Основы эконометрики

Классическая линейная модель множественной регрессии. Мультиколлинеарность: понятие, признаки и методы устранения. Выявление и тестирование гетероскедастичности. Практические рекомендации по тестированию автокоррелированности регрессионных остатков.

Рубрика Экономика и экономическая теория
Вид учебное пособие
Язык русский
Дата добавления 02.02.2014
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.


Подобные документы

  • Расчет параметров линейного уравнения множественной регрессии с перечнем факторов по данным о деятельности компаний США. Оценка силы связи факторов с результатом с помощью средних (общих) коэффициентов эластичности. Доверительный интервал прогноза.

    лабораторная работа [666,9 K], добавлен 21.04.2015

  • Парная линейная регрессия. Полный регрессионный анализ. Коэффициент корреляции и теснота линейной связи. Стандартная ошибка регрессии. Значимость уравнения регрессии. Расположение доверительных интервалов. Расчет параметров множественной регрессии.

    контрольная работа [932,7 K], добавлен 09.06.2012

  • Классическая линейную модель множественной регрессии. Значимость уравнения регрессии и его коэффициентов. Доверительный интервал. Матрица парных коэффициентов корреляции. Модель множественной регрессии. Автокорреляция.

    контрольная работа [172,9 K], добавлен 17.01.2004

  • Изучение понятий общей эконометрики. Сущность классической и обобщенной моделей линейной регрессии. Анализ методов наименьших квадратов, временных рядов и системы одновременных уравнений. Многомерная регрессия: мультиколлинеарность, фиктивные переменные.

    книга [26,6 M], добавлен 19.05.2010

  • Выявление определенной зависимости между выбранными экономическими показателями на основе построения эконометрической регрессионной модели. Построение адекватной модели линейной регрессии.. Способы выявления мультиколлинеарности и её коррекции.

    курсовая работа [912,1 K], добавлен 22.03.2016

  • Исследование типа регрессии между случайными переменными. Построение эмпирического уравнения регрессии. Расчет выборочных средних, дисперсий и среднеквадратического отклонения. Определение показателя тесноты связи как линейного коэффициента корреляции.

    контрольная работа [513,5 K], добавлен 02.05.2015

  • Основы линейного регрессионного анализа. Особенности использования функции Кобба-Дугласа. Применение множественной линейной регрессии. Сущность метода наименьших квадратов. Пути избегания ложной корреляции. Проверка значимости коэффициентов регрессии.

    реферат [101,8 K], добавлен 31.10.2009

  • Расчет параметров уравнения линейной регрессии, экономическая интерпретация регрессии. Определение остаточной суммы квадратов. Выполнение предпосылок МНК. Расчет коэффициента детерминации, проверка значимости уравнения регрессии с помощью критерия Фишера.

    контрольная работа [317,0 K], добавлен 11.05.2009

  • Основы построения регрессионных моделей: метод наименьших квадратов; двухмерная линейная концепция корреляционного и регрессионного анализа. Показатели статистической обработки информации: дисперсия, математическое ожидание и стандартное отклонение.

    контрольная работа [80,8 K], добавлен 27.11.2012

  • Расчет параметров линейной и степенной парной регрессии. Показатели корреляции и детерминации, методика их расчета. Средняя ошибка аппроксимации. Оценка с помощью F-критерия Фишера статистической надежности результатов регрессионного моделирования.

    контрольная работа [25,2 K], добавлен 20.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.