Статистическое изучение связи между явлениями

Сущность, понятие, виды и формы взаимосвязей между явлениями общественной жизни: коэффициент ранговой корреляции Спирмена, прямая и обратная, прямолинейная и криволинейная связи. Характеристика основных приёмов изучения и измерение взаимосвязей.

Рубрика Экономика и экономическая теория
Вид реферат
Язык русский
Дата добавления 09.11.2010
Размер файла 28,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Содержание

1. Виды и форма взаимосвязи между явлениями

1.1 Коэффициент ранговой корреляции Спирмена

1.2 Прямая и обратная связь

1.3 Прямолинейная и криволинейная связь

2. Основные приёмы изучения взаимосвязей

3. Измерение связи

Список использованной литературы

1. Виды и форма взаимосвязи между явлениями

Все явления общественной жизни взаимосвязаны и взаимообусловлены. Задача статистики состоит в том, чтобы выявить и измерить связи и зависимости между изучаемыми явлениями.

Взаимосвязанные признаки подразделяются на факторные (под их воздействием изменяются другие, зависящие от них признаки) и результативные.

Связи по степени тесноты могут быть функциональными и статистическими.

Функциональные связи характеризуются полным соответствием между изменением факторного признака и изменением результативной величины, и каждому значению признака-фактора соответствуют вполне определенные значения результативного признака.

В статистических связях одному и тому же значению факторного признака могут соответствовать несколько значений результативного признака; эти связи проявляются в массе случаев и при том - в среднем

Функциональные связи иначе называются полными, а статистические -неполными или корреляционными .

Корреляционная зависимость проявляется только в средних величинах и выражает числовое соотношение между ними в виде тенденции к возрастанию или убыванию одной переменной величины при возрастании или убывании другой.

Корреляционная связь является свободной, неполной и неточной связью. Например, себестоимость величины продукции зависит от уровня производительности труда:

чем выше производительность труда, тем ниже себестоимость. Но себестоимость зависит также и от ряда других факторов: стоимости сырья и материалов, топлива, электроэнергии, их расхода на единицу продукции, цеховых и общезаводских расходов и т.д. Поэтому нельзя утверждать, что при повышении производительности труда, допустим, на 10% себестоимость снизится также на 10%. Может случиться, что, несмотря на рост производительности труда, себестоимость не только не снизится, но даже несколько повысится, если на нее окажут более сильное влияние действующие в обратном направлении другие факторы.

Вот почему корреляционная связь может быть установлена только в общем, в среднем путем исключения влияния факторов, не являющихся предметом нашего исследования.

1.1 Коэффициент ранговой корреляции Спирмена

Это непараметрический метод, который используется с целью статистического изучения связи между явлениями. В этом случае определяется фактическая степень параллелизма между двумя количественными рядами изучаемых признаков и дается оценка тесноты установленной связи с помощью количественно выраженного коэффициента.

Практический расчет коэффициента ранговой корреляции Спирмена включает следующие этапы:

1) Сопоставить каждому из признаков их порядковый номер (ранг) по возрастанию (или убыванию).

2) Определить разности рангов каждой пары сопоставляемых значений.

3) Возвести в квадрат каждую разность, и суммировать полученные результаты.

4) Вычислить коэффициент корреляции рангов по формуле:

где - сумма квадратов разностей рангов, а - число парных наблюдений.

При использовании коэффициента ранговой корреляции условно оценивают тесноту связи между признаками, считая значения коэффициента равные 0,3 и менее, показателями слабой тесноты связи; значения более 0,4, но менее 0,7 - показателями умеренной тесноты связи, а значения 0,7 и более - показателями высокой тесноты связи.

Мощность коэффициента ранговой корреляции Спирмена несколько уступает мощности параметрического коэффициента корреляции.

Коэффициент ранговой корреляции целесообразно применять при наличии небольшого количества наблюдений. Данный метод может быть использован не только для количественно выраженных данных, но также и в случаях, когда регистрируемые значения определяются описательными признаками различной интенсивности

1.2 Прямая и обратная связь

По направлению различают прямую и обратную связь.

Если с увеличением аргумента х функция у также увеличивается без всяких единичных исключений, то такая связь называется полной прямой связью.

Если с увеличением аргументам функция у уменьшается без всяких единичных исключений, то такая связь называется полной обратной.

Кроме того, в виде исключений, которые, однако, не нарушают общей тенденции, встречается частичная связь - прямая или обратная. Когда признаки варьируют независимо друг от друга, говорят о полном отсутствии связи.

1.3 Прямолинейная и криволинейная связь

По аналитическому выражению корреляционная связь может быть прямолинейной и криволинейной. Прямолинейной называется связь, когда величина явления изменяется приблизительно равномерно в соответствии с изменением величины влияющего фактора.

Математически прямолинейная связь может быть выражена уравнением прямой:

V=a+b*x,

которое называется линейным уравнением регрессии.

