Общая экология
Предмет и объекты изучения экологии. Экологические факторы среды и их классификация. Приспособление организмов к среде жизни. Основы демэкологии (экологии популяций) и синэкологии (экологии сообществ и экосистем). Экологическая безопасность человечества.
Рубрика | Экология и охрана природы |
Вид | курс лекций |
Язык | русский |
Дата добавления | 29.10.2017 |
Размер файла | 2,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1.5.4 Внутривидовые взаимодействия в биоценозе. Межвидовые взаимоотношения в биоценозе
В состав любой экосистемы или биоценоза обычно входит множество видов растений, животных, грибов, бактерий, каждый из которых представлен здесь популяцией. Все живые организмы испытывают влияние со стороны организмов как своего, так и других видов.
Внутри одной популяции между организмами могут существовать как положительные взаимодействия, т.е. сотрудничество, без которого популяция не может существовать, так и отрицательные взаимодействия, проявляющиеся в конкуренции и внутривидовой борьбе.
Взаимодействия между различными популяциями могут также быть положительными, отрицательными и нейтральными.
Отношения, при которых организмы, занимая сходные местообитания, практически не оказывают влияния друг на друга, носят название нейтрализма.
Например, белки и лоси в лесу.
В некоторых случаях взаимодействие оказывается положительным для обеих популяций (мутуализм), иногда положительным для одной и отрицательным для другой (хищничество, паразитизм), отрицательным для обеих (конкуренция) или положительным для одной и безразличным для другой (комменсализм). Совокупность всех взаимодействий между организмами составляет биотические факторы, действующие в экосистеме.
Согласно классификации В.Н. Беклемищева (1951), прямые и косвенные межвидовые отношения подразделяются на 4 типа:
· Трофические;
· Топические;
· Форические;
· Фабрические.
Трофические связи возникают когда один вид питается другим (живым организмом, его остатками, продуктами жизнедеятельности). При этом возможна прямая связь (корова питается клевером, хищник жертвой, например, лиса - полевками, паразит соками хозяина), так и косвенная (конкуренция за объекты питания, комменсализм, мутуализм).
Хищничество -- прямое уничтожение одного вида другим или однократное использование добычи хищником таким образом, что используемый организм погибает. Отношения типа «хищник -- жертва» -- это прямые пищевые связи, которые для одного из партнеров имеют отрицательные, для другого -- положительные последствия.
Для хищника характерно охотничье поведение.
Паразитизм -- это форма взаимоотношений между организмами разных видов, при которой один организм (паразит) использует другой организм (хозяина) как среду обитания и источник питания, причиняя ему вред, но, как правило, не уничтожая его.
Паразитический образ жизни обычно служит специфическим признаком вида, он свойственней всем особям без исключения и закреплен в эволюции.
Формы проявления паразитизма чрезвычайно многообразны. Паразиты могут обитать в различных тканях и органах хозяина, питаться его тканями или переваренной пищей, проводить на теле или в теле хозяина всю свою жизнь или только часть ее, а также быть постоянными или временными паразитами. Паразитизм широко распространен в природе, существует 60 -- 65 тысяч видов животных, ведущих паразитический образ жизни, что составляет 6 - 7% от общего числа всех видов, живущих на Земле. Количество паразитических форм у разных типов животного мира неодинаково. Наибольшее число паразитов установлено у типа простейших, плоских и круглых червей, а также членистоногих. Паразитическими организмами являются все вирусы, некоторые бактерии и грибы. Даже среди высших растений встречаются паразитические, поселяющиеся на других растениях, например, невелика, заразиха и др.
Конкуренция -- это взаимоотношения, возникающие между организмами одного или различных видов в одинаковых условиях среды или со сходными экологическими требованиями, т.е. между организмами одного трофического уровня (горизонтальные взаимоотношения). Конкуренция возникает в том случае, когда ресурсов недостаточно.
Например, саранчовые, грызуны и копытные, питающиеся травами, вступают между собой в конкурентные взаимоотношения.
Такие взаимоотношения существуют между хищными птицами и лисами, основной пищей которых служат мышевидные грызуны. У организмов, являющихся потенциальной жертвой для хищников, происходит конкуренция за лучшие способы защиты. У растений постоянно происходит конкуренция за свет, влагу, лучшую защиту от поедания животными. Конкуренция между особями одного вида называется внутривидовой. Конкуренция между особями разных видов - межвидовой. Различий в результате межвидовой и внутривидовой конкуренции нет. В обоих случаях погибает более сильная особь, но наиболее ожесточенно идет внутривидовая конкуренция.
Например, самоизредивание елей.
Межвидовая борьба возникает между видами, требовательными к одинаковым условиям. Она может быть пассивной (использование ресурсов среды, необходимых обоим видам) или активной (подавление одним видом другого).
Конкуренция -- единственная форма экологических отношений, отрицательно сказывающаяся на обоих взаимодействующих партнерах, в соответствии с «законом конкурентного исключения» Г.Ф. Гаузе (опыты с инфузориями). Более слабая особь погибает или находит свободное место и уходит от конкуренции. Дарвин считал конкуренцию одной из важнейших сторон борьбы за существование, играющей важную роль в эволюции видов.
Комменсализм -- использование партнера в качестве источника питания, но без вреда для него. Комменсализм, основанный на потреблении остатков пищи хозяев, называют еще нахлебничеством.
Например, некоторые морские кишечнополостные -- полипы, поселяясь на крупных рыбах, используют в пищу их испражнения, песцы сопровождают полярных медведей, доедая остатки их трапезы.
Разновидностью комменсализма является синойкия - использование партнера в качестве жилища.
Например, пресноводная рыба горчак откладывает икринки в раковину моллюсков, икринки развиваются, не нанося вреда хозяину. К синойкии можно отнести и эпифитность. Поселение птиц в кронах деревьев, использование растительного субстрата для постройки жилищ, перенос семян и плодов растений животными.
Иногда между комменсализмом и синойкией трудно провести разграничение.
Например, комменсалами крупных акул являются сопровождающие их рыбы-прилипалы - они и используют акул для передвижения и питаются остатками их пищи.
Кооперация (протокооперация) - форма взаимовыгодных отношений не обязательных для обоих партнеров.
