Основы эконометрики
Классическая линейная модель множественной регрессии. Мультиколлинеарность: понятие, признаки и методы устранения. Выявление и тестирование гетероскедастичности. Практические рекомендации по тестированию автокоррелированности регрессионных остатков.
Рубрика | Экономика и экономическая теория |
Предмет | Экономическая теория |
Вид | учебное пособие |
Язык | русский |
Прислал(а) | Анастасия |
Дата добавления | 02.02.2014 |
Размер файла | 1,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Расчет параметров линейного уравнения множественной регрессии с перечнем факторов по данным о деятельности компаний США. Оценка силы связи факторов с результатом с помощью средних (общих) коэффициентов эластичности. Доверительный интервал прогноза.
лабораторная работа [666,9 K], добавлен 21.04.2015Парная линейная регрессия. Полный регрессионный анализ. Коэффициент корреляции и теснота линейной связи. Стандартная ошибка регрессии. Значимость уравнения регрессии. Расположение доверительных интервалов. Расчет параметров множественной регрессии.
контрольная работа [932,7 K], добавлен 09.06.2012Классическая линейную модель множественной регрессии. Значимость уравнения регрессии и его коэффициентов. Доверительный интервал. Матрица парных коэффициентов корреляции. Модель множественной регрессии. Автокорреляция.
контрольная работа [172,9 K], добавлен 17.01.2004Изучение понятий общей эконометрики. Сущность классической и обобщенной моделей линейной регрессии. Анализ методов наименьших квадратов, временных рядов и системы одновременных уравнений. Многомерная регрессия: мультиколлинеарность, фиктивные переменные.
книга [26,6 M], добавлен 19.05.2010Выявление определенной зависимости между выбранными экономическими показателями на основе построения эконометрической регрессионной модели. Построение адекватной модели линейной регрессии.. Способы выявления мультиколлинеарности и её коррекции.
курсовая работа [912,1 K], добавлен 22.03.2016Исследование типа регрессии между случайными переменными. Построение эмпирического уравнения регрессии. Расчет выборочных средних, дисперсий и среднеквадратического отклонения. Определение показателя тесноты связи как линейного коэффициента корреляции.
контрольная работа [513,5 K], добавлен 02.05.2015Основы линейного регрессионного анализа. Особенности использования функции Кобба-Дугласа. Применение множественной линейной регрессии. Сущность метода наименьших квадратов. Пути избегания ложной корреляции. Проверка значимости коэффициентов регрессии.
реферат [101,8 K], добавлен 31.10.2009Расчет параметров уравнения линейной регрессии, экономическая интерпретация регрессии. Определение остаточной суммы квадратов. Выполнение предпосылок МНК. Расчет коэффициента детерминации, проверка значимости уравнения регрессии с помощью критерия Фишера.
контрольная работа [317,0 K], добавлен 11.05.2009Основы построения регрессионных моделей: метод наименьших квадратов; двухмерная линейная концепция корреляционного и регрессионного анализа. Показатели статистической обработки информации: дисперсия, математическое ожидание и стандартное отклонение.
контрольная работа [80,8 K], добавлен 27.11.2012Расчет параметров линейной и степенной парной регрессии. Показатели корреляции и детерминации, методика их расчета. Средняя ошибка аппроксимации. Оценка с помощью F-критерия Фишера статистической надежности результатов регрессионного моделирования.
контрольная работа [25,2 K], добавлен 20.11.2014