Если происходит неравномерное изменение явления в связи с изменением величины влияющего фактора, то такая связь называется криволинейной. Математически криволинейная зависимость может быть выражена уравнением криволинейной связи. В экономическом анализе для ее выражения часто пользуются уравнением параболы второго порядка:

y=a+b*x+c*x2.

Уравнение криволинейной связи может быть выражено и в виде дробной функции: показательной функции:

y=a+b/x и др.

Однако корреляционные связи могут быть выражены лишь приблизительно, в то время как функциональные связи имеют точное аналитическое выражение.

2. Основные приёмы изучения взаимосвязей

Для изучения, измерения и количественного выражения взаимосвязей между явлениями статистикой применяются различные методы, такие как: метод сопоставления параллельных рядов, балансовый, графический, методы аналитических группировок, дисперсионного и корреляционного анализа.

Метод параллельных рядов заключается в том, что полученные в результате сводки и обработки материалы располагают в виде параллельных рядов и сопоставляют их между собой для установления характера и тесноты связи.

Балансовый метод состоит в том, что данные взаимосвязанных показателей изображаются в виде таблицы и располагаются таким образом, чтобы итоги между отдельными ее частями были равны.

Балансовый метод используется для характеристики взаимосвязи между производством и распределением продуктов, денежными доходами и расходами населения и т.д. Почти все внутренние и хозяйственные внешние связи выражаются в виде балансов.

Метод аналитических группировок. Сущность метода аналитических группировок состоит в том, что единицы статистической совокупности группируются, как правило, по факторному признаку и для каждой группы рассчитывается средняя или относительная величина по результативному признаку. Затем изменения средних или относительных значений результативного признака сопоставляются с изменениями факторного признака для выявления характера связи между ними.

Дисперсионный анализ дает, прежде всего, возможность определить значение систематической и случайной вариаций в общей вариации, а также установить роль интересующего нас фактора в изменении результативного признака.

3. Измерение связи

При сравнении функциональных и корреляционных зависимостей следует иметь в виду, что при наличии функциональной зависимости между признаками можно, зная величину факторного признака, точно определить величину результативного признака. При наличии же корреляционной зависимости устанавливается лишь тенденция изменения результативного признака при изменении величины факторного признака. В отличие от жесткости однозначно функциональной связи корреляционные связи характеризуются множеством причин и следствий и устанавливаются лишь их тенденции.

Необходимо отметить, что экономической теории принадлежит решающее слово в обосновании связей между теми или иными признаками. При этом теоретический анализ должен показать, какие факторы влияют на исследуемый признак или же влияние каких факторов должно быть проверено. Статистическое выражение связи между явлениями может показать, что изменения одного из сопоставляемых признаков сопровождаются изменениями другого. Следовательно, нужно искать объяснение этим изменениям в их содержательном анализе. С помощью статистических методов изучения зависимостей можно установить, как проявляется теоретически возможная связь в данных конкретных условиях. Статистика не только отвечает на вопрос о реальном существовании намеченной теоретическим анализом связи, но и дает количественную характеристику этой зависимости. Зная характер зависимости одного явления от других, можно объяснить причины и размер изменений в явлении, а также планировать необходимые мероприятия для дальнейшего его изменения.

При исследовании корреляционных зависимостей между признаками решению подлежит широкий круг вопросов, к которым следует отнести:

- предварительный анализ свойств моделируемой совокупности единиц;

- установление факта наличия связи, определение ее направления и формы;

- измерение степени тесноты связи между признаками;

- построение регрессионной модели, т.е. нахождение аналитического выражения связи;

- оценка адекватности модели, ее экономическая интерпретация и практическое использование.

Для того чтобы результаты корреляционного анализа нашли практическое применение и дали желаемый результат, должны выполняться определенные требования в отношении отбора объекта исследования и признаков-факторов. Одним из важнейших условий правильного применения методов корреляционного анализа является требование однородности тех единиц, которые подвергаются изучению методами корреляционного анализа. Например, при корреляционном анализе зависимостей тех или иных технико-экономических показателей работы предприятий от определенных факторов должны быть отобраны предприятия, выпускающие однотипную продукцию, имеющие одинаковый характер технологического процесса и тип используемого оборудования, для предприятий добывающей промышленности определенную роль играет и географическое размещение предприятий.

При выполнении указанных общих требований далее необходима количественная оценка однородности исследуемой совокупности по комплексу признаков. Одним из возможных вариантов такой оценки является расчет относительных показателен вариации. Традиционно широкое распространение для этих целей получил коэффициент вариации. Несколько реже применяется отношение размаха вариации к среднеквадратическому отклонению. Вывод о неоднородности исследуемой совокупности по тому или иному признаку требует проверки гипотезы о принадлежности "выделяющихся" (аномальных) значений признака исследуемой генеральной совокупности.

Другим важным требованием, обеспечивающим надежность выводов корреляционного анализа, является требование достаточного числа наблюдений. Как уже указывалось, влияние существенных причин может быть затушевано действием случайных факторов, "взаимопогашение" влияния которых на результативный показатель в известной мере происходит при выведении средней результативного показателя для массы случаев.