Например, распространение семян растений муравьями, разведение муравьями тли на растениях.
Мутуализм -- широко распространенная форма взаимовыгодных отношений между видами, причем оба вида полностью зависят друг от друга..
Классическим примером мутуализма могут служить лишайники. Симбионты в лишайнике -- гриб и водоросль -- физиологически дополняют друг друга. Гифы гриба, оплетая клетки и нити водорослей, образуют специальные всасывающие отростки, гаустории, через которые гриб получает вещества, ассимилированные водорослями. Минеральные вещества водоросли получают из воды. Многие травы и деревья нормально существуют лишь в сожительстве с почвенными грибами, поселяющимися на их корнях. Микоризные грибы способствуют проникновению воды, минеральных и органических веществ из почвы в корни растений, а также усвоению ряда веществ. В свою очередь они получают из корней растений углеводы и другие органические вещества, необходимые для их существования.
К мутуализму относится и симбиоз азотофиксирующих клубеньковых бактерий и бобовых растений.
Между вышеперечисленными видами сожительства существует множество переходных форм, что делает связи между организмами в биосфере чрезвычайно разнообразными. Чем разнообразнее связи, поддерживающие совместное существование видов, тем устойчивее их сожительство.
Между особями одного трофического уровня возможна взаимопомощь - ель восстанавливается после уничтожения елового леса только если ей помогут «растения - няни» - береза или ива. Но это явление временное, когда ели подрастут, они вступят с березами в конкурентные отношения.
У животных взаимопомощь распространена при групповом образе жизни.
Например, между родителями и потомством.
В биоценозах встречается аменсализм - отношения отрицательные для одного организма и безразличные для другого.
Например, светолюбивые растения, попавшие под полог леса.
Топические связи отражают любое (физическое или химическое) изменение условий обитания одного вида вследствие жизнедеятельности другого. Особенно велика здесь роль зеленых растений. Так, еловый лес создает условия для произрастания черники, кислицы, папоротников. Например, встречается не только трофический, но и топический мутуализм.
Морское животное актиния и рак-отшельник поселяются в пустых раковинах моллюсков. Актиния использует рака как средство передвижения; защищаясь от врагов стрекательными клетками, она защищает и рака-отшельника.
Форические связи проявляются в том, что один вид участвует в распространении другого. Наибольшее значение здесь играют животные. Транспортирование животными более мелких особей называется форезией, а перенос ими семян, спор, пыльцы растений - зоохорией.
Фабрические связи - возникают, когда один вид использует для своих сооружений (фабрикаций) продукты выделения, мертвые остатки или живых особей другого вида.
Например, птицы, использующие для постройки гнезда траву, листья, пух и перья других видов птиц, изделия человека.
В процессе сопряженной эволюции у различных видов животных и растений выработались взаимные приспособления друг к другу, т.е. коадаптации. Они часто бывают столь прочными, что жить отдельно виды уже не могут.
Например, коадаптации насекомых и насекоомоопляемых растений. По В.Н. Радкевичу в Европе до 80% видов покрытосеменных растений опыляется насекомыми.
Истребление копытных животных в степях привело к перерождению растительности. Многие степные злаки способны к произрастанию лишь при условии, что их регулярно «объедают» копытные, в противном случае они начинают вырождаться.
Таким образом, биоценоз, сложная система, сцементированная множеством взаимосвязей и взаимоотношений. Специалисты подсчитали, что если в экосистеме 1000 видов, то число связей между ними теоретически может достигнуть 499500. Реально их еще больше. Для понимания структуры и особенностей связей в экосистемах в 1910 году Р. Джонсоном был предложен термин «экологическая ниша». Каждый организм в природе занимает определенное место, взаимодействуя со всеми факторами (абиотическими и биотическими), характерными для этого места.
1.5.5 Экологические ниши. Многомерность ниши. Ниша фундаментальная и реализованная. Влияние конкуренции на ширину экологической ниши. Прерывание ниш. Ниши общие и специализированные
Экологическая ниша - совокупность всех факторов внешней среды, в пределах которых возможно существование вида в природе. По высказыванию американского ученого Ю. Одума - местообитание - это «адрес» организма или вида, а экологическая ниша - его «профессия». Т.е. экологическая ниша отражает роль организма в экосистеме.
Некоторые организмы могут менять свои экологические ниши на протяжении своего жизненного цикла.
Например, личинка и взрослая особь у насекомых.
Экологическая ниша, определяемая только физиологическими особенностями организмов, называется фундаментальной, а та, в пределах которой вид реально встречается в природе реализованной. Т.е. реализованная ниша - часть фундаментальной ниши, которую организм или вид может отстоять в конкурентной борьбе. У совместно живущих видов экологические ниши могут частично перекрываться, не полностью никогда не совпадают, иначе вступает в действие закон конкурентного исключения и один вид вытесняет другой из данного биоценоза. Если по каким-то причинам экологическая ниша высвобождается, то проявляется правило обязательности заполнения экологических ниш: пустующая экологическая ниша всегда естественно заполняется.
Например, вирус СПИДа, пришедший на смену вирусам кори, скарлатины и т.д.
1.5.6 Устойчивость и развитие биоценозов
Биоценозы не остаются неизменными, они развиваются, эволюционируют, в них постоянно происходят изменения в состоянии и жизнедеятельности организмов и соотношении популяций. Все многообразные изменения, происходящие в любом биоценозе, можно разделить на циклические и поступательные.
Циклические изменения сообществ происходят под влиянием суточной, сезонной и многолетней периодичности внешних условий.
Суточные изменения в биоценозах обычно выражены тем сильнее, чем значительнее разница температуры, влажности и других факторов среды днем и ночью. Суточные ритмы прослеживаются в сообществах всех зон, от тропиков до тундры.
Сезонная изменчивость биоценозов выражается в изменении не только состояния и активности, но и количественного соотношения отдельных видов в зависимости от циклов их размножения, сезонных миграций, отмирания отдельных генераций в течение года и т.д. На определенное время года многие виды практически исключаются из жизни сообществ, переходя в состояние глубокого покоя (оцепенение, анабиоз, спячка), переживая неблагоприятный период на определенной стадии онтогенеза (яйца, личинки, семена), осуществляя миграции в другие климатические зоны.
