Экология и устойчивое развитие экосистем

История развития экологии. Динамические характеристики популяций. Классификация экологических пирамид. Межвидовые связи в экосистеме. Глобальные экологические проблемы планеты. Виды экологического мониторинга. Принципы и методы охраны окружающей среды.

Рубрика Экология и охрана природы
Вид курс лекций
Язык русский
Дата добавления 08.12.2011
Размер файла 473,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Экология и устойчивое развитие

Тема 1. Предмет «Экология и устойчивое развитие». Краткая история развития экологии

экология популяция экосистема окружающая среда

1.1 Предмет «Экология», определение, цели, задачи и методы

Существование человека неразрывно связано с определенными условиями среды (температура, влажность, состав воздуха, качество воды, состав пищи и др.). Эти требования вырабатывались в течение многих тысячелетий существования человека. Понятно, что при резком изменении этих факторов или отклонении от нормы, требуемой организму, возможны нарушение обмена веществ и как крайний случай - несовместимость с жизнью человека. Невозможно охранять природу, пользоваться ею, не зная, как она устроена, по каким законам существует и развивается, как реагирует на воздействие человека. Все это и является предметом экологии.

Термин экология (от греческого "oicos" - дом, убежище, "logos" - наука, учение) был впервые введен в 1866 г. немецким ученым Эрнстом Геккелем. В современном понимании экология - это наука о взаимоотношениях организмов между собой и с окружающей неживой (косной) природой.

Если ранее этот термин употребляли лишь ученые, то теперь термины "экология", "экологические факторы", "экологические проблемы" и другие настолько часто употребляются, что вместо интереса вызывают подчас обратную реакцию. Распространенной ошибкой стало сведение предмета экологии как науки к предмету охраны природы. Современная экология выполняет функции гораздо более широкие.

Основными задачами экологии можно считать следующие:

* исследование закономерностей организации жизни;

* создание научной основы рациональной эксплуатации биологических ресурсов;

* прогнозирование изменений в природе, возникающих под влиянием хозяйственной деятельности человека;

* определение допустимых пределов воздействия человека на окружающую среду;

* сохранение среды обитания живых организмов, в том числе и человека;

* разработка рекомендаций по развитию человеческого общества.

Объектами исследования экологии: являются биологические макросистемы (популяции, биоценозы) и их динамика во времени и пространстве.С учетом накопленных знаний об окружающей среде современные ученые установили ряд закономерностей и принципы взаимодействия человеческого общества с окружающей средой, которые в литературе именуются законами экологии. Наиболее известны 4 закона-афоризма американского ученого В. Коммонера:

? все связано со всем (о всеобщей связи вещей и явлений в природе);

? все должно куда-то деваться (закон сохранения);

? ничто не дается даром (о цене развития);

? природа знает лучше (о главном критерии эволюционного отбора).

1.2 Краткий исторический очерк развития экологии

В истории развития экологии можно выделить три основных этапа.

Первый этап - зарождение и становление экологии как науки (до 60-х г. XЙX в.);

Второй этап - оформление экологии в самостоятельную отрасль знаний (после 60-х г. XЙX в.);

Третий этап - преобразование экологии в комплексную науку (50-е г. XX в. - до настоящего времени).

Если рассмотреть каждый из трех этапов более детально, то можно выделить восемь этапов:

В первый этап входит:

1. отражает примитивные знания, накапливаемые людьми, в т.ч. первобытными, в процессе тесного общения с природой и ведения натурального хозяйства. Начался за много веков до новой эры и завершился в первые века до новой веры.

2. накопление фактического материала, но уже античными учеными, средневековый застой. Период: I-III век до н.э. - XIV век н.э.

3. продолжение сбора и первые попытки систематизация колоссального фактического материала, накопленного с началом великих географических открытий и колонизацией новых стран - в эпоху Возрождения. Период: с IV по XVIII век включительно.

4. связан с крупными ботанико-географическими открытиями, способствовавшими дальнейшему развитию экологического мышления; предпосылка экологических идей; выделены экология растений и экология животных. Период: конец XVIII - начало XIX века.

5. - становление эволюционной экологии, углубление экологических исследований, начало изучения взаимосвязей. Период: с начала XIX века до второй половины (1866 г.) XIX века

Во второй этап входит:

6. определение понятия "экология", доминирование исследований аутэкологического направления - изучение естественной совокупности видов, непрерывно перестраивающихся применительно к изменению факторов среды, т.е. факториальной аутэкологии. М.С. Гиляров называл этот этап временем факториального редукционизма. Период: со второй половины (1866 г.) XIX до середины (1936 г.) XX века.

В третий этап входит:

7. системный, подход к исследованиям природных систем, формирование общей экологии, как самостоятельной фундаментальной биологической науки, доминирование синэкологического направления - изучение процессов материально-энергетического обмена, развитие количественных методов и математического моделирования. Период: 40-70 гг. XX века.

8. "экологизация" науки; становление экологических наук, учитывающих деятельность Человека, т.е. социальной и политической направленности. Возрастание интереса к изучению популяций (демэкология), динамики формирования биогеоценозов в связи с антропогенными нарушениями. Большое внимание уделяется стационарным исследованиям. Основная методология - системный анализ. Одно из главных направлений - длительный экологический мониторинг разных уровней (наземный, региональный, глобальный и пр.). Период: с 80-х годов XX века по настоящее время.

Роль ученых в развитии науки. Огромную роль в развитии экологических идей сыграл немецкий ученый А. Гумбольдт (1769-1859), который в 1807 г. издал книгу «Идеи географии растений», в которой ввел ряд научных понятий, которые и сегодня используются экологами. Профессор Московского университета К.Ф. Рулье (1814-1858) четко сформулировал мысль о том, что развитие органического мира обусловлено воздействием изменяющейся внешней среды. Считается, что К.Ф. Рулье в своих трудах заложил основы экологии животных. Его идеи развил ученик Н.А. Северцев (1827-1885), опубликовавший в 1855г. работу «Периодические явления в жизни зверей, птиц и гадов Воронежской губернии». Значимость этой магистерской диссертации Н.А. Северцева для науки можно оценить тем, что через 100 лет в 1950 г. эта работа была переиздана, и она не утратила своего значения и сегодня.

