументов имеют много общего в своей структуре. Таким образом, это правило определяет канонический вид любой логической функции. В этом случае говорят, что функция задана (записана) в совершенной дизъюнктивной нормальной форме (СДНФ). Нормальной эта форма называется потому, что члены функции в данном случае имеют вид элементарных конъюнкций. Вследствие того что все члены соединены в одну функцию знаком дизъюнкции, форма носит название дизъюнктивной. И, наконец, форма называется совершенной, так как все её члены имеют высший ранг, являясь конституентами единицы .

Поскольку алгебра логики симметрична, то вышеприведённые рассуждения можно применить для вывода ещё одной канонической формы логических функций - совокупности конституент нуля, соединённых знаком конъюнкции. Таким образом, сформулируем второе правило:

- для того чтобы получить аналитическое выражение функции, заданной таблично, в совершенной конъюктивной нормальной форме, нужно составить логическое произведение конституент нуля для тех наборов значений, входных двоичных переменных, для которых реализация функции fi равна 0, причём символ любой переменной в некоторой конституенте берётся со знаком отрицания, если её конкретное значение xi в рассматриваемом наборе равно 1.

В общем случае переход к совершенной нормальной форме производится за три шага .

1-й шаг - с помощью многократного применения законов инверсии снимаются общие и групповые отрицания так, чтобы отрицания оставались только у одиночных переменных .

2-й шаг - с помощью распределительных законов производится переход к одной из нормальных форм функции.

3-й шаг - производится преобразование членов ДНФ или КНФ в соответствующие конституенты с помощью правила развёртывания .

Пользуясь сформулированными правилами и таблицей 1.1 для полусумматора записываем :

p(x1,x2) = x1x2

s(x1,x2)= x1x2 +x1x2 СДНФ (1.3)

p(x1,x2) = (x1+ x2) (x1 +x2) (x1+x2)

s(x1,x2) = (x1+ x2) (x1 +x2) СКНФ (1.4)

3-й этап синтеза - анализ и оптимизация (минимизация) логических функций являются весьма важными компонентами синтеза цифровых автоматов без памяти. Поэтому методы анализа и оптимизации будут рассмотрены отдельно.

4-й этап синтеза - к построению функциональной схемы синтезируемого узла в принципе можно переходить сразу же, как только становится известным аналитическое описание его работы. Построение схемы основано на прямом замещении элементарных произведений, сумм и отрицаний соответственно конъюнкторами, дизъюнкторами и инверторами. Пользуясь соотношениями (1.3), (1.4) можем построить для полусумматора две функциональные схемы.

а) СДНФ

б) СКНФ

Рис. 1.1 Функциональная схема полусумматора .

С функциональной точки зрения обе схемы полностью тождественны, хотя по структурной сложности они значительно различаются .

1.2. Общие сведения о минимизации логических функций

Однозначность соответствия формы логической функции и параметров реальной электронной схемы приводит к необходимости оптимизации функции, т.е. к необходимости получения наилучшего её вида по выбранному критерию. В общем случае речь должна идти об оптимизации функции по таким показателям, как быстродействие, надежность (достижение их максимума), количество потребного оборудования, вес, габариты, энергопотребление, стоимость (достижение их минимума) и т.п. Однако решение этой задачи в общем виде- достаточно трудное дело, тем более что некоторые из указанных показателей находятся в известном противоречии. Например, увеличение быстродействия, как правило, достигается за счет параллельной организации работы данного устройства, но это ведёт к увеличению оборудования, а значит, к уменьшению надежности и увеличению стоимости. Поэтому на практике обычно решается частная задача оптимизации по одному из критериев. Чаще всего это делается по минимуму потребного оборудования, так как при этом автоматически решаются задачи получения минимальных габаритов, веса, энергопотребления, стоимости. Такая частная задача оптимизации логической функции носит название минимизации.

Таким образом, возникает задача нахождения из всех возможных форм логической функции её так называемой минимальной формы, обеспечивающей минимум затрат оборудования при построении синтезируемого узла, если имеется заданный набор логических элементов (НЕ, И, ИЛИ) с определенными техническими характеристиками (например, максимально возможное число входов у элементов И, ИЛИ и др.). Нетрудно заметить, что в рамках нормальных форм минимальной будет такая разновидность функции, которая состоит из наименьшего количества членов при наименьшем, по возможности, общем числе символов переменных.