Многолетняя изменчивость зависит от изменения по годам внешних условий, действующих на сообщество. Примером могут служить разливы рек, резко колеблющееся по годам количество осадков, понижение уровня грунтовых вод и др. Кроме того, многолетняя периодичность может быть связана с так называемыми популяционными волнами -- резким увеличением численности определенного вида животных.
1.5.7 Экосистемы и принципы их функционирования
Размеры биогеоценозов различны. Совокупности биогеоценозов образуют главные природные экосистемы, имеющие глобальное значение в обмене энергии и вещества на планете, к которым относятся:
* тропические леса;
* леса умеренной климатической зоны;
* пастбищные земли (степь, саванна, тундра, травянистые ландшафты);
* пустыни и полупустыни;
* озера, болота, реки, дельты;
* горы;
* острова,
* океан.
1.5.8 Потоки вещества и энергии в экосистеме. Биологическая продуктивность экосистем
Пищевые сети и цепи
Существование любого биоценоза возможно только при постоянном притоке энергии. По существу, вся жизнь на Земле существует за счет энергии солнечного излучения, которая переводится фотосинтезирующими организмами в химические связи органических веществ. Гетеротрофы получают энергию с пищей. Все живые существа являются объектами питания других живых существ, то есть связаны между собой энергетическими отношениями. Пищевые связи в сообществах -- это механизм передачи энергии от одного организма к другому или другим.
В каждом сообществе трофические связи переплетены в сложную сеть, так как организмы любого вида являются потенциальными объектами для пищи многих других видов.
Например, врагами тлей служат личинки и жуки божьих коровок, личинки мух, пауки, насекомоядные птицы и многие другие животные. За счет дубов в лиственных лесах могут жить несколько сотен форм различных членистоногих, фитонематод, паразитических грибков и т.д.; хищники обычно легко переключаются с одного вида на другой. Некоторые хищники могут потреблять в определенной мере и растительную пищу.
Трофические сети в биоценозах очень сложны. Однако первое впечатление о том, что энергия в трофических сетях может долго мигрировать от одного организма к другому, обманчиво. На самом деле путь каждой конкретной порции энергии, накопленной растениями, короток, он может передаваться не более, чем через 4 -- 5 звеньев, состоящих из последовательно питающихся друг другом организмов.
Устойчивые цепи взаимосвязанных видов, последовательно извлекающих материалы и энергию из исходного пищевого вещества, называются цепями питания.
Место каждого звена в цепи питания называют трофическим уровнем. Первый трофический уровень -- это всегда продуценты, растения, создатели органического вещества, биомассы; второй трофический уровень составляют травоядные животные -- потребители или консументы 1 порядка; потребители травоядных животных -- плотоядные -- составляют следующий трофический уровень, являются консументами 2 порядка; потребители плотоядных форм относятся к консументам 3 порядка и т.д. по трофической цепи. При этом имеет значение пищевая специализация организмов-консументов. Виды с широким спектром питания могут включаться в пищевую цепь на различных трофических уровнях. Например, человек в рацион которого входят и растительная и животная пища, может явиться в разных пищевых цепях консументом первого, второго и третьего порядков.
Количество энергии, расходуемой на поддержание собственной жизнедеятельности, в цепи трофических уровней растет, а продуктивность падает. Энергетический баланс консументов складывается следующим образом. Поглощенная пища обычно усваивается не полностью. Неусвоенная пища вновь возвращается во внешнюю среду в виде экскрементов и в последующем может быть вовлечена в другие цепи питания. Процент усвояемости зависит от состава пищи и набора пищеварительных ферментов организма. У животных усвояемость варьирует от 12 -- 20% (некоторые сапрофаги) до 75% у плотоядных видов.
Большая часть энергии усвоенной пищи используется на поддержание физиологических процессов в организме, а продукты обмена удаляются из организма в составе мочи, пота, выделений желез и углекислого газа, образующегося при дыхании. Энергетические затраты на поддержание метаболических процессов в организме называют тратой на дыхание.
Меньшая часть усвоенной энергии идет собственно на ассимиляцию, то есть на образование тканей, биомассы самого организма или на запасание питательных веществ. Обычно продуктивность каждого последующего трофического уровня не более, как уже было сказано, 5 -- 20% от продуктивности предыдущего. Траты на дыхание во много раз больше энергетических затрат на увеличение массы организма. Конкретные соотношения зависят от стадии развития и физиологического состояния особей. У молодых траты на рост достигают больших величин, тогда как взрослые особи используют энергию пищи в основном на поддержание обмена веществ и созревание половых клеток.
Таким образом, большая часть энергии в цепи питания при переходе с одного уровня на другой теряется. К следующему звену в цепи питания поступает только та энергия, которая заключена в массе предыдущего поедаемого звена. Потери энергии составляют около 90% при каждом переходе через трофическую цепь. Например, если энергия растительного организма составляет 1000 Дж, то при полном поедании его травоядным животным в теле последнего ассимилируется всего 100 Дж, в теле хищника 10 Дж, а если этот хищник будет съеден другим, то в его теле ассимилируется только 1 Дж энергии, то есть 0,1%.
В результате энергия, накопленная зелеными растениями в цепях питания, стремительно иссякает. Поэтому пищевая цепь не может включать более 4 -- 5 звеньев. Потерянная в цепях питания энергия может быть восполнена только за счет поступления новых ее порций. В экосистемах не может быть круговорота энергии, подобно круговороту веществ. Жизнь и функционирование любой экологической системы возможны только при односторонне направленном потоке энергии в виде солнечного излучения или при притоке запасов готового органического вещества.
Экологическая пирамида. Правило экологической пирамиды
Экологическая пирамида -- это графическое изображение потерь энергии в цепях питания.
Цепи питания -- это устойчивые цепи взаимосвязанных видов, последовательно извлекающих материалы и энергию из исходного пищевого вещества, сложившиеся в ходе эволюции живых организмов и биосферы в целом. Они составляют трофическую структуру любого биоценоза, по которой осуществляются перенос энергии и круговороты веществ. Пищевая цепь состоит из ряда трофических уровней, последовательность которых соответствует потоку энергии.