Важной вехой в развитии экологических представлений о природе явился выход знаменитой книги Ч. Дарвина (1809-1882) о происхождении видов путем естественного отбора. Это великое открытие в биологии явилось мощным толчком для развития экологических идей. Не случайно в 1866г., вскоре после выхода в свет учения Ч. Дарвина, Э. Геккель (1834-1919) предложил термин для новой науки - «экология», который впоследствии прижился, и именно его используют современные ученые для обозначения целой системы наук. В 1877 г. немецкий гидробиолог К. Мебиус (1825-1908) разработал учение о биоценозе как сообществе организмов, которые через среду обитания теснейшим образом связаны друг с другом. Термин биоценоз также широко используется современными учеными. Считается, что биоценоз - это часть любой экосистемы. Если к биоценозу добавить компоненты внешней среды, с которыми связаны организмы, составляющие биоценоз, то мы получим экосистему.

В 1895 г. датский ученый Е. Варминг (1841-1924) ввел термин «экология» в ботанику для обозначения самостоятельной научной дисциплины - экологии растений. Русский ученый В.В. Докучаев (1846-1903) создал учение о природных зонах и учение о почве, как особом биокосном теле (системе). Идеи В.В. Докучаева положили начало развитию геоботаники и ландшафтоведения, ведь почва - это неотъемлемый компонент практически всех экосистем суши нашей планеты.

Для становления науки экологии в конце XIX - начале ХХ веков большую роль сыграли многие русские ученые. Из них можно назвать нескольких, считающихся основоположниками новых научных направлений: А.Н. Бекетов, С.А. Усов, М.А. Мензбир, П.П. Сушкин, Б.М. Житков, Д.Н. Кошкаров, В.В. Станчинский, Н.П. Наумов, А.Н. Формозов, Н.И. Калабуков, Н.Ф. Леваковский, С.И. Коржинский, А.Я. Гордягин, И.К. Пачоский, А.Н. Краснов, Г.И. Танфильев, П.Н. Крылов, Г.Ф. Морозов и многие другие. В это время вышло много монографий и учебных пособий по географии растений, экологии животных и экологии растений.

Годом рождения общей экологии как науки об экосистемах принято считать 1935 г. - год выхода в свет учения об экосистемах английского геоботаника А. Тенсли. В 1942 г. сходные идеи опубликовал русский ученый В.Н. Сукачев, выдвинувший систему понятий о биогеоценозе. Биогеоценоз В.Н. Сукачева - практически полный аналог экосистемы А. Тенсли.

В первой половине и в середине ХХ века развитие экологии в России было связано с такими именами, как: Б.Г. Иоганзен, М.С. Гиляров, Г.А. Викторов, В.Н. Беклемишев, С.С. Шварц, П.Д. Ярошенко, Г.И. Поплавская, А.П. Шенников, В.Г. Карпов, Т.А. Работнов, Л.Г. Раменский, Т.К. Горышина, В.Д. Александрова, Б.А. Тихомиров, В.И. Василевич, Л.Е. Родин, В.Б. Сочава и др. Из зарубежный ученых ХХ столетия следует выделить следующих: А. Пирс, Ч. Элтон, В. Шелфорд, В. Мак-Дуголл, Ф. Клементс, Ю. Одум, Э. Пианка, Р. Риклефс, Ф. Рамада и др. Многие из перечисленных исследователей являются авторами монографий, учебников и учебных пособий.

Особую и важнейшую роль в становлении и развитии экологии сыграл великий русский ученый В.И. Вернадский - создатель учения о биосфере.

Методы исследований в экологии. В экологии часто используются методы, применяемые в других науках, как в биологических (биогеохимия, анатомия, физиология, и др.), так и небиологических (физика, химия, геодезия, метеорология и др.). Но для выявления специфики экологических закономерностей существуют исключительно собственные - экологические методы. Они делятся на полевые, лабораторные, экспериментальные, количественные (математическое моделирование) методы.

1.3 Разделы экологии (аутэкология, демэкология, синэкология)

Экологические знания разнообразны, образуют комплекс наук, рассматривающих различные стороны взаимодействия всех компонентов природы и человеческого общества.

Глобальная (всеобщая) экология рассматривает особенности взаимодействия природы и общества в рамках всего Земного шара, в том числе глобальные экологические проблемы (потепление климата планеты, сокращение площади лесов, опустынивание, загрязнение среды обитания живых организмов и т. п.).

Классическая (биологическая) экология исследует связи между живыми системами (организмами, популяциями, сообществами) и условиями их обитания, как в настоящее время, так и в прошлом (палеоэкология). Различные разделы биологической экологии изучают разные живые системы: аутэкология - экологию организмов, популяционная экология - экологию популяций, синэкология - экологию сообществ.

Аутэколомгия (греч. Autos - сам) (аутоэколомгия) - раздел экологии, изучающий взаимоотношения организма с окружающей средой.

Демэколомгия (от греч. demos -- народ), экология популяций - раздел экологии, изучающий влияние факторов окружающей среды на отдельные организмы, популяции и виды (растений, животных, грибов, бактерий). Задача - выявление физиологических, морфологических и прочих приспособлений (адаптаций) видов к различным экологическим условиям: режиму увлажнения, высоким и низким температурам, засолению почвы (для растений). В последние годы появилась новая задача - изучение механизмов реагирования организмов на различные варианты химического и физического загрязнения (включая радиоактивное загрязнение) среды.

Синэколомгия - раздел экологии, изучающий взаимоотношения организмов различных видов внутри сообщества организмов. Часто синэкологию рассматривают как науку о жизни биоценозов, то есть многовидовых сообществ животных, растений и микроорганизмов.

Палеоэкология - раздел палеонтологии, изучающий условия существования, образ жизни и взаимосвязь вымерших организмов, их изменения в процессе исторического развития жизни на Земле.

Прикладная экология определяет нормы (пределы), использования природных богатств, рассчитывает допустимые нагрузки на окружающую природную среду для поддержания ее в пригодном для жизнедеятельности природных систем состоянии.

Социальная экология объясняет и прогнозирует основные направления развития взаимодействия общества с природной средой.