Из большего числа различных приемов и методов минимизации рассмотрим три наиболее показательных, типовых:

1. расчетный метод ( метод непосредственных преобразований);

2. расчётно-табличный метод (метод Квайна-Мак-Класки);

3. табличный метод (метод Вейча-Карно).

Исходной формой для любого из этих методов является одна из совершенных форм - СДНФ или СКНФ. Это обстоятельство практически не накладывает особых ограничений, поскольку переход от произвольной формы функции к её совершенным формам, как это было показано выше, не представляет принципиальных трудностей. В общем случае при любом из вышеупомянутых методов минимизация производится в три этапа.

1-й этап- переход от совершенной Д(К)НФ к сокращенной Д(К)НФ путем производства всех возможных склеиваний друг с другом конституент, а затем всех производны членов более низкого ранга. Таким образом, под сокращенной формой будем понимать дизъюнктивную (или конъюнктивную) форму функции, членами которой служат только изолированные (несклеивающиеся) элементарные конъюнкции (или дизъюнкции). Члены сокращенной Д(К)НФ в алгебре логики носят название простых импликант (имплицент). Не исключен случай, когда СД(К)НФ тождественно равна сокращенной форме рассматриваемой функции.

2-й этап- переход от сокращенной нормальной к тупиковой нормальной форме. Тупиковой будем называть такую нормальную дизъюнктивную (конъюнктивную) форму функции, членами которой являются простые импликанты (имплиценты), среди которых нет ни одной лишней. Термин “лишний” здесь имеет прямое значение. Лишним будем называть такой член функции, удаление которого не влияет на значение истинности этой функции. Возможны случаи, когда в сокращенной форме не оказывается лишних членов. Тогда сокращенная Д(К)НФ тождественно равна тупиковой форме. Не исключены случаи появления нескольких тупиковых форм из одной сокращенной. Название “тупиковая форма” показывает, что дальнейшая минимизация в рамках нормальных форм уже невозможна.

3-й этап - переход от тупиковой (минимальной среди нормальных форм) формы функции к её минимальной форме. Этот этап, называемый обычно факторизацией, уже не является регулярным, как два предыдущих, и требует определенной сноровки, интуиции и опыта. Здесь подразумевается поиск возможностей упрощения функции методом проб и испытаний.

Для уменьшения числа операций отрицания следует применять законы инверсии, а для уменьшения числа конъюнкций и дизъюнкций - распределительные законы. На этом же этапе решается и вторая задача- приведение логических функций к виду, удобному для применения реальных логических элементов, которые на практике имеют определенные ограничения по количеству входов и по величине допустимой нагрузки. Различные методы минимизации отличаются друг от друга путями и средствами практической реализации того или иного этапа. При минимизации сложных функций чаще всего ограничиваются двумя первыми этапами, т.е. получением самой простой среди тупиковых ДНФ (КНФ). Рассмотрим каждый из вышеназванных методов.

1.3. Расчетный метод минимизации

Пусть задана некоторая функция в СДНФ, которую требуется минимизировать:

fсднф = x1 x2 x3 + x1 x2 x3 + x1 x2 x3 ( 1.5)

1-й этап - производим все возможные склеивания членов заданной функции. В общем случае эта процедура осуществляется за несколько шагов, в результате каждого из которых происходит понижение ранга склеиваемых членов на единицу. На первом шаге склеиваются конституенты:

fпр = x1 x3 + x2 x3 + x1x2 (1.6)

Затем производится второй шаг испытания на склеивание всех членов функции в промежуточной форме. Рассматривая соотношение (1.6), убеждаемся, что все его члены изолированы. Следовательно, полученная промежуточная форма является сокращенной ДНФ исходной функции (сДНФ). Отметим, что все конституенты функции (1.5) участвовали хотя бы в одном склеивании, поэтому ни в сокращенной, ни тем более в тупиковой форме членов максимального ранга не будет:

fсднф = x1x3 + x2x3 + x1x2 (1.7)

