Экология и устойчивое развитие экосистем

История развития экологии. Динамические характеристики популяций. Классификация экологических пирамид. Межвидовые связи в экосистеме. Глобальные экологические проблемы планеты. Виды экологического мониторинга. Принципы и методы охраны окружающей среды.

Рубрика Экология и охрана природы
Вид курс лекций
Язык русский
Дата добавления 08.12.2011
Размер файла 473,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Причиной массовых вспышек рождаемости в популяциях являются, как правило, погодные факторы и деятельность человека. Часто популяции при помощи механизма обратных связей способны регулировать свою численность с тем, чтобы она не превысила предел, за которым наступит катастрофа. Так, гусеницы некоторых бабочек массово гибнут, если выходят из яиц до окончания холодов (когда они погибают от переохлаждения) либо через длительное время после распускания листьев (тогда они погибают от голода). Если гусеницы появляются вовремя, то популяции грозит перенаселение; в это время в действие вступает второй лимитирующий фактор - например, хищники или паразиты. В данном случае действие регулирующего фактора зависит от плотности популяции.

Смертность - это число особей, погибших в популяции в единицу времени.

Различают абсолютную смертность (количество погибших особей за единицу времени) и относительную (удельную) смертность (количество погибших особей за единицу времени в расчете на одну особь или на 1000 особей).

В отличие от рождаемости смертность наблюдается постоянно. Характер смертности описывается таблицами и кривыми выживаемости, которые показывают, какая часть новорожденных особей дожила до определенного возраста.

Убыль и прибыль организмов в популяции зависит не только от рождаемости и смертности, но и от скорости их миграции и эмиграции - количества особей, прибывших и убывших в популяции в единицу времени.

Смертность -- величина обратная рождаемости, но измеряется в тех же величинах и вычисляется по аналогичной формуле. Если принять, что DNm -- число погибших особей (независимо от причины) за время Dt, то удельная смертность:

DNm/NDt,

а при Dt ® 0 имеем мгновенную удельную смертность, которую обозначают буквой «d».

Величины рождаемости и смертности по определению могут иметь положительное значение, либо равное нулю.

Выживаемость есть параметр, обратный смертности. Если смертность на N особей обозначить через М, то выживаемость определяется разностью N - M. Большой интерес представляют кривые выживания особей популяции в зависимости от их возраста.

Учёным, исследующим динамику популяций, важно бывает знать не только общую смертность в популяции, но и количество особей, погибающих до достижения половой зрелости. Условием стабильности популяции является тот факт, что до половой зрелости доживают два потомка от каждой пары. Динамику смертности популяции в зависимости от возраста отображают на кривых выживания. Существуют три основных типа этих кривых: когда главным фактором смертности является естественное старение особей (на рисунке эта кривая обозначена буквой А), когда в популяции высока ранняя смертность (Б) и, наконец, когда смертность постоянна в течение всей жизни организмов (В). Кривые выживания конкретных видов могут занимать промежуточные положения между этими крайними формами.

Кривая а на рисунке соответствует почти идеальной ситуации, при которой главная причина гибели особи -- старение. Такой график можно получить также для однолетней культуры, например, пшеницы -- почти все растения доживают до осени, а потом одновременно плодоносят и отмирают.

Кривая б соответствует ситуации, когда смертность особенно высока в ранний период жизни особей. Это наблюдается, например, у горных баранов и людей в слаборазвитых странах с плохим медицинским обслуживанием и дефицитом питания.

Кривая в отражает не зависящую от возраста смертность, равную 50% для любого временного интервала. В этом случае гибель особей происходит в основном случайно еще до того, как станут очевидными признаки старения и не связана с внутренней устойчивостью особей к внешним факторам. Сходную кривую можно получить, например, для пресноводной гидры, молодь которой не подвержена особому риску по сравнению с другими возрастными группами. Однако у большей части беспозвоночных и растений кривая выживания, хотя и соответствует в целом типу в, требует поправки на повышенную уязвимость неполовозрелых стадий, т. е. правая часть графика должна идти вниз более круто.