Взаимосвязь экологии с другими науками

Экология тесно взаимодействует с другими науками: как биологическими, так и других областей знаний.

На стыке экологии и других биологических наук возникли:

экоморфология - выясняет, как условия среды формируют строение организмов;

экофизиология - изучает физиологические адаптации организмов к факторам среды;

экоэтология - исследует зависимость поведения организмов от условий их жизни;

генетика популяций - изучает реакции особей с разным генотипом на условия среды обитания;

биогеография - изучает закономерности размещения организмов в пространстве.

Экология взаимодействует и с географическими науками: геологией, физической и экономической географией, климатологией, почвоведением, гидрологией; другими естественными науками (химией, физикой). Она неотделима от морали, права, экономики и т. д.

Тема 2. Аутэкология - экология особи

2.1 Среда обитания организма

Под средой обитания понимают совокупность внешних природных условий и явлений, в которые погружены живые организмы, и с которыми эти организмы находятся в постоянном взаимодействии.

На нашей планете организмы освоили четыре основные среды обитания: водную, наземную (воздушную), почвенную и тело другого организма, используемое паразитами.

Окружающая организм среда характеризуется огромным разнообразием, слагаясь из множества динамичных во времени и пространстве элементов, явлений, условий, которые рассматриваются в качестве факторов.

От понятия «среда обитания» следует отличать понятие «условия существования» - совокупность жизненно необходимых факторов среды, без которых живые организмы не могут существовать (свет, тепло, влага, воздух, почва). В отличие от них другие факторы среды хотя и оказывают существенное влияние на организмы, но не являются для них жизненно необходимыми (например, ветер, естественное и искусственное ионизирующее излучение, и др.).

Среда обитания организма - это совокупность абиотических и биотических условий его жизни. Воздействия среды воспринимаются организмами через посредство факторов среды, называемыми экологическими.

2.2 Экологические факторы и их классификация

Экологический фактор - это любое условие среды, способное оказывать прямое или косвенное влияние на живые организмы.

Экологические факторы среды, с которыми связан любой организм, делятся на 3 категории:

1) Факторы неживой природы (абиотические - это совокупность факторов неорганической среды, влияющих на жизнь и распространение животных и растений).

Они подразделяются на 4 подгруппы:

? климатические - это все факторы, которые формируют климат и способны влиять на жизнь организмов (свет, влага, давление, температура, скорость ветра и т. д.)

? эдафические или почвенные факторы - это свойства почвы которые оказывают влияние на жизнь организмов. Они в свою очередь разделяются на

а) физические (воздухо- и влагоемкость, плотность, воздухо- и влагопроницаемость, цвет);

б) химические (кислотность, минеральный состав, содержание гумуса).

? орографические или факторы рельефа - это влияние характера и специфики рельефа на жизнь организмов (рельеф, высота над уровнем моря, экспозиция местности - это положение местности по отношению к сторонам света, крутизна местности - это угол наклона местности к горизонту).

? гидрофизические факторы - это влияние воды во всех состояниях (жидкое, твердое, газообразное) и физических факторов среды (шум, вибрация, гравитация, магнитное, электромагнитное излучение) на жизнь организмов.

2) Факторы живой природы (биотические - это совокупность влияний жизнедеятельности одних организмов на жизнедеятельность других, а также на неживую природу).

В зависимости от вида воздействующего организма их разделяют на две группы:

а) внутривидовые факторы - это влияние особей этого же вида на организм (заяц на зайца, сосна на сосну);

б) межвидовые факторы - это влияние особей других видов на организм (волк на зайца, сосны на березу).

В зависимости от принадлежности к определенному царству биотические факторы подразделяются на 4 основные группы:

? фитогенные факторы - это влияние растений на организм;

? зоогенные факторы - это влияние животных на организм;

? микробиогенные факторы - это влияние микроорганизмов (вирусы, бактерии) на организм;

? микогенные факторы - влияние грибов на организм.

3) Факторы, порожденные человеком и воздействующие на окружающую среду (антропогенные).

В зависимости от характера воздействия они делятся на 2 группы:

а) факторы прямого влияния - это непосредственное воздействие человека на организм (скашивание травы, вырубка леса, отстрел животных, отлов рыбы);

б) факторы косвенного влияния - это влияние человека фактом своего существования (сельское хозяйство, промышленность, транспорт, бытовая деятельность и др.).

В зависимости от последствий воздействия обе эти группы факторов в свою очередь еще подразделяются на положительные (посадка и подкормка растений, разведение и охрана животных, охрана окружающей среды), которые улучшают жизнь организмов или увеличивают их численности. И, отрицательные факторы (вырубка деревьев, загрязнение окружающей среды, разрушение местообитаний, прокладка дорог и других коммуникаций), которые ухудшают жизнь организмов или снижают их численность.

Оригинальную классификацию экологических факторов по степени их постоянства, т.е. по их периодичности, предложил А.С. Мончадский. Согласно этой классификации различают следующие 3 группы факторов.

1. Первичные периодические факторы - это факторы, действие которых началось до появления жизни на Земле и живые организмы должны были сразу к ним адаптироваться (лунные ритмы, перемена времен года).

2. Вторичные периодические факторы - это факторы, являющиеся следствием первичных периодических факторов (влажность, температура, динамика пищи, содержание газов в воде).

3. Непериодические факторы - это факторы, не имеющие правильной периодичности или цикличности (эдафические факторы, антропогенные факторы).

По характеру ответной реакции организма на воздействие экологического фактора различают следующие группы экологических факторов:

1) Раздражители - это факторы, вызывающие приспособительные изменения физиологических функций и биохимических реакций;

2) Модификаторы - это факторы, вызывающие приспособительные анатомические и морфологические изменения в организме;

3) Ограничители - это факторы, обуславливающие невозможность существования в данных условиях и ограничивающие среду распространения организма;

4) Сигнализаторы - это факторы, свидетельствующие об изменении других факторов и выступающие в роли предупредительного сигнала.

Помимо приведенных классификаций экологических факторов в экологии применяются и другие классификации, в основу которых берутся различные категории в зависимости от пути исследования.

Влияние факторов окружающей среды на биологическое разнообразие.

Лимитирующими экологическими факторами следует называть такие факторы, которые ограничивают развитие организмов из-за недостатка или избытка по сравнению с потребностью.