2-й этап - осуществляется проверка каждой простой импликанты в сДНФ с целью выявления и удаления лишних членов. Проверка состоит в следующим. На значение истинности функции влияет только та импликанта, которая сама равна 1. любая импликанта становится равной 1 лишь на одном, вполне определенном наборе значений истинности своих аргументов. Но если именно на этом наборе суммы остальных членов тоже обращается в 1, то рассматриваемая импликанта не влияет на значение истинности функции даже в этом единственном случае, т.е. является лишней. Применим это правило к проверке членов функции в сДНФ (1.7):

1) x1x3 = 1 при x1 = 0, x3 = 1; сумма остальных членов на этом же наборе равна x21 + 1x2 = 1; следовательно, проверяемый член - лишний;

2) x2x3 = 1 при x2 = 0, x3 = 1; сумма остальных членов на этом же наборе равна x11 + x10 = x1 ; следовательно, проверяемый член не является лишним;

3) x1x2 = 1 при x1 = 0, x2 = 1; сумма остальных членов на этом же наборе равна 1x3 + 0x3 = x3 ; следовательно, проверяемый член не является лишним.

Таким образом, отбросив лишний член, получим тупиковую дизъюнктивную нормальную форму (ТДНФ) исходной функции:

fтднф = x1x2 + x2x3 (1.8)

Более подробно остановимся на случае, когда лишних членов оказывается больше, например два. Это не означает, что оба лишних члена можно отбросить, так как каждый из них проверялся при вхождении другого в оставшуюся сумму. Следовательно, отбросить наверняка можно только один из них, а затем нужно снова произвести проверку возможности отбросить и второй член.

Следует также остановится подробнее и на случае, когда исходной формой является СКНФ. Методика проведения первого этапа при этом практически не изменяется, но реализация второго этапа имеет свою специфику. На значение истинности функции в конъюнктивной нормальной форме влияет только та имплицента, которая сама равна 0. Но любая имплицента становится нулем только при одном наборе своих аргументов. Следовательно, правило проверки сокращенной КНФ на лишние члены нужно сформулировать таким образом: для каждого члена сокращенной КНФ находится такой набор значений истинности его переменных, который обращает данный член в 0. Далее определяется значение истинности произведения остальных членов на этом же наборе. Если произведение также равно 0, то проверяемый член - лишний.

3-й этап - упрощаем ТДНФ или ТКНФ функции. Применив закон инверсии к первому члену функции в ТКНФ, получим минимальную форму (МФ):

fмф = x1x2(x2 + x3)

для аппаратурной реализации, которой нужной всего семь условий транзисторов. Интересно, что преобразование в минимальную форму ТДНФ функции получается более сложным путем:

fтднф = x1x2 + x2x3 = (x1 + x2)(x2 + x2)(x1 + x3)(x2 + x3) = (x1 + x2)(x1 + +x3)(x2 + x3) = fскнф

Переход от сКНФ к МФ нетрудно осуществить через ТКНФ, как это было сделано выше.

1.4. Расчётно-табличный метод минимизации

Минимизация этим способом отличается от расчётной минимизации только методикой выявления лишних членов в сокращённой Д(К)НФ. Данный метод предложен американским ученым У.Квайном. Первый и третий этапы минимизации в этом случае будут идентичны соответствующим этапам при расчетном методе. Нахождение тупиковой формы (второй этап) производится с помощью специальной таблицы (отсюда название метода), значительно упрощающей обнаружение лишних членов. рассмотрим методику расчетно-табличной минимизации на том же примере, который разбирался нами при расчетном способе, что дает возможность более четко показать как общие черты обоих методов, так и их различия.

Итак, пусть требуется минимизировать функцию (1.5), заданную в СДНФ:

fсднф = x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

1-й этап - не отличается по содержанию от 1-го этапа при расчетном методе. Поэтому сразу же запишем исходную функцию в сДНФ:

fcднф = x1x3 + x2x3 + x1x2

2-й этап - для выявления возможных лишних членов в сД(К)НФ функции построим таблицу, входными величинами в которой будут конституенты - члены СД(К)НФ и импликанты (имплиценты) - члены сокращенной Д(К)НФ. Поэтому чаще всего такую таблицу называют конституентно-импликантной (имплицентной) матрицей; применяются также названия: таблица Квайна и таблица покрытий. Она имеет число строк, равное количеству импликант (имплицент) в сокращенной Д(К)НФ. Строки делятся на столбцы, число которых берется равным количеству конституент в СД(К)НФ. Поэтому в горизонтальные (строчные) входы таблицы записываются все простые импликанты (имплиценты), а в вертикальные входы - все члены совершенной нормальной формы (см. табл. 1.3).