По кривым выживания можно определить смертность разных возрастных групп, т. е. определить, какие стадии их жизни наиболее уязвимы. Выявив факторы, вызывающие гибель на этих стадиях, нетрудно понять, как регулируется численность популяции.

Если рождаемость в изолированной популяции превышает смертность, то популяция растёт. В начале роста кривая роста популяции - это экспонента. Однако рано или поздно питательные запасы в окружающей среде исчерпываются. В одних популяциях уменьшение количества питательных веществ начинает воздействовать на динамику роста загодя, и кривая роста приобретает S-образную форму. В других популяциях бесконтрольный рост численности заходит слишком далеко, после чего происходит катастрофический «обвал» численности, связанный с истощением ресурсов (J-образная форма). Рост популяций на первой (экспоненциальной) фазе можно приближённо описать дифференциальным уравнением

где N (t) - количество особей в зависимости от времени, b - рождаемость, d - смертность, а

r = b - d

- врождённая скорость роста численности популяции. Дифференциальным уравнением можно описать и S-образную кривую:

Здесь K - это максимальный размер стабильной популяции, которая может существовать неопределённо долго, если не изменятся внешние условия. Заметим, что дифференциальные уравнения роста - приблизительные уравнения, так как они не учитывают различия между особями, сезонные колебания количества пищи и способности к размножению и т. п.

Виды, которые быстро размножаются со скоростью, не зависящей от плотности вида, называют r-стратегами. Размеры r-популяций не стабилизируются и в течение некоторого времени могут превышать поддерживающую ёмкость среды. Как правило, r-стратеги имеют небольшие размеры и малую продолжительность жизни. Среди них много микроорганизмов, мелких насекомых и однолетних растений. Обычно r-стратеги быстрее заселяют новые местообитания, однако через некоторое время их вытесняют более конкурентоспособные K-стратеги.

K-стратеги размножаются относительно медленно. Скорость их размножения зависит от плотности популяции. Численность популяций K-стратегов через некоторое время стабилизируется на определенном значении. Среди K-стратегов обычно встречаются крупные и долгоживущие виды: деревья, крупные птицы и звери, человек.

Сохранение или рост численности зависит не только от скорости размножения (число новорожденных, отложенных яиц, произведённых семян или спор в единицу времени). Не менее важно и пополнение взрослого состава популяции за счёт потомства. Высокая скорость размножения при низких темпах пополнения не может существенно увеличить её численность. Например - рыбы вымётывают тысячи или миллионы икринок, но лишь ничтожно малая часть выживает и превращается во взрослое животное. Растения рассеивают огромное количество семян. И напротив, размер популяции может расти за счёт увеличения темпов пополнения при малой скорости размножения. Это относится к людям (рождаемость низкая, но детская смертность низкая, поэтому практически все дети доживают до взрослого возраста).

Другим важным фактором, ведущим к росту популяции, относится способность животных мигрировать, а семян рассеиваться на новых территориях, приспосабливаться к новым местам обитания и заселять их, наличие защищённых механизмов и устойчивость к неблагоприятным условиям среды и болезням.

Биотический потенциал - это совокупность факторов, способствующих увеличению численности вида.

У разных видов составляющие биотического потенциала неодинаковы, но они имеют одно общее свойство - стремительное увеличение численности при благоприятных условиях среды. В естественных условиях такое наблюдается редко. Вероятность того, что все условия окажутся благоприятными очень низка. Обычно один или несколько факторов (t, влажность, солёность, хищники, паразиты, нехватка пищи) становятся лимитирующими. Сочетание всех таких «ограничителей» называют сопротивлением среды. Сильнее всего они действуют на молодых особей, а это снижает темпы пополнения. При более суровых условиях гибнет часть взрослых особей. Следовательно: рост, снижение и постоянство популяции зависит от соотношения между биотическим потенциалом и сопротивлением среды.