Первичным источником энергии в цепях питания является солнечная энергия. Первый трофический уровень -- продуценты (зеленые растения) -- используют солнечную энергию в процессе фотосинтеза, создавая первичную продукцию любого биоценоза. При этом только 0,1% солнечной энергии используется в процессе фотосинтеза. Эффективность, с которой зеленые растения ассимилируют солнечную энергию, оценивается величиной первичной продуктивности. Более половины энергии, связанной при фотосинтезе, тут же расходуется растениями в процессе дыхания, остальная часть энергии переносится далее по пищевым цепям.
При этом действует важная закономерность, связанная с эффективностью использования и превращения энергии в процессе питания. Сущность ее заключается в следующем: количество энергии, расходуемой на поддержание собственной жизнедеятельности, в цепях питания растет от одного трофического уровня к другому, а продуктивность падает.
Фитобиомасса используется в качестве источника энергии и материала для создания биомассы организмов второго
трофического уровня потребителей первого порядка -- травоядных животных. Обычно продуктивность второго трофического уровня составляет не более 5 - 20% (10%) предыдущего уровня. Это находит отражение в соотношении на планете биомасс растительного и животного происхождения. Объем энергии, необходимой для обеспечения жизнедеятельности организма, растет с повышением уровня морфофункциональной организации. Соответственно, количество биомассы, создаваемой на более высоких трофических уровнях, снижается.
Экосистемы очень разнообразны по относительной скорости создания и расходования как чистой первичной продукции, так и чистой вторичной продукции на каждом трофическом уровне. Однако всем без исключения экосистемам свойственны определенные соотношения первичной и вторичной продукции. Всегда количество растительного вещества, служащего основой цепи питания, в несколько раз (около 10 раз) больше, чем общая масса растительноядных животных, а масса каждого последующего звена пищевой цепи, соответственно, пропорционально изменяется.
Прогрессивное снижение ассимилированной энергии в ряду трофических уровней находит отражение в структуре экологических пирамид.
Снижение количества доступной энергии на каждом последующем трофическом уровне сопровождается снижением биомассы и численности особей. Пирамиды биомассы и численности организмов для данного биоценоза повторяют в общих чертах конфигурацию пирамиды продуктивности.
Графически экологическую пирамиду изображают в виде нескольких прямоугольников одинаковой высоты, но разной длины. Длина прямоугольника уменьшается от нижнего к верхнему соответственно уменьшению продуктивности на последующих трофических уровнях. Нижний треугольник самый большой по длине и соответствует первому трофическому уровню - продуцентам, второй - приблизительно в10 раз меньше и соответствует второму трофическому уровню -- растительноядным животным, потребителям первого порядка и т.д.
Скорость создания органического вещества не определяет его суммарные запасы, т.е. общую массу организмов каждого трофического уровня. Наличная биомасса продуцентов и консументов в конкретных экосистемах зависит от того, как соотносятся между собой темпы накопления органического вещества на определенном трофическом уровне и передачи его на вышестоящий, т.е. насколько сильно выедание образовавшихся запасов. Важную роль при этом имеет скорость воспроизведения основных генераций продуцентов и консументов.
В большинстве наземных экосистем, как уже говорилось, действует также правило биомасс, т.е. суммарная масса растений оказывается больше, чем биомасса всех травоядных, а масса травоядных превышает массу всех хищников.
Следует различать количественно продуктивность, -- а именно годовой прирост растительности -- и биомассу. Разница между первичной продукцией биоценоза и биомассой определяет масштабы выедания растительной массы. Даже для сообществ с преобладанием травянистых форм, скорость воспроизводства биомассы у которых достаточно велика, животные используют до 70% годового прироста растений.
В тех трофических цепях, где передача энергии осуществляется через связи «хищник -- жертва», часто наблюдаются пирамиды численности особей: общее число особей, участвующих в цепях питания, с каждым звеном уменьшается. Это связано еще и с тем, что хищники, как правило, крупнее своих жертв. Исключение из правил пирамиды численности составляют случаи, когда мелкие хищники живут за счет групповой охоты на крупных животных.
Все три правила пирамиды -- продуктивности, биомассы и численности - выражают энергетические отношения в экосистемах. При этом пирамида продуктивности имеет универсальный характер, а пирамиды биомассы и численности проявляются в сообществах с определенной трофической структурой.
Знание законов продуктивности экосистем, возможность количественного учета потока энергии имеют важное практическое значение. Первичная продукция агроценозов и эксплуатация человеком природных сообществ -- основной источник пищи для человека. Важное значение имеет и вторичная продукция биоценозов, получаемая за счет промышленных и сельскохозяйственных животных, как источник животного белка. Знание законов распределения энергии, потоков энергии и вещества в биоценозах, закономерностей продуктивности растений и животных, понимание пределов допустимого изъятия растительной и животной биомассы из природных систем позволяют правильно строить отношения в системе «общество -- природа».
Связи при которых одни организмы поедают другие организмы или их останки или выделения (экскременты) называются трофическими (трофе - питание, пища, гр.). При этом пищевые взаимоотношения между членами экосистемы выражаются через трофические (пищевые) цепи. Примерами таких цепей могут служить:
· ягель > ?олень > ?волк (экосистема тундры);
· трава > ?корова > ?человек (антропогенная экосистема);
· микроскопические водоросли (фитопланктон) > ?жучки и дафнии (зоопланктон) > ?плотва > ?щука > ?чайки (водная экосистема).
Воздействие на цепи питания с целью их оптимизации и получения большей или лучшей по качеству продукции не всегда бывают удачны. Так широко известен из литературы пример с завозом коров в Австралию. До этого природными пастбищами пользовались преимущественно кенгуру, экскременты которых успешно осваивались и перерабатывались австралийским навозным жуком. Коровьи экскременты австралийским жуком не осваивались, в результате чего началась постепенная деградация пастбищ. Для прекращения этого процесса пришлось завезти в Австралию европейского навозного жука.
Тpофические или пищевые цепи могут быть пpедставлены в фоpме пиpамиды. Численное значение каждой ступени такой пиpамиды может быть выpажена числом особей, их биомассой или накопленной в ней энергией.