Температура - важнейший из лимитирующих (ограничивающих) факторов.

Свет - это первичный источник энергии, без которого невозможна жизнь на Земле. Он участвует в фотосинтезе и это его важнейшая энергетическая функция. Важное значение для организмов имеет интенсивность освещения. Растения по отношению к освещенности подразделяются на светолюбивые, тенелюбивые и теневыносливые.

Вода - лимитирующий фактор, как в наземных, так и в водных местообитаниях.

Влажность. В зависимости от способов адаптации растений к влажности выделяют несколько экологических групп: гигрофилы (влаголюбивые), ксерофилы (сухолюбивые) и промежуточные - мезофиллы.

Живые организмы не только испытывают влияние со стороны окружающей их среды, но сами активно влияют на среду своего обитания. В результате их жизнедеятельности на среду могут быть оказаны следующие воздействия:

- физико-химическое: изменение свойств среды (газового состава воздуха и воды, структуры и свойств почвы, даже климата местности);

- механическое: например, разрыхление грунта животными при прокладывании ходов, постройке нор; укрепление грунта корнями деревьев;

- очистка природных вод мелкими рачками, личинками и рыбами, которые имеют своеобразный тип питания, называемый фильтрацией.

2.3 Экологическая ниша

Экологическая ниша - пространственно-временное положение организма в рамках экосистемы (где, когда и чем питается, где устраивает гнездо и т.п.).

Любой вид организмов приспособлен для определенных условий существования и не может произвольно менять среду обитания, пищевой рацион, время питания, место размножения, убежища и т.п. Весь комплекс отношений к подобным факторам определяет место, которое природа выделила данному организму, и роль, которую он должен сыграть во всеобщем жизненном процессе. Все это объединяется в понятии экологической ниши.

В разное время понятию экологической ниши приписывали разный смысл. Сначала словом “ниша” обозначалась основная единица распределения вида в пределах пространства экосистемы, диктуемого структурными и инстинктивными ограничениями данного вида. Например, белки живут на деревьях, лоси - на земле, одни виды птиц гнездятся на ветвях, другие в дуплах и т.д. Здесь понятие экологическая ниша трактуется в основном как местообитание, или пространственная ниша. Позднее термину “ниша” был придан смысл “функционального статуса организма в сообществе”. В основном это касалось места данного вида в трофической структуре экосистемы: вид пищи, время и место питания, кто является хищником для данного организма и т.д. Теперь это называют трофической нишей. Затем было показано, что нишу можно рассматривать как некий гиперобъем в многомерном пространстве, построенном на базе факторов среды обитания. Этот гиперобъем ограничивал диапазон факторов, в котором может существовать данный вид (гиперпространственная ниша).

То есть в современном понимании экологической ниши можно выделить, по крайней мере, три аспекта: физическое пространство, занимаемое организмом в природе (местообитание), его отношение к факторам среды и к соседствующим с ним живым организмам (связи), а также его функциональная роль в экосистеме. Все эти аспекты проявляются через строение организма, его адаптации, инстинкты, жизненные циклы, жизненные “интересы” и т.п. Право организма выбирать свою экологическую нишу ограничено довольно узкими рамками, закрепленными за ним от рождения. Однако его потомки могут претендовать на другие экологические ниши, если в них произошли соответствующие генетические изменения.

Тема 3. Закономерности организмов

3.1 Закон минимума Либиха

При изучении экологических факторов необходимо акцентировать свое внимание на закономерностях, которые являются общими для всех организмов. К таким закономерностям относятся правило оптимума, правило взаимодействия факторов, правило лимитирующих факторов, законы К. Либиха и В. Шелфорда.

Одним из основоположников агрохимии немецким химиком Юстасом фон Либихом сформулирован закон минимума в 1840 г.

Закон минимума Либиха - концепция, согласно которой существование и выносливость организма определяется самым слабым звеном в цепи его экологических потребностей. Согласно закону минимума, жизненные возможности организмов лимитируют те экологические факторы, количество и качество которых близки к необходимому для организма минимуму.

Любому живому организму необходимы не только определенная температура, наличие кислорода, определенные минеральные и органические вещества или какие-нибудь другие факторы, а их строго определенное количество (например, концентрация). Каждый из этих факторов должен быть доступен для организмов в количестве, определенном природой, а его уменьшение приводит к тому, что именно этот фактор становится лимитирующим. Например, если у организма в аквариуме достаточно пищи, но нет кислорода в воде, то лимитирующим для его жизнедеятельности фактором будет именно наличие кислорода. И наоборот. Реакция организма зависит от количества фактора - чем его меньше, тем сильнее реакция. Любой вид животного или растения обладает четкой избирательностью к составу пищи: например, растению необходимы определенные минеральные элементы. Любой вид животного по-своему требователен к качеству пищи. Для того чтобы нормально существовать, развиваться, организм должен иметь весь набор необходимых факторов в оптимальных режимах и достаточных количествах. Малое количество или полное отсутствие любого из необходимых веществ, относящихся как к макро, так и к микроэлементам, ведет к одинаковому результату - замедлению роста или смерти. При этом Либих рисовал бочку с дырками, показывая, что именно самая нижняя дырка в бочке определяет уровень жидкости в ней. Закон минимума справедлив для всех живых организмов (рыб, беспозвоночных, млекопитающих, растений и др.).

Лимитирующие факторы:

В природе на любой организм действует сразу множество (десятки и сотни) разных факторов. Есть среди них и ограничивающие его существование. Это, прежде всего лимитирующие ресурсы, т.е. те, которых на всех не хватает. Так, развитие растений ограничивается тем элементом, которого в почве меньше всего (как правило, азот, фосфор, калий). При его дефиците рост прекращается, даже если все остальные элементы имеются в избытке. Этот «закон минимума». Любой фактор, присутствующий в слишком малых количествах, может оказаться самым важным. Например, в небольшом лесу численность одних видов птиц ограничена количеством пищи, других - числом мест, пригодных для гнездовий, третьих - изобилием хищников. Однако закон Либиха «работает» далеко не всегда. Дело в том, что разные факторы часто взаимодействуют друг с другом и бывает трудно выделить среди них какой-то один лимитирующий. Скажем, пониженная влажность, и недостаток питательных веществ снижают устойчивость растений к насекомым-вредителям и сорнякам. Напротив, изобилие корма в городах позволяет многим птицам не улетать зимой на юг, вопреки холодам и короткому световому дню. Для каждого фактора среды обычно имеются предельные (минимальные и максимальные) значения, которые способен вынести живой организм. Если же говорить не просто о выживании, а о благополучном существовании и размножении, то допустимый диапазон условий окажется ещё уже. Такой диапазон называется пределом толерантности (выносливости) этого вида организмов.