Принцип изменения популяции: это результат нарушения равновесия между биотическим потенциалом и сопротивлением окружающей её среды.

Подобное равновесие является динамическим, т.е. непрерывно регулирующимся, т.к. факторы сопротивления среды редко подолгу остаются неизменными. Например: в один год численность популяции снизилась из-за засухи, а в следующий год полностью восстановилась при обильных дождях. Подобные колебания продолжаются неопределённо долго. Равновесие - понятие относительное. Иногда амплитуда отклонений мала, иногда значительна, но пока сократившаяся популяция способна восстановить прежнюю численность, она существует.

Равновесие в природных системах зависит от плотности популяции, т.е. числа особей на единицу площади. Если плотность популяции растёт - сопротивление среды увеличивается, в связи, с чем увеличивается смертность и рост численности прекращается. И, наоборот, с уменьшением плотности популяции - сопротивление среды ослабевает и восстанавливается прежняя численность.

Воздействие человека на природу часто приводит к вымиранию популяции. Разрушение экосистем, загрязнение окружающей среды одинаково влияют на популяции, как с низкой, так и высокой плотностью.

Кроме этого, биотический потенциал зависит от критической численности популяции. Если численность популяции (оленей, птиц или рыб) падает ниже этой величины, гарантирующей воспроизводство, биотический потенциал стремится к нулю и вымирание неизбежно. Существование может быть поставлено под угрозу, даже когда множество представителей вида живы, но живут в домашних условиях, т.е. изолированы друг от друга (попугаи).

Тема 6. Синэкология - экология сообществ

6.1 Понятие о биоценозе, биогеоценозе, экосистеме

Биогеоценоз - это совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, растительности, животного мира и микроорганизмов, почвы, горной породы и гидрологических условий), имеющая свою особую специфику взаимодействий слагающих компонентов и определенный тип обмена веществом и энергией между собой и другими явлениями природы и представляющая собой внутренне противоречивое единство, находящееся в постоянном движении, развитии.

Биогеоценозы характеризуются следующими чертами:

- биогеоценоз связан с определенным участком земной поверхности; в отличие от экосистемы пространственные границы биогеоценозов не могут быть проведены произвольно

- биогеоценозы существуют длительное время;

- биогеоценоз - это биокосная система, представляющая собой единство живой и неживой природы;

- биогеоценоз - это элементарная биохорологическая ячейка биосферы (то есть биолого-пространственная единица биосферы);

- биогеоценоз - это арена первичных эволюционных преобразований (то есть эволюция популяций протекает в конкретных естественноисторических условиях, в конкретных биогеоценозах).

Экосистема представляет собой совокупность живых организмов (биоценоз) и среды их обитания (климат, почва, водная среда), в которой осуществляется круговорот веществ.

Термин «экосистема» был предложен английским ботаником Артуром Тенсли в 1935 г. Тенсли считал, что экосистемы представляют собой основные природные единицы на Земле. Это не только комплекс живых организмов, но и сочетание физических факторов. Всюду, где мы наблюдаем отчетливое единство растений, животных, микроорганизмов, объединенных отдельным участком окружающей среды, мы имеем пример экосистемы.

Понятие «экосистема» можно применить к объектам разной сложности и размера. Экосистемой может быть отдельная кочка на болоте и все болото, лужа, озеро и океан, луг, лес и Земля в целом. Таким образом, каждая конкретная экосистема характеризуется определенными границами (экосистема елового леса, экосистема низинного болота). Однако само понятие «экосистема» обладает признаком безразмерности, ей не свойственны территориальные ограничения. Обычно экосистемы отграничивают друг от друга элементами абиотической среды, например, рельефом, видовым разнообразием, почвенными условиями и т.п. Термин «экосистема» применяется и по отношению к искусственным образованиям, например, экосистема парка, сельскохозяйственная экосистема.