Определенные требования существуют и в отношении факторов, вводимых в исследование. Все множество факторов, оказывающих влияние на величину результативного показателя, к действительности не может быть введено в рассмотрение, да практически в этом и нет необходимости, так как их роль и значение в формировании величины результативного показателя могут иметь существенные различия. Поэтому при ограничении числа факторов, включаемых в изучение, наряду с качественным анализом целесообразно использовать и определенные количественные оценки, позволяющие конкретно охарактеризовать влияние факторов на результативный показатель (к оценкам можно отнести парные коэффициенты корреляции, ранговые коэффициенты при экспертной оценке влияния факторов и др.). Включаемые в исследование факторы должны быть независимыми друг от друга, так как наличие тесной связи между ними свидетельствует о том, что они характеризуют одни и те же стороны изучаемого явления и в значительной мере дублируют друг друга.

Для характеристики тесноты корреляционной связи между признаками в аналитических группировках межгрупповую дисперсию сопоставляют с общей.

Это сопоставление называйся корреляционным отношением и обозначается:

з222.

Оно характеризует долю вариации результативного признака, вызванной действием факторного признака, положенного в основание группировки. Корреляционное отношение по своему абсолютному значению колеблется в пределах от 0 до 1. Чем ближе корреляционное отношение к 1, тем большее влияние оказывает факторный признак на результативный. Если же факторный признак не влияет на результативный, то вариация, обусловленная им, будет равна нулю (д2= 0) и корреляционное отношение также будет равно нулю (з2= 0), что говорит о полном отсутствии связи. И наоборот, если результативный признак изменяется только под воздействием одного факторного признака, то вариация, обусловленная этим признаком, будет равна общей вариации (з22) и корреляционное отношение будет равно единице (з2= 1), что говорит о существовании полной связи.

Дисперсионный анализ позволяет не только определить роль случайной и систематической вариаций в общей вариации, но и оценить достоверность вариации, обнаруженной методом аналитических группировок. Определение достоверности вариации дает возможность с заданной степенью вероятности установить, вызвана ли межгрупповая вариация признаком, положенным в основание группировки, или она является результатом действия случайных причин. Для оценки существенности корреляционного отношения пользуются критическими значениями корреляционного отношения з2при разных уровнях вероятности или значимости б.

Уровень значимости - это достаточно малое значение вероятности, отвечающее событиям, которые в данных условиях исследования будут считаться практически невозможными.

Появление такого события считается указанием на неправильность начального предположения. Чаще всего пользуются уровнями б = 0,05 или б = 0,01. Критические значения корреляционного отношения содержатся в специальных таблицах.

В этих таблицах распределение з2при случайных выборках зависит от числа степеней свободы факторной и случайной дисперсий. Число степеней свободы факторной дисперсии равно

K1=m-1,

где m - число групп,

а для случайной дисперсии:

K1=n-m,

где n - число вариант; m - число групп.

При проверке существенности связи чаще пользуются критерием Фишера, потому что при больших числах степеней свободы его табличные значения мало изменяются в отличие от корреляционного отношения, которое требует более громоздких таблиц.

Критерий Фишера представляет собой отношение межгрупповой дисперсии к средней из внутригрупповых дисперсий, исчисленных с учетом числа степеней свободы:

F=д22* (n-m)/(m-1).

Для этих отношений составляются таблицы, по которым можно определить, какая величина F при данном числе степеней свободы по факторной вариации (K1) и остаточной вариации (K2) дает основание утверждать с определенной вероятностью (например, 0,95; 0,99), что положенный в основание группировки признак является существенным, или не дает такого основания, и, следовательно, группировочный признак является несущественным.

Зная корреляционное отношение, можно определить критерий Фишера по следующей формуле:

F=з2/(1-з2) * (n-m)/(m-1).

Подобный дисперсионный анализ может проводиться при группировке по одному факторному признаку или при комбинационной группировке по двум и более факторам. В таком случае необходима оценка достоверности влияния не только каждого положенного в основание группировки фактора в отдельности, но и результата их взаимодействия. Последний определяется как разность между эффектом совместного влияния двух группировочных признаков и суммой эффектов влияния каждого из этих факторных признаков, взятых в отдельности. Это осложняет расчеты суммы квадратов отклонений и числа степеней свободы вариации. Но сам принцип дисперсионного анализа, основанный на сопоставлении факторной дисперсии со случайной для оценки достоверности результатов статистической группировки, остается применим независимо от числа признаков группировки.

Список использованной литературы

1. Общая теория статистики; Учебник МО РФ 2001; под ред. Едронова В.М.

2. "Региональная статистика" под редакцией заведующего кафедрой статистики профессора В. Рябцева Самарской государственной экономической академии; издательство "МИД" (Москва).

3. Учебник по математической статистике с упражнениями в системе STATISTICA. Под ред. В.П. Боровикова, Г.И. Ивченко.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.