Толерантность (от греческого толеранция - терпение) - способность организмов выдерживать изменения условий жизни (колебания температуры, влажности, света).

Наилучшие же условия существования находятся где-то посередине, в так называемой зоне оптимума. Приспособление свойственно всему живому. Популяции приспосабливаются к своим местообитаниям и друг к другу: хищник приспосабливается ловить жертву, а та - убегать или прятаться. Приспосабливается и организм; его органы, ткани и даже отдельные клетки реагируют на изменения окружающей среды. Можно сказать, что способность к приспособлению - одна из главных черт всего живого.

3.2 Закон толерантности Шелфорда

Закон толерантности, один из основополагающих принципов экологии, согласно которому присутствие или процветание каких-либо организмов в данном местообитании зависит от комплекса экологических факторов, к каждому из которых у организма существует определенный диапазон толерантности (выносливости).

Данное правило выдвинуто в 1913 В. Шелфордом. Закон толерантности Шелфорда - закон, согласно которому существование вида определяется лимитирующими факторами, находящимися не только в минимуме, но и в максимуме. Закон толерантности расширяет закон минимума Либиха. Формулировка: "лимитирующим фактором процветания организма может быть как минимум, так и максимум экологического влияния, диапазон между которыми определяет степень выносливости (толерантности) организма к данному фактору".

Любой живой организм имеет определенно эволюционно унаследованные верхние и нижние «пределы» толерантности к любому экологическому фактору. Для организма имеет значение не только собственная амплитуда, но и скорость, с которой этот фактор изменяется. Лимитирующее значение означает, что в этом случае организм может выжить, но в нем произойдут необратимые изменения. Потому закон Шелфорда также называют законом лимитирующего фактора. Закон Шелфорда можно применить к нормированию содержания загрязняющих веществ в воздухе, воде, почве, пищевых продуктах.

Вывод закона Шелфорда: охранять окружающую среду - значит обеспечивать состав и режим экологических факторов в пределах унаследованной толерантности живого, в первую очередь, человеческого организма, т.е. управлять им так, чтобы ни один фактор не оказался лимитирующим по отношению к организмам.

Из закона Шелфорда прямо вытекает следующий закон, определяющий возможность существования организма в пределах и невозможности существования за пределами диапазона толерантности.

Закон оптимума - закон, согласно которому любой экологический фактор имеет определенные пределы положительного влияния на живые организмы, за пределами которых наступает угнетение жизнедеятельности организма.

Сила воздействия экологических факторов постоянно меняется. Лишь в определенных местах планеты значения некоторых из них более или менее постоянны (константны).

Например, на дне океанов, в глубинах пещер температурный и водный режимы, режим освещения сравнительно постоянны.

Рассмотрим действие закона оптимума на конкретном примере: кораллы плохо переносят и слишком теплую воду, и слишком холодную, оптимальными для них являются средние температуры, около 25-27о С - так называемая зона оптимума. Чем сильнее отклонения от оптимума, тем в большей степени данный экологический фактор угнетает жизнедеятельность организма. Эта зона носит название зоны пессимума. В ней имеются критические точки - "максимальное значение фактора" и "минимальное значение фактора", за их пределами наступает гибель организмов. Расстояние между минимальным и максимальным значениями фактора называют экологической валентностью или толерантностью организма.

Рис. Схема действия фактора среды на живые организмы

3.3 Стенобионтные и эврибионтные организмы

Пределы изменчивости значения экологического фактора, в которых возможно существование данного вида, называются экологической валентностью.

Чтобы выразить относительную степень толерантности, в экологии используют приставки стено- (от греч. stenos - узкий, тесный) и эври- (от греч. eurys - широкий), поли- (от греч. polys - многий, многочисленный) и олиго- (от греч. oligos - немногий, незначительный).

По характеру толерантности выделяют следующие виды:

Эврибионтные (eurys - широкий, лат.) - имеющие широкую экологическую валентность по отношению к абиотическим факторам среды организм.

Эврибионт - организм, способный жить при различных условиях среды.

Стенобионтные (stenos - узкий, лат.) - неспособные переносить значительные колебания фактора (например, стенотермными являются глубоководные рыбы, обитающие при низком температурном режиме).

Стенобионт - организм, требующий строго определённых условий среды.

Стенобионтность вырабатывается у видов, длительное время развивающихся в относительно стабильных условиях. Чем сильнее она выражена, тем меньшим ареалом обладает вид, или его сообщество. Типичными стенобионтами являются глубоководные рыбы и беспозвоночные, в течение миллионов поколений эволюционировавших в очень стабильных условиях среды.

По отношению к одному фактору вид может быть стенобионтом, по отношению к другому - эврибионтом. В зависимости от этого выделяют прямо противоположные пары видов: стенотермный - эвритермный (по отношению к теплу), стеногидрический - эвригидрический (к влаге), стеногалинный - эвригалинный (к солености), стено- - эврифотный (к свету) и др.

Эвритопные организмы (греч. eurys - широкий + topos - место) - организмы, для которых характерны разнообразные условия обитания.

По различиям в экологической валентности по отношению к различным факторам среды выделяют различные группы организмов, например:

По отношению к кислотности:

эвриионные - могут существовать в широком интервале рН (сосна, березы, тысячелистник, ландыш);

стеноионные - могут существовать только при определенных значениях рН, например: ацидофильные, предпочитающие кислые почвы (сфагнумы, хвощи, пушица); кальциефильные, или базофильные, предпочитающие щелочные почвы (полынь, мать-и-мачеха, люцерна).