6.2 Классификация экосистем

Все экосистемы можно разделить по рангам:

1) микроэкосистемы (лужа, гниющий пень, прибрежные заросли водных растений разлагающийся труп и т.п.);

2) мезоэкосистемы (лес, озеро, река, небольшой остров и т.п.);

3) макроэкосистемы (море, океан, континент, большой остров и т.п.);

4) глобальная экосистема (биосфера).

Для естественной экосистемы характерны три признака:

· экосистема обязательно представляет собой совокупность живых и неживых компонентов;

· в рамках экосистемы осуществляется полный цикл круговорота ве ществ, начиная с создания органического вещества и заканчивая его разло жением на неорганические составляющие;

· экосистема сохраняет устойчивость в течение определенного времени.

Связь организмов в экосистеме. Жизнь организмов в экосистеме зависит не только от абиотических факторов, но и от того, в какие взаимодействия организмы вступают друг с другом. Живущие рядом организмы находятся в различных территориальных и пищевых взаимоотношениях. Среди огромного разнообразия взаимосвязей живых существ выделяют несколько типов отношений, которые имеют много общего у организмов разных систематических групп. К таким типам взаимоотношений относятся конкуренция, хищничество, симбиоз. Указанные типы взаимоотношений организмов рассматривались в курсе биологии за 10 класс.

Биогеоценоз. Параллельно с развитием понятия «экосистема» в первой половине 20 в. в экологии сформировалось учение о биогеоценозах. Термин биогеоценоз (от греч. bios -- жизнь, ge -- земля, koinos -- общий) предложил советский ученый Владимир Николаевич Сукачёв (1880--1967).

Биогеоценоз -- это совокупность растений, животных, грибов и микроорганизмов, почвы и атмосферы на однородном участке суши, которые объединены обменом веществ и энергии в единый природный комплекс. Важной особенностью биогеоценоза является то, что он связан с определенным участком земной поверхности. Биогеоценоз -- это один из вариантов наземной экосистемы.

Таким образом, как и экосистема, биогеоценоз представляет собой единство биоценоза и его неживой среды обитания; при этом основой биогеоценоза является биоценоз. Понятия экосистемы и биогеоценоза внешне сходны, но, в действительности, они различны. Иначе говоря, любой биогеоценоз - это экосистема, но не любая экосистема - биогеоценоз.

В чем отличие биогеоценоза от экосистемы? Прежде всего, любой биогеоценоз выделяется только на суше. На море, в океане и вообще в водной среде биогеоценозы не выделяются. Биогеоценоз имеет конкретные границы. Они определяются границами растительного сообщества -- фитоценоза. Образно говоря, биогеоценоз существует только в рамках фитоценоза. Там, где нет фитоценоза, нет и биогеоценоза. Понятия «экосистема» и «биогеоценоз» тождественны только для таких природных образований, как лес, луг, болото, поле. Лесной биогеоценоз = лесная экосистема; луговой биогеоценоз = луговая экосистема и т.п. Для природных образований, меньших или больших по объему, нежели фитоценоз, либо там, где фитоценоз выделить нельзя, применяется только понятие «экосистема». Например, кочка на болоте -- экосистема, но не биогеоценоз. Текущий ручей -- экосистема, но не биогеоценоз. Точно так же только экосистемами являются море, тундра, влажный тропический лес и т.п. В тундре, тропическом лесу можно выделить не один фитоценоз, а множество. Это совокупность фитоценозов, представляющих более крупное образование, нежели биогеоценоз.

Экосистема может быть пространственно и мельче, и крупнее биогеоценоза. Таким образом, экосистема -- образование более общее, безранговое.

Биогеоценоз же ограничен границами растительного сообщества -- фитоценоза и обозначает конкретный природный объект, занимающий определенное пространство на суше и отделенный пространственными границами от таких же объектов.