В соответствии с законом пирамиды энергий Р.Линдемана и правила десяти процентов, с каждой ступени на последующую ступень переходит приблизительно 10 % (от 7 до 17 %) энергии или вещества в энергетическом выражении (рис.3.7). Заметим, что на каждом последующем уровне при снижении количества энергии ее качество возрастает, т.е. способность совершать работу единицы биомассы животного в соответствующее число раз выше, чем такой же биомассы растений.
Ярким примером является трофическая цепь открытого моря, представленная планктоном и китами. Масса планктона рассеяна в океанической воде и, при биопродуктивности открытого моря менее 0,5 г/м2 сут-1, количество потенциальной энергии в кубическом метре океанической воды бесконечно мало в сравнении с энергией кита, масса которого может достигать нескольких сотен тонн. Как известно, китовый жир - это высококалорийный продукт, который использовали даже для освещения.
Рис.3.7. Пиpамида пеpедачи энеpгии по пищевой цепи (по Ю.Одуму)
В деструкции органики тоже наблюдается соответствующая последовательность: так около 90 % энергии чистой первичной продукции освобождают микроорганизмы и грибы, менее 10 % - беспозвоночные животные и менее 1 % - позвоночные животные, являющиеся конечными косументами. В соответствии с последней цифрой сформулировано правило одного процента: для стабильности биосферы в целом доля возможного конечного потребления чистой первичной продукции в энергетическом выражении не должно превышать 1%.
Опираясь на пищевую цепь, как основу функционирования экосистемы, можно также объяснить случаи накопления в тканях некоторых веществ (например синтетических ядов), которые по мере их движения по трофической цепи не участвуют в нормальном обмене веществ организмов. Согласно правила биологического усиления происходит примерно десятикратное увеличение концентрации загрязнителя при переходе на более высокий уровень экологической пирамиды.
В частности, казалось бы незначительное повышенное содержания радионуклидов в речной воде на первом уровне трофической цепи осваивается микpооpганизмами и планктоном, затем концентpиpуется в тканях рыб и достигает максимальных значений у чаек. Их яйца имеют уровень радионуклидов в 5000 pаз больший по сравнению с фоновым загрязнением.
Видовой состав организмов обычно изучается на уровне популяции.
Напомним, что популяцией называется совокупность особей одного вида, населяющих одну территорию, имеющих общий генофонд и возможность свободно скрещиваться. В общем случае, та или иная популяция может находиться в пределах некоторой экосистемы, но может pаспpостpаняться и за границы. Hапpимеp, известна и охраняется популяция чеpношапошного сурка хребта Туоpа-Сис, занесенного в Красную Книгу. Данная популяция не ограничивается этим хребтом, но пpостиpается и южнее в пределы Веpхоянских гоp в Якутии.
Среда, в которой обычно встречается изучаемый вид, называется его местообитанием.
Как правило, экологическую нишу занимает один какой-то вид или его популяция. При совпадающих требованиях к окружающей среде и пищевым pесуpсам, два вида неизменно вступают в конкурентную борьбу, которая обычно заканчивается вытеснением одного из них. Подобная ситуация известна в системной экологии, как принцип Г.Ф. Гаузе, который гласит, что два вида не могут существовать в одной и той же местности, если их экологические потребности идентичны, т.е. если они занимают одну и ту же нишу. Соответственно, система взаимодействующих, диффеpенциpованных по экологическим нишам популяций, дополняющих друг друга в большей мере, нежели конкуpиpующих между собой за использование пpостpанства, времени и pесуpсов, называется сообществом (ценозом).
Белый медведь не может обитать в таежных экосистемах, также как бурый в полярных областях.
Видообразование всегда адаптивно, поэтому по аксиоме Ч.Дарвина каждый вид адаптирован к строго определенной, специфичной для него совокупности условий существования. При этом организмы размножаются с интенсивностью, обеспечивающей максимально возможное их число (правило максимального "давления жизни").
Например, организмы океанического планктона довольно быстро покрывают пространство в тысячи квадратных километров в виде пленки. В.И.Вернадский подсчитал, что скорость продвижения бактерии Фишера размером 10-12 см3 путем размножения по прямой была бы равна около 397 200 м/час - скорость самолета! Однако чрезмерное размножение организмов ограничивается лимитирующими факторами и коррелирует с количеством пищевых ресурсов среды их обитания.
Когда происходит исчезновение видов, прежде всего составленных крупными особями, в итоге меняется вещественно-энергетическая структура цензов. Если энергетический поток, проходящий через экосистему, не меняется, то включаются механизмы экологического дублирования по принципу: исчезающий или уничтожаемый вид в рамках одного уровня экологической пирамиды заменяет другой функционально-ценотический, аналогичный. Замена вида идет по схеме: мелкий сменяет крупного, эволюционно ниже организованный более высокоорганизованного, более генетически лабильный менее генетически изменчивого. Так как экологическая ниша в биоценозе не может пустовать, то экологическое дублирование происходит обязательно.
Последовательная смена биоценозов, преемственно возникающая на одной и той же территории под воздействием природных факторов или воздействия человека, называется сукцессией (сукцессио - преемственность, лат.). Например, после лесного пожара горельник в течение многих лет заселяется сначала травами, потом кустарником, затем лиственными деревьями и в конечном итоге хвойным лесом. При этом последовательные сообщества, сменяющие друг друга, называются сериями или стадиями. Конечным результатом сукцессии будет состояние стабилизированнной экосистемы - климакс (климакс - лестница, "зрелая ступень", гр.).
Сукцессия, начинающаяся на участке, прежде не занятом, называется первичной. К таковым относятся поселения лишайников на камнях, которые впоследствие заменят мхи, травы и кустарники (рис.3.8). Если сообщество развивается на месте уже существовавшего (например, после пожара или раскорчевки, устройства пруда или водохранилища), то говорят о вторичной сукцессии. Конечно, скорость сукцессий будет различной. Для первичных сукцессий могут потребоваться сотни или тысячи лет, а вторичные протекают быстрее.