Таблица 1.3 Таблица Квайна.

Импликанты

Конституенты

x1x2x3

x1x2x3

x1x2x3

x1x2x3

x1x3

x2x3

x1x2

Процесс минимизации начинается с последовательного составления каждой импликанты со всеми конституентами. Если какая-либо импликанта является собственной частью некоторой конституенты, то в табличной клетке, соответствующей обоим членам, проставляется любой условный значок (так, в табл.1.3 клетка перечеркивается крест-накрест). Таким образом, значки в каждой строке заполненной таблицы показывают, какие члены совершенной формы функции появятся при развертывании данной импликанты в семейство конституент. В идеальном случае каждая импликанта развертывалась бы только в “свои” конституенты, и в каждом столбце тогда находился бы только один условный значок. Практически этого не происходит, и очень часто одна и та же конституента покрывается в таблице несколькими импликантами. Задача состоит в том, чтобы вычеркиванием некоторых (лишних!) импликантов попытаться оставить в каждой колонке только значок или по крайней мере минимальное число импликант, покрывающих все конституенты. Практически обычно по таблице вначале находится так называемое ядро функции, состоящее из трех импликант (имплицент), каждая из которых осуществляет единственное покрытие некоторой конституенты и поэтому никоим образом не может оказаться в числе лишних.

Возвращаясь к рассматриваемому примеру (см.табл.1.3), констатирует. что в ядро функции входят импликанты x1x2 и x2x3. Следовательно, остается только проверить возможность вычеркивания импликанты x1x3. Ее вычеркивание не нарушает условия о наличии хотя бы одного покрытия каждой конституенты любой импликантой. Следовательно, импликанта x1x3 является лишней. Тупиковая дизъюнктивная нормальная форма исходной функции

fтднф = x1x2 + x2x3 (1.8*)

Сравнение показывает идентичность соотношений (1.8) и (1.8*), что и должно было получиться.

3-й этап - по своему содержанию не отличается от соответствующего этапа при расчетном методе, поэтому сразу запишем минимальную форму исходной функции:

fмф = x1x2(x2+x3)

2. Возможности программы моделирования Electronics Workbench

2.1 Общие сведения об Electronics Workbench

Electronics Workbench канадской фирмы Interactive Image Technologies разработана достаточно давно и в Росси известны версии 3.0, 4.0, 4.1, 5.0, 5.12 Professional Edition. Программа непрерывно развивается, совершенствуется. Растет библиотека компонент, измерительных приборов, моделирующих функций. Версии 3.0, 4.0 были 16 разрядные, а начиная с Electronics Workbench 4.1 - 32-разрядные. И хотя в последней версии занимаемый объем на диске вырос с 1.4 Мбайт в версии 3.0 до 16 Мбайт в версии 5.12, однако эта программа остается одной из компактных программ ( обычные требования подобных программ 80 -150 Мбайт). Во всех версиях остается неизменным (почти) дружественный интуитивный интерфейс, простой мощный графический редактор электрических схем, прекрасная интеграция с Windows системой. Так как функции логического конвертора поддерживаются во всех версиях Electronics Workbench, поэтому в основу лабораторного практикума положена версия Electronics Workbench 4.1, не предъявляющая практически никаких требований к компьютеру и прекрасно работающая даже на компьютерах начиная с 386.

Рис.2.1 Экран Electronics Workbench.

Экран программы Electronics Workbench, показанный на (рис.2.1), напоминает рабочий стол регулировщика аппаратуры, что вполне соответствует названию (Electronics Workbench - дословно - рабочий стол электронщика). В отличие от других программ схемотехнического моделирования, на нем изображаются измерительные приборы с органами управления, максимально приближенными к реальности. Пользователю не надо изучать довольно абстрактные (хотя и не очень сложные) правила составления заданий на моделирование.