Живые организмы и факторы окружающей среды неразрывно связаны друг с другом и образуют в совокупности единое целое, которое называется экосистемой. Организмы в экосистемах вступают в различные территориальные и пищевые взаимоотношения, что определяет структуру и целостность экосистем. Экосистема суши, ограниченная рамками фитоценоза, называется биогеоценозом.

В составе любой экосистемы обычно выделяют два блока: биоценоз и экотоп.

Биоценоз - совокупность растений, животных и микроорганизмов, населяющих определенный участок суши или водоема и характеризующихся определенными отношениями между собой. Масштабы могут быть различны - от сообществ нор, муравейников, листвы деревьев до населения целых ландшафтов - лесов, степей, пустынь и т.д. Термин «биоценоз» употребляют чаще всего применительно к обитателям территории, которые на суше выделяют по относительно однородной растительности, например, биоценоз еловых лесов, злакового поля.

Биотоп - пространство, занимаемое биоценозом (атмосфера, почва, водоемы и т.д.), т.е. среда обитания.

В экологии традиционно рассматривается еще понятие биогеоценоза, которое близко по смыслу к понятию экосистемы. Биогеоценоз - это частный случай крупной экосистемы, охватывающий, как правило, значительную территорию, предполагающий обязательное наличие в качестве основного звена растительности, то есть фитоценоза, обеспечивающего данную экосистему поступлением первичной энергии (информации). Ввиду подобной энергетической автономности биогеоценоз теоретически бессмертен, в отличие, например, от гниющего поваленного дерева, экосистема которого гибнет после того, как будет израсходована вся энергия, накопленная в дереве за время жизни, а само дерево превратится в компоненты гумуса (плодородного слоя почвы).

Все экосистемы взаимосвязаны и взаимозависимы. Люди со своими культурными растениями и домашними животными образуют экосистему человека, которая взаимодействует со всеми другими экосистемами планеты.

Экосистема - основная функциональная единица в экологии, единый природный комплекс, образованный живыми организмами (биоценозом) и средой их обитания (биотопом), в которой живые (биотические) и косные (абиотические) компоненты связаны между собой обменом веществ и энергии.

Гомеостаз - динамическое равновесие всех организмов с окружающей средой.

Агроэкосистемы (сельскохозяйственные экосистемы, агроценозы) - искусственные экосистемы, возникающие в результате сельскохозяйственной деятельности человека (пашни, сенокосы, пастбища). Агроэкосистемы создаются человеком для получения высокой чистой продукции автотрофов (урожая). В них, так же как в естественных сообществах, имеются продуценты (культурные растения и сорняки), консументы (насекомые, птицы, мыши и т.д.) и редуценты (грибы и бактерии). Обязательным звеном пищевых цепей в агроэкосистемах является человек.

Агроценоз (агроэкосистема), его отличие от биогеоценоза.

1. Агроценоз (агроэкосистема) - искусственная система, созданная в результате деятельности человека. Примеры агроценозов: парк, поле, сад, пастбище, приусадебный участок.

2. Сходство агроценоза и биогеоценоза, наличие трех звеньев: организмов - производителей, потребителей и разрушителей органического вещества, круговорот веществ, территориальные и пищевые связи между организмами, растения -- начальное звено цепи питания.

3. Отличия агроценоза от биогеоценоза: небольшое число видов в агроценозе, преобладание организмов одного вида (например, пшеницы в поле, овец на пастбище), короткие цепи питания, неполный круговорот веществ (значительный вынос биомассы в виде урожая), слабая саморегуляция, высокая численность животных отдельных видов (вредителей сельскохозяйственных растений или паразитов).

4. Агроценоз - экологически неустойчивая система, ее причины - слабый круговорот веществ, недостаточно выраженная саморегуляция, небольшое число видов и др.

5. Роль человека в повышении продуктивности агроценозов: выведение высокопродуктивных сортов растений и пород животных, их выращивание с использованием новейших технологий, учет биологии организмов (потребность в питательных веществах, потребности растений в тепле, влажности и др.), борьба с болезнями и вредителями, своевременное проведение сельскохозяйственных работ и др.