Все популяции продуцентов, консументов и гетеротрофов тесно взаимодействуют через трофические цепи и таким образом поддерживают структуру и целостность биоценозов, согласовывают потоки энергии и вещества, обуславливают регуляцию окружающей их среды. Вся совокупность тел живых организмов населяющих Землю физико-химически едина, вне зависимости от их систематической принадлежности и называется живым веществом (закон физико-химического единства живого вещества В.И.Вернадского). Масса живого вещества сравнительно мала и оценивается величиной 2,4-3,6*1012 т (в сухом весе). Если ее распределить по всей поверхности планеты, то получится слой всего в полтора сантиметра. По В.И.Вернадскому эта "пленка жизни", составляющая менее 10-6 массы других оболочек Земли, является "одной из самых могущественных геохимических сил нашей планеты".
1.5.9 Динамика экосистем. Саморегуляция и устойчивость экосистем
Поступательные изменения в сообществе приводят к смене одного сообщества другим. Причиной подобных смен могут быть факторы, длительное время действующие в одном направлении, например, возрастающее в результате мелиорации иссушение болот, увеличивающееся антропогенное загрязнение водоемов, усиленный выпас скота. Возникающие при этом смены одного биоценоза другим называют экзогенетическими. Если при этом упрощается структура сообщества, обедняется видовой состав, снижается продуктивность, то такая смена сообщества называется дигрессией. Однако смена одного биоценоза другим может произойти в результате процессов, происходящих внутри самого сообщества, в результате взаимодействия живых организмов между собой. Такая смена называется эндогенетической.
Закономерный направленный процесс изменения сообществ в результате взаимодействия живых организмов между собой и окружающей их абиотической средой называется сукцессией.
Сукцессия как последовательный переход одного биоценоза в другой в пространстве или во времени сопровождающийся сменой состояний и свойств всех его компонентов, может возникнуть как под воздействием природных факторов, так и под воздействием человека. В связи с этим различают несколько форм сукцессии: антропогенную, пирогенную, катастрофическую и др.
Антропогенная сукцессия -- это последовательная смена биоценозов, преемственно возникающая на одном и том же биотопе под влиянием хозяйственной деятельности человека, его прямым или косвенным влиянием на экосистему. Например, вырубки леса, загазованность атмосферы и т.д.
Пирогенная сукцессия - это смена биоценозов в результате пожаров, вне зависимости от их причины (природные или по вине человека).
Катастрофическая сукцессия -- это сукцессия, происходящая вследствие катастрофических для экосистемы происшествий: выдувание сильными ветрами, необычный паводок, массовое размножение вредителей и др.
Сукцессии в природе разномасштабны. Иерархичность в организации сообществ проявляется в иерархичности сукцессионых процессов: более крупные преобразования биогеоценозов складываются из более мелких. Даже в стабильных экосистемах с хорошо отрегулированным круговоротом веществ постоянно осуществляется множество локальных сукцессионных смен, поддерживающих сложную внутреннюю структуру сообществ.
По мере развития экосистемы первопоселенцы постепенно сменяются новыми видами, более приспособленными к борьбе за существование. Например, под кронами лиственных деревьев вырастают медленно растущие и теневыносливые хвойные. Когда они становятся выше лиственных, то, закрывая им доступ к свету, вытесняют эти светолюбивые растения. Такая смена одних видов другими называется экологической сукцессией. Смена растительности сопровождается и сменой входящих в экосистему видов животных: сначала первичных потребителей, питающихся определенными видами растений, а затем потребителей последующих уровней в цепи питания. По мере развития экосистемы число составляющих ее видов возрастает, а связи между ними становятся все более сложными и разветвленными. Это приводит к все более полному использованию ресурсов среды, к увеличению устойчивости экосистемы. В конце концов, возникает устойчивая зрелая экосистема, находящаяся в равновесии со средой и способная сохраняться в течение длительного времени в относительно неизменном виде. Обычно в природе процесс сукцессии длится тысячи лет, но в отдельных случаях, например, после пожаров или при зарастании водоемов, можно наблюдать смену экосистем на глазах одного поколения людей. Несмотря на относительную устойчивость зрелых экосистем, они тоже могут заменяться другими. Это происходит, например, при резком изменении климата, а в последнее время -- особенно под влиянием деятельности человека (вырубка лесов, осушение болот, распашка земель, строительство городов и поселков и т.д.).
1.5.10 Искусственные экосистемы
Искусственные экосистемы (нообиогеоценозы или социоэкосистемы) - это совокупность организмов, живущих в созданных человеком условиях. В отличие от экосистемы включает в себя дополнительное равноправное сообщество, называемое нооценозом.
Нооценоз - это часть искусственной экосистемы, включающая в себя средства труда, общество и продукты труда.
Агроценоз -- это биоценоз, искусственно созданный человеком для своих целей с определенным уровнем и характером продуктивности.
В настоящее время агроценозами занято около десяти процентов суши.
Несмотря на то, что в агроценозе, как и в любой природной экосистеме, существуют обязательные трофические уровни -- продуценты, консументы, редуценты, образующие типичные трофические сети, между этими двумя типами сообществ существуют довольно большие различия:
1) В агроценозах резко снижено разнообразие организмов. Однообразие и видовую бедность агроценозов человек поддерживает специальной сложной системой агротехнических мер. На полях обычно культивируют один вид растений, в связи с чем резко обедняется и животное население, и состав микроорганизмов почвы. Однако даже самые обедненные агроценозы включают несколько десятков видов организмов, принадлежащих к разным систематическим и экологическим группам. Например, в агроценоз пшеничного поля, кроме пшеницы, входят сорняки, насекомые - вредители пшеницы и хищники, беспозвоночные -- обитатели почвы и напочвенного слоя, патогенные грибы и др.
2) Виды, культивируемые человеком, поддерживаются искусственным отбором и не могут выдерживать борьбу за существование без поддержки человека.
3) Агроэкосистемы получают дополнительную энергию благодаря деятельности человека, обеспечивающей дополнительные условия роста культивируемых растений.
4) Чистая первичная продукция агроценоза (биомасса растений) удаляется из экосистемы в виде урожая и не поступает в цепи питания. Частичное потребление ее вредителями всячески пресекается деятельностью человека. В результате этого почва обедняется минеральными веществами, необходимыми для жизнедеятельности растений. Следовательно, снова необходимо вмешательство человека в виде внесения удобрений.