Достаточно в схему ввести двухканальный осциллограф и генератор сигналов - и программа сама сообразит, что нужно анализировать переходные процессы. Если же на схеме разместить анализатор частотных характеристик, то будет рассчитан режим по постоянному току, выполнена линеаризация нелинейных компонентов и затем проведен расчет характеристик схемы в частотной области. Диапазон анализируемых частот, коэффициент усиления и характер оцифровки данных (в линейном или логарифмическом масштабе) устанавливают на лицевой панели с помощью мыши.

Чтобы начать моделирование, достаточно щелкнуть на переключателе, расположенном в верхнем правом углу экрана. После этого на устройствах индикации цифровых вольтметров и амперметров будет зафиксирован режим по постоянному току, на экране измерителя нарисованы частотные характеристики (амплитудно- или фазочастотные), а на экране осциллографа будут непрерывно изображаться эпюры напряжений до тех пор, пока не заполнится буферная память, а затем можно прекратить моделирование или обнулить память и продолжить наблюдения.

Ниже приведены характерные особенности программы Electronics Workbench.

1) Схема изображается в графическом виде привычным образом. Из горизонтально расположенного меню выбирают библиотеку компонентов, состав которой изображается слева от рабочего экрана. Движением мыши символы компонентов переносят на схемы и выполняют электрические соединения. Достаточно указать начальный и конечный вывод цепи, как цепь будет проложена автоматически (правда, не всегда удачно, так что ее приходится немножко корректировать).

2) Полностью поддерживается текстовый формат программы моделирования SPICE, причем при загрузке текстового файла в формате SPICE на экране будет нарисована принципиальная схема с подключенными измерительными приборами (топология сложных схем синтезируется не вполне удачно, но моделируются такие схемы без ошибок).

3) Предусмотрен вывод списка соединений в формате программы OrCAD PCB (в файлах с расширением имени .NET) для разработки печатных плат.

4) Поддерживается стандартный набор компонентов: резисторы, конденсаторы, индуктивности, управляемые линейные и нелинейные источники, линии задержки без потерь и с потерями, диоды, тиристоры, различные транзисторы, операционные усилители, цифровые интегральные схемы и др., а также светодиоды, цифровые индикаторы, резистивные матрицы, плавкие предохранители, лампочки накаливания и ключи. Имеется механизм создания макромоделей.

5) Предусмотрена возможность изменения параметров компонентов нажатием клавиш. Есть кнопочные переключатели, управляемые с клавиатуры. При этом параметры можно изменять, не прерывая моделирования! Как в реальном эксперименте.

6) Имеются следующие измерительные приборы: мультиметры (измерения постоянного и переменного напряжения и тока, сопротивления, результаты выводятся в относительных единицах и децибелах); двухлучевые осциллографы (регулируются усиления каналов, частота развертки, смещение лучей по координатам X, Y, имеются открытый и закрытый входы, предусмотрен ввод сигналов синхронизации); измерители частотных характеристик (Bode Plotter); генератор цифровых сигналов (Word Generator); цифровой логический анализатор и логический преобразователь. На схеме можно разместить только по одному из приборов каждого типа. При развертывании изображения лицевой панели прибора на весь экран с помощью двух электронных курсоров проводят точные измерения характеристик.

7) Различные цепи можно окрашивать в разные цвета для улучшения восприятия схемы. При этом временные диаграммы на экране двухлучевого осциллографа и многоканального логического анализатора окрашиваются в те же цвета.

8) Возможен ввод дискретных отсчетов сигналов из файлов.

9) На периферийные устройства можно вывести принципиальную схему, ее текстовое описание, перечень компонентов.

Для измерительных инструментов рисуется лицевая панель с изображением характеристик и положением органов управления, а для осциллографа изображаются также эпюры напряжений неограниченной длины.

Существуют версии Electronics Workbench для DOS, Windows и Macintosh. При установке в среде Windows можно выбрать 16- и 32-разрядную версию. Имеется демонстрационная версия, работающая в режиме просмотра слайдов и в рабочем режиме, но с ограничением сеанса моделирования 30 минутами (за 5 минут до окончания этого срока программа выводит предупреждающее сообщение, затем ее можно запустить вновь). Демонстрационная версия содержит 10 схем, с которыми можно экспериментировать: редактировать и создавать новые, нельзя лишь сохранять их и распечатывать. Кроме того, демонстрационная версия имеет неполную библиотеку компонентов.