6. Агроценозы как источник загрязнения окружающей среды: биологического (массовое размножение, вспышка численности насекомых-вредителей), химического (смыв в водоемы избытка ядохимикатов, удобрений, гибель от ядохимикатов насекомых-опылителей, изменение фауны почвы под воздействием химических веществ и др.).

7. Защита природы от загрязнения сельскохозяйственным производством - соблюдение норм и сроков внесения минеральных удобрений, применения ядохимикатов, новых технологий обработки почвы.

Таким образом, агроценозы являются неустойчивыми системами и способны существовать только при поддержке человека.

Урбосистемы (урбанистические системы) - искусственные системы (экосистемы), возникающие в результате развития городов, и представляющие собой средоточие населения, жилых зданий, промышленных, бытовых, культурных объектов и т.д.

В их составе можно выделить следующие территории: промышленные зоны, где сосредоточены промышленные объекты различных отраслей хозяйства и являющиеся основными источниками загрязнения окружающей среды; селитебные зоны (жилые или спальные районы) с жилыми домами, административными зданиями, объектами быта, культуры и т.п.; рекреационные зоны, предназначенные для отдыха людей (лесопарки, базы отдыха и т.п.); транспортные системы и сооружения, пронизывающие всю городскую систему (автомобильные и железные дороги, метрополитен, заправочные станции, гаражи, аэродромы и т.п.).

Существование урбоэкосистем поддерживается за счет агроэкосистем и энергии горючих ископаемых и атомной промышленности.

6.3 Экологические пирамиды

Классификация экологических пирамид:

1) пирамида численности, отражающая численность отдельных организмов;

2) пирамида биомассы, характеризующая общую сухую массу, калорийность или другую меру общего количества живого вещества;

3) пирамида энергии, показывающая величину потока энергии и (или) "продуктивность" на последовательных трофических уровнях.

Простейшими из них являются пирамиды численности, которые отражают количество организмов (отдельных особей) на каждом трофическом уровне. Для удобства анализа эти количества отображаются прямоугольниками, длина которых пропорциональна количеству организмов, обитающих в изучаемой экосистеме, либо логарифму этого количества. Часто пирамиды численности строят в расчёте на единицу площади (в наземных экосистемах) или объёма (в водных экосистемах).

В пирамидах численности дерево и колосок учитываются одинаково, несмотря на их различную массу. Поэтому более удобно использовать пирамиды биомассы, которые рассчитываются не по количеству особей на каждом трофическом уровне, а по их суммарной массе. Построение пирамид биомассы - более сложный и длительный процесс. Пирамиды биомассы не отражают энергетической значимости организмов и не учитывают скорость потребления биомассы. Это может приводить к аномалиям в виде перевёрнутых пирамид. Выходом из положения является построение наиболее сложных пирамид - пирамид энергии. Они показывают количество энергии, прошедшее через каждый трофический уровень экосистемы за определённый промежуток времени (например, за год - чтобы учесть сезонные колебания). В основание пирамиды энергии часто добавляют прямоугольник, показывающий приток солнечной энергии. Пирамиды энергии позволяют сравнивать энергетическую значимость популяций внутри экосистемы.

Органическое вещество, производимое автотрофами, называется первичной продукцией. Скорость накопления энергии первичными продуцентами называется валовой первичной продуктивностью, а скорость накопления органических веществ - чистой первичной продуктивностью. ВПП примерно на 20 % выше, чем ЧПП, так как часть энергии растения тратят на дыхание. Всего растения усваивают около процента солнечной энергии, поглощённой ими.

При поедании одних организмов другими вещество и пища переходят на следующий трофический уровень. Количество органического вещества, накопленного гетеротрофами, называется вторичной продукцией. Поскольку гетеротрофы дышат и выделяют непереваренные остатки, в каждом звене часть энергии теряется. Это накладывает существенное ограничение на длину пищевых цепей; количество звеньев в них редко бывает больше 6.