В агроценозах ослаблено действие естественного отбора и действует в основном искусственный отбор, направленный на максимальную продуктивность растений, нужных человеку, а не тех, которые лучше приспособлены к окружающим условиям.
Таким образом, агроценозы, в отличие от природных систем, не являются саморегулирующимися системами, а регулируются человеком. Задачей такой регуляции является повышение продуктивности агроценоза. Для этого орошаются засушливые и осушаются переувлажненные земли; уничтожаются сорняки и поедающие урожай животные, меняются сорта культивируемых растений и вносятся удобрения. Все это создает преимущества только для культивируемых растений.
В отличие от природной экосистемы агроценоз неустойчив, он быстро разрушается, т.к. культурные растения не выдержат конкуренции с дикорастущими и будут ими вытеснены.
Для агробиоценозов также характерен краевой эффект в размещении насекомых вредителей. Они концентрируются в основном в краевой полосе, а центр поля заселяют в меньшей степени. Указанное явление связано с тем, что в переходной полосе резко обостряется конкуренция между отдельными видами растений, а это в свою очередь, снижает у последних уровень защитных реакций против насекомых.
2. БИОСФЕРА ИСТОРИЯ ЕЕ СТАНОВЛЕНИЯ, РАЗВИТИЯ И СОВРЕМЕННОЕ СОСТОЯНИЕ
2.1 Основы учения о биосфере
2.1.1 Определение понятия «биосфера»
Биосфера (греч. bios - жизнь, sphaira - шар, сфера) - сложная наружная оболочка Земли, населенная организмами, составляющими в совокупности живое вещество планеты. Это одна из важнейших геосфер Земли, являющаяся основным компонентом природной среды, окружающей человека.
Термин биосфера ввел австрийский геолог Д. Зюсс в 1875 году. Он понимал под биосферой тонкую пленку жизни на земной поверхности. Роль и значение биосферы для развития жизни на нашей планете оказались настолько велики, что уже в начале XX века возникло новое фундаментальное научное направление естествознания - учение о биосфере, основоположником которого стал великий русский ученый В.И. Вернадский. Именно он разработал современные представления о биосфере и определил биосферу как «область существования живого вещества».
Земля и окружающая ее среда сформировались в результате закономерного развития всей Солнечной системы. Около 4,7 млрд. лет назад из рассеянного в протосолнечной системе газопылевого вещества образовалась планета Земля. Как и другие планеты, Земля является открытой системой, получающей энергию от Солнца. Солнечная энергия достигает земной поверхности в виде электромагнитного излучения. Солнечное тепло - одно из главных слагаемых климата Земли, основа для развития многих геологических процессов. В то же время, огромный тепловой поток исходит из глубин Земли.
По новым данным, масса Земли составляет 6х1021 т, объем - 1,083х1012 км3, площадь поверхности - 510,2 млн км2. Размеры, а следовательно, и все природные ресурсы нашей планеты ограничены.
2.2.2 Строение оболочек Земли, их структура, зональность, динамика
Земля имеет неоднородное строение и состоит из концентрических оболочек (геосфер), - внутренних и внешних. К внутренним относится ядро, мантия, а к внешним - литосфера (земная кора), гидросфера, атмосфера и сложная оболочка земли - биосфера.
Классическое определение земных оболочек дал В.И. Вернадский: «… Более или менее правильные концентрические слои, охватывающие всю планету, меняющиеся с глубиной, в вертикальном разрезе планеты и отличающиеся друг от друга характерными для каждой, только ей свойственными особыми физическими, химическими и биологическими свойствами».
Литосфера греч. «литос» - камень) - каменная оболочка Земли, включающая земную кору мощностью (толщиной) от 6 км. (под океанами) до 80 км. под горными системами (рис. 6.1., стр. 151). Земная кора сложена горными породами. Доля различных горных пород в земной коре неодинакова. Более 70% приходится на базальты, граниты и другие магматические породы. Около 17% - на преобразованные давлением и высокой температурой породы и лишь чуть более 12% - на осадочные породы - глины и глинистые сланцы, пески и песчаники, карбонатные породы и др. (табл. 6.1., стр. 151).
Земная кора состоит из огромных, плотно прилегающих друг к другу блоков (литосферные плиты), которые как бы «плавают» по поверхности мантии, медленно перемещаясь вместе с ней.
Поверхность литосферы отличается значительными неравномерностями, которые и определяют рельеф Земли. Наиболее крупными формами рельефа являются океанические впадины (обширные понижения, заплоненные водой) и возвышающиеся массивы суши (континенты или материки) - Евразия, Африка, Австралия, Северная и Южная Америка, Антарктида.
Земная кора - важнейший ресурс для человечества. Она содержит горючие полезные ископаемые (уголь, торф, нефть, газ, горючие сланцы), рудные (железо, алюминий, медь, олово и др.) и нерудные (фосфориты, апатиты и др.) полезные ископаемые, естественные строительные материалы (известняки, пески, гравий и др.).
Гидросфера (греч. «гидрор» - вода) - водная оболочка Земли. Её подразделяют на поверхностную и подземную.
Поверхностная гидросфера - водная оболочка поверхностной части Земли. В ее состав входят воды океанов, морей, озер, рек, водохранилищ, болот, ледников, снежных покровов и др. Все эти воды постоянно или временно находятся на земной поверхности и носят название поверхностных. Поверхностная гидросфера не образует сплошного слоя, и прерывисто покрывает Землю на 70,8%.
Подземная гидросфера - включает воды, находящиеся в верхней части земной коры. Их называют подземными. Сверху подземная гидросфера ограничена поверхностью земли, нижнюю ее границу проследить не удается, т.к. гидросфера очень глубоко проникает в толщу земной коры.
По отношению к объему земного шара общий объем гидросферы не превышает 0,13%. Основную часть гидросферы занимает Мировой океан (табл. 6.2., стр. 152). Глубина океана, в среднем, составляет 4 км., а отдельные впадины до 11 км.. На долю подземных вод приходится 23, 4 млн км3, или 1,69% от общего объема гидросферы, остальное - воды озер, рек, водохранилищ, болот, ледников, снежных покровов и др.