2.2 Интерфейс Electronics Workbench

Как видно из рис.1.4 интерфейс Electronics Workbench по своему построению очень похож на стандартный интерфейс Windows, Описать процесс вызова схемы из библиотеки.

Вывести схему на рабочее поле Electronics Workbench можно 2-мя способами:

- 1-й способ - вызов готовой схемы из библотеки. Делается это посредством команды Open из меню File. В результате выполнения этой команды появляется стандартная панель Widows см. рис.2.2.

Рис.2.2 Панель для вызова схем из библиотеки

Библиотека схем Samples находится в каталоге Wbnch. Она содержит файлы со схемами как в своём корневом каталоге, так и в двух подкаталогах Complex и Tutorial. Расширение файлов содержащих схемы - ca.4. Процедура вызова стандартная для Windows - “мышью” выбрать файл и кликнуть на OK.

- 2-й способ создание схемы вручную посредством встроенного графического редактора. Этот способ начинается с выбора команды New из меню File. После этой команды рабочее поле очищается и можно приступать к созданию схемы.

Вынос элементов схемы и измерительных приборов:

- навести стрелку на прибор или элемент;

- нажать левую кнопку “мыши” и удерживая её переместить объект на рабочее поле (выделение снимается нажатием правой кнопки “мыши”.

Соединения между элементами на рабочем поле выполняются следующим образом:

- установить стрелку на окончание нужного вам вывода элемента:

- нажать левую кнопку “мыши”(на окончании выбранного вывода должна появится крупная чёрная точка) и удерживая её двигать стрелку по направлению к предназначенному для соединения другому выводу(при этом за стрелкой будет тянуться линия);

- навести стрелку на нужный вывод, при этом на нём появится чёрная точка (это означает что соединение установлено) и отпустить кнопку “мыши” на рабочем поле должно появится соединение.

Само соединение можно подкорректировать - навести стрелку на линию соединения нажать левую кнопку “мыши” и, удерживая её, перемещать линию в нужном направлении.

Точная корректировка элементов, приборов и узлов на рабочем поле:

- навести стрелку на объект;

- нажатием правой кнопки “мыши” выделить его;

- корректировать положение клавишами управления курсором.

К сожалению, в Electronics Workbench изображение элементов схем выполнено в соответствии с требованиями американского стандарта milspec (здесь ANSI) и европейского стандарта МЭК 117-15 (DIN). Стандарт изображения элементов схем выбирается при инсталляции Electronics Workbench. Европейский стандарт по своему изображению элементов находится гораздо ближе к российскому, поэтому при инсталляции пакета рекомендуется выбирать именно его. Ниже приведена таблица с изображениями цифровых (поскольку именно они используются в этой разработке) элементов по европейскому стандарту МЭК 117-15.

Таблица 2.1 Изображение цифровых элементов по стандарту МЭК 117-15

Изображение

Функция булевой алгебры

И

ИЛИ

НЕ

И-НЕ

ИЛИ-НЕ

ИСКЛЮЧАЮЩЕЕ ИЛИ

Буфер

Буфер с тремя состояниями

ИСКЛЮЧАЮЩЕЕ ИЛИ-НЕ

Панель универсальных измерительных приборов:

- мультиметр;

- функциональный генератор;

- осциллограф;

- боде плоттер(измеритель ФАПЧХ);

- генератор слов;

- логический анализатор;

- логический конвертор.

Следующая строка панелей является лишь повторением нижних 11-ти строк меню Window, выведенных отдельно ввиду их частого использования.

3. Математические модели и эквивалентные схемы в программе логического проектирования

Любой реальный логический элемент (ЛЭ) не мгновенно реагирует на изменения входных сигналов, поэтому имеется некоторая паразитная задержка между моментом времени, в который на его входы поступают новые значения сигналов, и моментом времени, когда выходной сигнал принимает значение, определяемое функцией, которую выполняет ЛЭ. Эта функция представляет собой статическую модель ЛЭ, так как она не учитывает поведение ЛЭ при изменении входных сигналов. Аналогично этому функция f(v) или система функций fq(v):

zq=fq(xn,....,x1),

где zq- выходные сигналы комбинационной схемы,

xp- входные сигналы, p= 1, 2, .....,n, q= 1, 2, ....,k;

описывающая работу комбинационной схемы(КС) без обратных связей, является её статической моделью.