По отношению к температуре:

эвритермные - могут существовать в широком интервале температур;

стенотермные - могут существовать в узком интервале температур;

криофильные - могут существовать только при пониженных температурах; термофильные - могут существовать только при повышенных температурах.

По отношению к солености:

эвригалинные - могут существовать при различной солености воды;

стеногалинные - могут существовать только при определенной солености воды.

По отношению к содержанию кислорода в воде:

эвриоксибионты - способны переносить пониженное содержание кислорода; стенооксибионты - требуют повышенного содержания кислорода.

3.4 Экологическая емкость среды

Экологическая емкость - способность природной среды вмещать антропогенные нагрузки, вредные химические и иные воздействия в той степени, в которой они не приводят к деградации земель и всей окружающей среды.
Нагрузки на природу в пределах ее возможностей означают ее экологическую емкость, а нагрузки сверх ее возможностей (емкости) приводят к нарушению естественного закона экологического равновесия. Закон "Об охране окружающей природной среды" посвящен установлению и соблюдению предельно допустимых норм нагрузки на окружающую среду с учетом ее потенциальных возможностей (предельно допустимых выбросов и сбросов, предельно допустимых концентраций, предельно допустимых уровней). Несоблюдение, нарушение этих норм приводит к привлечению виновных к ответственности и возможному ограничению, приостановлению и прекращению деятельности предприятий, производственной и иной деятельности.

Экологическая емкость включает в себя сброс, выброс, нагрузку, концентрацию, деградацию.

Тема 4. Демэкология - экология популяций

4.1 Популяция: понятия, определение

Популяция (populus - от лат. народ. население) - совокупность особей одного вида, которая обладает общим генофондом и имеет общую территорию.

С экологических позиций четкого определения определение популяции еще не выработано. Наибольшее признание получила трактовка С.С. Шварца, популяция - группировка особей, которая является формой существования вида и способна самостоятельно развиваться неопределенно долгое время.

Основным свойством популяций, как и других биологических систем, является то, что они находятся в беспрерывном движении, постоянно изменяются. Это отражается на всех параметрах: продуктивности, устойчивости, структуре, распределении в пространстве. Популяциям присущи конкретные генетические и экологические признаки, отражающие способность систем поддерживать существование в постоянно меняющихся условиях: рост, развитие, устойчивость.

Типы популяций. Популяции могут занимать разные по размеру площади и условия обитания в пределах местообитания одной популяции тоже могут быть не одинаковы. По этому признаку выделяют три типа популяций: элементарную, экологическую, географическую.

Элементарная (локальная) популяция - это совокупность особей одного вида, занимающих небольшой участок однородной площади. Между ними постоянно идет обмен генетической информацией.

Экологическая популяция - совокупность элементарных популяций, внутривидовые группировки, приуроченные к конкретным биоценозам. Растения одного вида в ценозе называются ценопопуляцией. Обмен генетической информацией между ними происходит достаточно часто.

Географическая популяция - совокупность экологических популяций, заселивших географически сходные районы. Географические популяции существуют автономно, ареалы их относительно изолированы, обмен генами происходит редко - у животных и птиц - во время миграций, у растений - при разносе пыльцы, семян и плодов. На этом уровне происходит формирование географических рас, разновидностей, выделяются подвиды.

Вид - совокупность популяций особей, представители которых фактически или потенциально скрещиваются друг с другом в естественных условиях.

Каждый организм или популяция имеет свое местообитание: местность или тип местности, где они проживают. Когда несколько популяций различных видов живых организмов живут в одном месте и взаимодействуют друг с другом, они создают так называемое сообщество. Примерами являются все растения, животные, произрастающие и проживающие в лесу, пруду, пустыне или в аквариуме.

4.2 Статические характеристики популяций

Выделяют две группы количественных показателей популяций - статические и динамические.

Статические показатели характеризуют состояние популяции на данный момент времени. Основные из них: численность, плотность, а также показатели структуры.

Численность - число особей в популяции. Численность популяции может значительно изменяться во времени. Она зависит от биотического потенциала вида и внешних условий.

Численность унитарных организмов (унитарные организмы, автономные в своем существовании и в то же время способные, в силу своих потребностей или под давлением обстоятельств, объединяться в группы («коллективы») с себе подобными либо с особями других видов) можно рассчитать по следующей формуле:

N0 = Nt + B - D + C - E

где, N0 - число особей в данный момент;

Nt - число особей находившихся в данной популяции в предыдущий момент;

B - число особей родившихся за время t;

D - число особей погибших за время t;

C - число особей иммигрирующих в популяцию за время t;

E - число особей эмигрирующих из популяции за время t.

Для модулярных организмов (каждый из них состоит как бы из нескольких однотипных частей, из повторяющихся «модулей») следует учитывать не только численность организмов, но и численность модулей, которая определяется по следующей формуле:

Число модулей в настоящий момент = число модулей в предыдущий момент + число отрожденных модулей - число отмерших модулей

Существует нижний предел численности, ниже которого популяция прекращает свое воспроизведение. Такая минимальная численность популяции называется критической. При определении критической численности нужно учитывать не всех особей, а только тех, которые принимают участие в размножении - это эффективная численность популяций.

Обычно численность популяций измеряется сотнями и тысячами особей. У человека минимальная численность популяций составляет около 100 особей. У крупных наземных млекопитающих численность популяций может снижаться до нескольких десятков особей (микропопуляции). У растений и беспозвоночных существуют также мегапопуляции, численность которых достигает миллионов особей.

В стабильных по численности популяциях число особей, оставляющих потомство, должно быть равно числу таких особей в предыдущих поколениях. Для управления численностью популяций необходимо знать их основные характеристики. Лишь в этом случае возможно прогнозирование изменения состояния популяции при воздействии на неё.

Плотность - число особей или биомасса популяции, приходящаяся на единицу площади или объема.

Распределение плотности популяции тесно связано с ее пространственной структурой. Существует множество типов пространственной структуры популяций и, соответственно, типов популяционных ареалов: сплошные, разорванные, сетчатые, кольцевые, ленточные и комбинированные.

Популяция характеризуется определенной структурной организацией - соотношением групп особей по полу, возрасту, размеру, генотипу, распределением особей по территории и т.д. В связи с этим выделяют различные структуры популяции: половую, возрастную, размерную, пространственно-этологическую и др. Структура популяции формируется, с одной стороны, на основе общих биологических свойств вида, с другой стороны, под влиянием факторов среды, то есть имеет приспособительный характер.