Более 98% всех водных ресурсов Земли составляют соленые воды океанов, морей и др. Общий объем пресных вод на Земле равен 28, 25 млн км3, или около 2% общего объема гидросферы. Основная часть пресных вод сосредоточена в ледниках, воды которых используются очень мало. На долю остальной части пресных вод, используемых для водоснабжения, приходится 4,2 млн км3 воды, или всего лишь 0,3% объема гидросферы.
Гидросфера играет огромную роль в формировании природной среды нашей планеты, воздействует на атмосферные процессы (нагревание и охлаждение воздушных масс, насыщение их влагой и т.д.).
Атмосфера (греч. «атмос» - пар) - газовая оболочка Земли, состоящая из смеси различных газов, водяных паров, пыли и т.д. океан (табл. 6.2., по Н. Реймерсу, 1990 стр. 153). Общая масса атмосферы - 5,15 х1015 т. Она простирается над поверхностью литосферы и гидросферы и не имеет резкой верхней границы (до высоты 1000 км.), постепенно переходя в космическое пространство.
Нижний слой атмосферы (до высоты 8-10 км. в полярных, 10-12 км. в умеренных и 16-18 км. в тропических широтах) называют тропосферой (от слова «тропос» - поворот). Её роль особенно велика в формировании природной среды Земли. В тропосфере происходят глобальные вертикальные и горизонтальные перемещения воздушных масс, во многом определяющие круговорот воды, теплообмен, трансграничный перенос пылевых частиц и загрязнений.
Над тропосферой простирается стратосфера, область холодного, разреженного воздуха толщиной приблизительно 20 км. В стратосфере, на высоте 20-30 км. расположен «озоновый слой», отражающий губительные для жизни космические излучения и ультрафиолетовые излучения Солнца. Сквозь стратосферу непрерывно падает метеоритная пыль, в нее выбрасывается вулканическая пыль, а в прошлом и продукты ядерных взрывов в атмосфере.
Выше стратосферы расположена мезосфера и ионосфера (термосфера) - слой разреженного газа из ионизированных молекул и атомов и, наконец, экзосфера (внешняя оболочка).
Атмосферные процессы тесно связаны с процессами, происходящими в литосфере и водной оболочке, показателем чего являются атмосферные явления.
К атмосферным явлениям относят: осадки, облака, туман, грозу,, гололед, пыльную (песчаную) бурю, шквал, метель, изморозь, росу, иней, обледенение, полярное сияние и др.
Практически все поверхностные (экзогенные) геологические процессы, обусловленные взаимодействием атмосферы, литосферы и гидросферы происходят, как правило в биосфере.
Биосфера - внешняя оболочка Земли, в которую входят часть атмосферы до высоты 25-30 км (до озонового слоя), практически вся гидросфера и верхняя часть литосферы (до глубины 3 км). Особенностью этих частей является то что они населены живыми организмами, составляющими живое вещество планеты. Крайних пределов биосферы достигают лишь низшие организмы - бактерии и представители царства вирусов. Биосфера состоит из абиотической части (воздуха, воды, горных пород) и биотической или биоты. Взаимодействие этих частей обусловило формирование почв и осадочных пород, которые по В.И. Вернадскому несут на себе следы деятельности древних биосфер, существовавших в прошлые геологические эпохи.
Необходимыми условиями существования биосферы являются наличие воды в жидком состоянии и лучистой энергии Солнца.
Подобные документы
Объекты организменного (уровня особей), популяционно-видового, биоценотического, биосферного уровней организации как предмет изучения экологии. Главные задачи экологии, основные принципы изучения. Специфика экологических факторов, классификация на группы.
реферат [27,8 K], добавлен 17.02.2010Общая характеристика демэкологии - раздела общей экологии, объектами изучения которого являются изменение численности популяций, отношения групп внутри них. Факторы, влияющие на выживаемость популяций. Кривые изменения численности популяций, их типы.
курсовая работа [41,0 K], добавлен 19.02.2016Общие законы действия факторов среды на организмы. Важнейшие абиотические факторы и адаптации к ним организмов. Основные среды жизни. Понятие и структура биоценоза. Математическое моделирование в экологии. Биологическая продуктивность экосистем.
учебное пособие [6,9 M], добавлен 11.04.2014Проблемы экологии как науки. Среда как экологическое понятие, ее основные факторы. Среды жизни, популяции, их структура и экологические характеристики. Экосистемы и биогеоценоз. Учение В.И. Вернадского о биосфере и ноосфере. Охрана окружающей среды.
методичка [66,2 K], добавлен 07.01.2012Определение экологии. Основные разделы. Законы экологии. Организм и среда. Практическое значение экологии. Взаимодействие сельскохозяйственных и природных экосистем, сочетания окультуренных и естественных ландшафтов.
реферат [14,4 K], добавлен 25.10.2006История развития экологии. Основные цели и задачи экологии. Влияние человека на природу и взаимодействие с ней. Природопользование, охрана окружающей среды и экологическая безопасность. Экологические проблемы Санкт-Петербурга и Ленинградской области.
реферат [136,7 K], добавлен 23.08.2013Глобальные проблемы окружающей среды. Междисциплинарный подход в исследовании экологических проблем. Содержание экологии как фундаментального подразделения биологии. Уровни организации живого как объекты изучения биологии, экологии, физической географии.
реферат [16,3 K], добавлен 10.05.2010Характеристика этапов развития экологии: первобытное общество и античные цивилизации, от Средневековья к Возрождению, век естествознания. Основные принципы экологии. Основные факторы внешней среды. Глобальная экология и опасность экологического кризиса.
курсовая работа [40,5 K], добавлен 19.07.2010Исходные теоретические концепции экологии. Структура и эволюция биосферы. Экология популяций и сообществ. Среды жизни человека и формы его адаптации к ним. Проблема роста народонаселения. Глобальные последствия загрязнения атмосферы. Охрана почв и земель.
учебное пособие [2,8 M], добавлен 14.02.2013Разнообразие в толковании термина "экология". Предмет, виды и объекты изучения социальной экологии. Основные задачи, виды и направления прикладной экологии. Управление ценностной ориентацией потребления как одна из наиболее сложных социальных задач.
реферат [14,8 K], добавлен 29.03.2009