Для исследования переходных процессов, вызываемых в логических схемах(ЛС) изменениями входных сигналов, необходимо ввести динамические модели ЛЭ, учитывающие паразитные задержки. Тогда динамическая модель ЛС будет определятся динамической моделью ЛЭ и статической моделью ЛС. Так, динамическая модель КС без обратных связей будет определятся формой представления функций fq(v), задающей структурную схему (число ЛЭ и все связи между ними), и динамической моделью ЛЭ.

Заключение

Представленная работа - это первая в своём роде попытка разработать реальный лабораторный практикум по теме логического проектирования цифровых схем с использованием методов виртуальной электронной лаборатории.

Основные результаты работы следующие:

Рассмотрены методы логического проектирования, используемые в предметах, читаемых на кафедре. В основном они сводятся к табличным методам или операциям с уравнениями Булевой алгебры.

Предложено использовать для создания лабораторной работы виртуальный прибор - логический конвертор - из электронного пакета CAD Electronics Workbench.

Рассмотрена возможность с помощью логического конвертора выполнять операции синтеза логических устройств по таблице состояний, логическим уравнениям и т.д.

Методически такая практическая работа прекрасно вписывается в программу курсов, читаемых на кафедре.

Программа имеет интуитивный интерфейс, достаточно проста и не практически требует специального времени на освоение.

Разработаны методические указания к лабораторному практикуму.

Предложен ряд схем (цифровой компаратор, дешифратор, схема контроля четности) подходящих для студенческих практических работ и проведено демонстрационное проектирование.

Разработана демонстрационная версия лабораторного практикума, позволяющего быстро освоить работу с программой.

На виртуальных приборах, студент осваивает необходимые на практике, но достаточно редкие в наших лабораториях измерительные приборы - логический анализатор, генератор двоичных слов,

Настоящий лабораторный практикум не является окончательным и закрытым его всегда можно расширить и модифицировать. Для этого не нужны специальные навыки и знания (как например при попытках дополнить программы моделирующие лабораторные работы и написанные на языках программирования) интерфейс Electronics Workbench прост и выразителен.

Кроме того тематика лабораторных работ (а возможно и курсовых) выполняемых в этой виртуальной лаборатории может быть очень широка. Данная разработка демонстрирует лишь очень небольшую часть возможностей Electronics Workbench.

Основные результаты организационно-экономической части.

Произведена калькуляция расходов и расчёт себестоимости разработки.

Выполнено социально-экономическое обоснование использования виртуального лабораторного практикума. Сравнение производилось с традиционным оборудованием - лабораторными стендами. Итог этого обоснования следующий:

- один компьютер способен заменить несколько стендов с разной тематикой работ;

- использование компьютерного моделирования позволяет высвободить часть персонала занятого ранее ремонтом стендов;

- качество обучения также повысится за счёт большей чем у стендов наглядности, за счёт того, что перестанут выходить из строя исследуемые и вспомогательные компоненты, и за счет приобретения студентами дополнительных навыков работы на компьютере.

В разделе по экологии и охране труда были разработаны методческие указания по компьютеризированному лабораторному практикуму на тему “Исследование электромагнитного поля СВЧ”.

Список используемой литературы.

1.. Алексенко А.Г, Шагурин И.И. “Микросхемотехника.” Москва, изд. “Радио и связь”, 1982г.

2. Влах, Кишор, Сингхал “Машинные методы анализа и проектирования электронных схем.” Москва, изд. “Радио и связь”, 1988г.

3. Дебновецкий С.В. “Основы автоматизированного проектирования электронных приборов.” Киев, Вища школа, 1987г.

4.“Измерения параметров цифровых интегральных микросхем.” (под ред. Эйдукаса Д.Ю., Орлова Б.В.) Москва, “Радио и связь”, 1982г.

5. Корнеев В.В., Киселёв А.В. “Современные микропроцессоры.” Москва, изд. “Нолидж”, 1998г.

6. Лазер И.М., Шубарев В.А. “Устойчивость цифровых микроэлектронных устройств.” Москва, “Радио и связь”, 1983г.

7. Лысиков Б.Г. “Арифметические и логические основы цифровых

автоматов.” Минск, “Вышэйшая школа”, 1980г.