Половая структура (половой состав) - соотношение особей мужского и женского пола в популяции. Половая структура свойственна только популяциям раздельнополых организмов. Теоретически соотношение полов должно быть одинаковым: 50% от общей численности должны составлять мужские особи, а 50% - женские особи. Фактическое соотношение полов зависит от действия различных факторов среды, генетических и физиологических особенностей вида.

Размерная структура - соотношение количества особей разных размеров.

Возрастная структура (возрастной состав) - соотношение в популяции особей разных возрастных групп. Абсолютный возрастной состав выражает численность определенных возрастных групп в определенный момент времени. Относительный возрастной состав выражает долю или процент особей данной возрастной группы по отношению к общей численности популяции. Возрастной состав определяется рядом свойств и особенностей вида: время достижения половой зрелости, продолжительность жизни, длительность периода размножения, смертность и др.

В зависимости от способности особей к размножению различают три группы: предрепродуктивную (особи еще не способные размножаться), репродуктивную (особи способные размножаться) и пострепродуктивную (особи уже не способные размножаться).

Пространственно-этологическая структура - характер распределения особей в пределах ареала. Она зависит от особенностей окружающей среды и этологии (особенностей поведения) вида.

Различают три основных типа распределения особей в пространстве: равномерное (регулярное), неравномерное (агрегированное, групповое, мозаичное) и случайное (диффузное).

Равномерное распределение характеризуется равным удалением каждой особи от всех соседних. Свойственно популяциям, существующим в условиях равномерного распределения факторов среды или состоящих из особей, проявляющих друг к другу антагонизм.

Неравномерное распределение проявляется в образовании группировок особей, между которыми остаются большие незаселенные территории. Характерно для популяций, обитающих в условиях неравномерного распределения факторов среды или состоящих из особей, ведущих групповой (стадный) образ жизни.

Случайное распределение выражается в неодинаковом расстоянии между особями. Является результатом вероятностных процессов, неоднородности среды и слабых социальных связей между особями.

По типу использования пространства все подвижные животные подразделяются на оседлых и кочевых. Оседлый образ жизни имеет ряд биологических преимуществ, таких как свободная ориентация, на знакомой территории при поиске пища или укрытия, возможность создать запасы пищи (белка, полевая мышь). К его недостаткам относится истощение пищевых ресурсов при излишне высокой плотности популяции.

Регуляция численности (плотности) популяции.

Гомеостаз популяции - поддержание определенной численности (плотности). Изменение численности зависит от целого ряда факторов среды - абиотических, биотических и антропогенных.

Факторы, регулирующие плотность популяции, делятся на зависимые и независимые от плотности. Зависимые от плотности факторы изменяются вместе с изменением плотности, к ним относятся биотические факторы. Независимые от плотности факторы остаются постоянными с изменением плотности, это абиотические факторы.

Популяции многих видов организмов способны к саморегуляции своей численности. Выделяют три механизма торможения роста численности популяций: 1) при возрастании плотности повышается частота контактов между особями, что вызывает у них стрессовое состояние, уменьшающее рождаемость и повышающее смертность; 2) при возрастании плотности усиливается эмиграция в новые местообитания, краевые зоны, где условия менее благоприятны и смертность увеличивается; 3) при возрастании плотности происходят изменения генетического состава популяции, например, быстро размножающиеся особи заменяются медленно размножающимися.

Понимание механизмов регуляции численности популяций чрезвычайно важно для возможности управления этими процессами. Деятельность человека часто сопровождается сокращением численности популяций многих видов. Причины этого в чрезмерном истреблении особей, ухудшении условий жизни вследствие загрязнения окружающей среды, беспокойства животных, особенно в период размножения, сокращение ареала и т.д. В природе нет и не может быть "хороших" и "плохих" видов, все они необходимы для ее нормального развития. В настоящее время остро стоит вопрос сохранения биологического разнообразия. Сокращение генофонда живой природы может привести к трагическим последствиям. Международный союз охраны природы и природных ресурсов (МСОП) издает "Красную книгу", где регистрирует следующие виды: исчезающие, редкие, сокращающиеся, неопределенные и "черный список" безвозвратно исчезнувших видов.

В целях сохранения видов человек использует различные способы регулирования численности популяции: правильное ведение охотничьего хозяйства и промыслов (установление сроков и угодий охоты и отлова рыбы), запрещение охоты на некоторые виды животных, регулирование вырубки леса и др.

В то же время деятельность человека создает условия для появления новых форм организмов или развития старых видов, к сожалению, часто вредных для человека: болезнетворных микроорганизмов, вредителей сельскохозяйственных культур и т.д.

Динамика роста численности популяции

На математическом языке эта кривая отражает экспоненциальный рост численности организмов и описывается уравнением:

Nt = N0ert,

Экспоненциальный рост возможен только тогда, когда r имеет постоянное численное значение, так как скорость роста популяции пропорциональна самой численности:

DN/Dt = rN,

где r -- const.

Таким образом, экспоненциальный рост численности популяции -- это рост численности ее особей в неизменяющихся условиях.

Условия, сохраняющиеся длительное время постоянными, невозможны в природе. Если бы это было не так, то, например, обычные бактерии могли бы дать такую массу органического вещества, которая могла покрыть весь земной шар слоем толщиной в два метра за два часа.

Однако такого в природе не происходит, так как существует множество ограничивающих факторов. Чтобы иметь полную картину динамики численности популяции, а также рассчитать скорость ее роста, необходимо знать величину так называемой чистой скорости воспроизводства (R0), которая показывает, во сколько раз увеличивается численность популяции за одно поколение, за время его жизни -- Т.

R0 = Nт/N0,

где Nт -- численность нового поколения;

N0-- численность особей предшествующего поколения;

R0 -- чистая скорость воспроизводства, показывающая также, сколько вновь родившихся особей приходится на одну особь поколения родителей. Если R0 = 1, то популяция стационарная, -- численность ее сохраняется постоянной.

Регуляция плотности популяции. Факторы, регулирующие плотность популяции, делятся на зависимые и независимые от плотности. Зависимые изменяются с изменением плотности, а независимые остаются постоянными при ее изменении. Первые -- это биотические, а вторые -- абиотические факторы.

Непосредственно от плотности может зависеть и смертность в популяции. Смертность, зависимая от плотности, может регулировать численность и высокоразвитых организмов. Помимо регуляции существует еще саморегуляция, при которой на численности популяции сказывается изменение качества особей. Различают саморегуляцию фенотипическую и генотипическую.

Фенотипы -- совокупность всех признаков и свойств организма, сформировавшихся в процессе онтогенеза. Дело в том, что при большой плотности образуются разные фенотипы за счет того, что в организмах происходят физиологические изменения.

Генотипические причины саморегуляции плотности популяций связаны с наличием в ней мере двух разных генотипов.

Циклические колебания можно также объяснить саморегуляцией. Климатические ритмы и связанные с ними изменения в пищевых ресурсах заставляют популяцию вырабатывать какие-то механизмы внутренней регуляции. Таким образом, саморегуляция обеспечивается механизмами торможения роста численности.

Тема 5. Экология популяций

5.1 Принцип Олли

Принцип агрегации особей В. Олли - в экологии - закон (1931), согласно которому скопление особей, усиливает конкуренцию между ними за пищевые ресурсы и жизненное пространство, но приводит к повышенной способности группы к выживанию. Следовательно, как «перенаселенность» (повышенная агрегация особей), так и «недонаселенность» (отсутствие агрегации) могут служить лимитирующими факторами.

5.2 Динамические характеристики популяций

Динамические показатели характеризуют процессы, протекающие в популяции за какой-то промежуток времени. Основными динамическими показателями популяций являются: рождаемость, смертность, скорость роста популяций.

Рождаемость - это число особей, рождающихся в популяции за единицу времени.

Различают абсолютную и относительную рождаемость.

Общая (абсолютная) рождаемость - это абсолютное число новых особей: например, в популяции в течение года родилось 156 новых особей.

Относительная (удельная) рождаемость - отношение числа новых особей к числу имевшихся особей; относительная рождаемость может рассчитываться или на одну особь, или на 1000 особей. Например, в популяции в начале года было 10 000 особей, а в течение года родилось 156 новых особей; тогда относительная рождаемость равна 156: 10000 = 0,0156 на одну особь, или 0,0156…1000 = 15,6 на тысячу особей.

Численность популяции может увеличиваться не только за счет рождаемости, но и за счет иммиграции особей из других популяций. Существуют зависимые и полузависимые популяции, которые поддерживают и увеличивают свою численность именно за счет иммиграции.

Рождаемость, или скорость рождаемости, выражают отношением:

В = DNn/Dt,

где DNn -- число особей, родившихся за некоторый промежуток времени Dt. Но для сравнения рождаемости в различных популяциях пользуются величиной удельной рождаемости: отношением скорости рождаемости к исходной численности (N):

b = DNn/NDt.

За бесконечно малый промежуток времени (Dt --> 0) мы получим мгновенную удельную рождаемость, которую обозначают латинской буквой «b». Эта величина имеет размерность «единица времени -1» и зависит от интенсивности размножения особей: для бактерий -- час, для фитопланктона -- сутки, для насекомых -- неделя или месяц, для крупных млекопитающих -- год.


Подобные документы

  • Глобальная экология как самостоятельная сфера экологического познания. Значение развития охраны природы для жизни человека и других организмов. Сущность и специфика основных экологических проблем. Роль окружающей среды для обеспечения здоровой жизни.

    реферат [17,5 K], добавлен 01.03.2010

  • Предмет экологии и эволюция представлений о биосфере. Понятие, энергетическая характеристика, информация и управление в экосистеме, а также её структура. Взаимодействие экосистемы и окружающей её среды. Глобальные экологические проблемы, пути их решения.

    реферат [36,0 K], добавлен 07.12.2010

  • Исследование особенностей эволюции и общая характеристика экологических ниш человека. Размещение населения и анализ комплекса требований к факторам окружающей среды и жизни современного человека. Оценка состояния радиационной экологии наземных экосистем.

    контрольная работа [153,3 K], добавлен 16.09.2011

  • Первая конференция ООН по проблемам окружающей среды: вопросы, участники, значение. Основные глобальные проблемы, которые наиболее остро стоят перед человечеством. Характеристика термина "устойчивое развитие". Решение проблем международными организациями.

    контрольная работа [55,9 K], добавлен 05.06.2011

  • Проблема комплексности социальной экологии. Основные направления охраны окружающей среды. Проблемы методологии природоохранной деятельности. Технико-технологический, воспитательный, правовой, эстетический аспекты охраны окружающей природной среды.

    реферат [21,9 K], добавлен 22.10.2010

  • Динамические и статические свойства популяций. Круговорот веществ и поток энергии в экосистеме. Основные положения учения о биосфере и ноосфере. Стратегия устойчивого развития цивилизации. Антропогенные факторы возникновения неустойчивости в биосфере.

    курс лекций [91,2 K], добавлен 16.10.2012

  • История концепции устойчивого развития. Процесс экологизации научных знаний. Принципы устойчивого развития. Ограничения, накладываемые на способность окружающей среды удовлетворять потребности человечества. Стратегия устойчивого экологического развития.

    презентация [3,1 M], добавлен 18.12.2014

  • Глобальные проблемы окружающей среды. Междисциплинарный подход в исследовании экологических проблем. Содержание экологии как фундаментального подразделения биологии. Уровни организации живого как объекты изучения биологии, экологии, физической географии.

    реферат [16,3 K], добавлен 10.05.2010

  • Сущность понятия "экология". Основные законы экологии. Закон развития системы за счет окружающей ее среды. Классификация экологических законов. Концепции взаимоотношения общества и природы. Необходимые предпосылки для создания ноосферы по Вернадскому.

    контрольная работа [30,3 K], добавлен 14.04.2011

  • Характеристика этапов развития экологии: первобытное общество и античные цивилизации, от Средневековья к Возрождению, век естествознания. Основные принципы экологии. Основные факторы внешней среды. Глобальная экология и опасность экологического кризиса.

    курсовая работа [40,5 K], добавлен 19.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.