8. Нефедов А.В., Савченко А.М., Феоктистов Ю.Ф.“Зарубежные интегральные микросхемы для электронной аппаратуры.” Москва, Энергоатомиздат, 1989г.

9. Ногов Ю.Р.“Математические модели элементов интегральной электроники.” Москва, “Современное радио”, 1976г.

10. Пухальский Г.И., Новосельцева Т.Я. “Цифровые устройства.” Санкт-Петербург, изд. “Политехника”1996г.

11. Сысоев В.В.“Структурные и алгоритмические модели автоматизированного проектирования производства изделий электронной техники.” Воронеж, Воронежский технологический институт, 1993г.

12. Токхейм Р.“Основы цифровой электроники” Москва, изд. “Мир”, 1988г.

13. Чахмахсазян Е.А., Мозговой Г.П., “Математическое моделирование и макромоделирование биполярных элементов электронных схем.” Москва, “Радио и связь”, 1985г.

14. Шило В.Л. “Популярные цифровые микросхемы.” Москва, Металлургия, 1988г.

15. Якимов О.П.“Моделирование режимов и оценка качества электронных приборов.” Москва, “Радио и связь”, 1989г.

16. Янсен Й. “Курс цифровой электроники.” т. 1 Москва, Мир, 1987г.


Подобные документы

  • Определение характера экстремума. Сущность знаков миноров и критериев минимизации затрат с учетом особенностей производства. Анализ критериев минимизации Байеса, Лапласа, Сэвиджа, Гурвица. Принцип формулы целевой функции на выпуклости и вогнутости.

    контрольная работа [31,6 K], добавлен 07.12.2008

  • Основные положения теории расписаний, постановка задачи минимизации средневзвешенного суммарного штрафа и методы ее решения. Разработка алгоритма решения данной задачи методами полного перебора и оптимальной вставки, составление программы на Delphi.

    курсовая работа [468,7 K], добавлен 10.04.2011

  • Усовершенствование теории Альтмана. Разработка оптимизационных подходов для минимизации рисков. Реализация программных комплексов для анализа финансового состояния при оценке кредитоспособности предприятия о возможности принятия решения выдавать кредита.

    дипломная работа [6,9 M], добавлен 16.02.2016

  • Задача выбора оптимальной (с точки зрения минимизации стоимости) прокладки транспортных коммуникаций из исходного пункта во все пункты назначения. Создание модели в терминах теории графов, описание волнового алгоритма, алгоритма Дейкстры, их особенности.

    курсовая работа [214,3 K], добавлен 30.09.2009

  • Модели, применяемые в производстве, их классификация, возможности и влияние информации на их сложность. Определение минимизации затрат и максимизации прибыли от реализации продукции с помощью "Excel" и оптимальных значений производственных процессов.

    курсовая работа [2,1 M], добавлен 29.11.2014

  • Алгоритм минимизации функции нескольких переменных методами сопряженных градиентов и покоординатного спуска. Проведение сравнения их скорости работы, выделение основных достоинств и недостатков. Программа для проведения исследований градиентным методом.

    курсовая работа [427,4 K], добавлен 09.02.2013

  • Объявление торгов администрацией штата на определенное количество строительных подрядов для определенного количества фирм. Экономико-математическая модели для минимизации затрат. Определение количества песцов и лисиц для получения максимальной прибыли.

    контрольная работа [18,2 K], добавлен 05.03.2010

  • Модель динамического программирования. Принцип оптимальности и уравнение Беллмана. Описание процесса моделирования и построения вычислительной схемы динамического программирования. Задача о минимизации затрат на строительство и эксплуатацию предприятий.

    дипломная работа [845,3 K], добавлен 06.08.2013

  • Задача размещения станков на ограниченной площади цеха при условии максимизации суммарной производительности и минимизации суммарной стоимости оборудования. Построение множества допустимых решений и множества безусловно предпочтительных вариантов.

    контрольная работа [929,3 K], добавлен 17.10.2013

  • Сущность правил Вальда (крайний пессимизм) и Сэвиджа (минимальный риск) при принятии решений в условиях полной неопределенности. Правило максимизации среднего ожидаемого дохода и минимизации среднего риска. Риск как среднее квадратичное отклонение.

    презентация [56,1 K], добавлен 01.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.