Изучение продуктивности экосистем важно для их рационального использования. Эффективность экосистем может быть повышена за счёт повышения урожайности, уменьшения помех со стороны других организмов (например, сорняков по отношению к сельскохозяйственным культурам), использования культур, более приспобленных к условиям данной экосистемы. По отношению к животным необходимо знать максимальный уровень добычи (то есть количество особей, которые можно изъять из популяции за определённый промежуток времени без ущерба для её дальнейшей продуктивности).

Тема 7. Синэкология - экология сообществ

7.1 Межвидовые связи в экосистеме

Типы связей и взаимоотношений между организмами. Живые организмы определенным образом связаны друг с другом. Различают следующие типы связей между видами: трофические, топические, форические, фабрические. Наиболее важными являются трофические и топические связи, так как именно они удерживают организмы разных видов друг возле друга, объединяя их в сообщества.

Трофические связи возникают между видами, когда один вид питается другим: живыми особями, мертвыми остатками, продуктами жизнедеятельности. Трофическая связь может быть прямой и косвенной. Прямая связь проявляется при питании львов живыми антилопами, гиен трупами зебр, жуков-навозников пометом крупных копытных и т.д. Косвенная связь возникает при конкуренции разных видов за один пищевой ресурс.

Топические связи проявляются в изменении одним видом условий обитания другого вида. Например, под хвойным лесом, как правило, отсутствует травянистый покров.

Форические связи возникают, когда один вид участвует в распространении другого вида. Перенос животными семян, спор, пыльцы растений называется зоохория, а мелких особей - форезия.

Фабрические связи заключаются в том, что один вид использует для своих сооружений продукты выделения, мертвые остатки или даже живых особей другого вида. Например, птицы при постройке гнезд используют ветки деревьев, траву, пух и перья других птиц.

Типы отношений между организмами. Воздействие одного вида на другой может быть положительным, отрицательным и нейтральным. При этом возможны разные комбинации типов воздействия. Различают нейтрализм, протокооперацию, мутуализм, комменсализм, хищничество, паразитизм, конкуренцию, аменсализм.

Нейтрализм - сожительство двух видов на одной территории, не имеющее для них ни положительных, ни отрицательных последствий. Например, белки и лоси не оказывают друг на друга значительных воздействий.

Протокооперация - взаимовыгодное, но не обязательное сосуществование организмов, пользу из которого извлекают все участники. Например, раки-отшельники и актинии. На раковине рака может поселяться коралловый полип актиния, который имеет стрекательные клетки, выделяющие яд. Актиния защищает рака от хищных рыб, а рак-отшельник, перемещаясь, способствует распространению актиний и увеличению их кормового пространства.

Мутуализм (облигатный симбиоз) - взаимовыгодное сожительство, когда либо один из партнеров, либо оба не могут существовать без сожителя. Например, травоядные копытные и целлюлозоразрушающие бактерии. Целлюлозоразрушающие бактерии обитают в желудке и кишечнике травоядных копытных. Они продуцируют ферменты, расщепляющие целлюлозу, поэтому обязательно нужны травоядным, у которых таких ферментов нет. Травоядные копытные со своей стороны предоставляют бактериям питательные вещества и среду обитания с оптимальной температурой, влажностью и т.д.

Комменсализм - взаимоотношения, при которых один из партнеров получает пользу от сожительства, а другому присутствие первого безразлично. Различают две формы комменсализма: синойкия (квартирантство) и трофобиоз (нахлебничество). Примером синойкии являются взаимоотношения некоторых актиний и тропических рыбок. Тропические рыбки укрываются от нападения хищников среди щупалец актиний, которые имеют стрекательные клетки. Примером трофобиоза служат взаимоотношения крупных хищников и падальщиков. Падальщики, например гиены, грифы, шакалы, питаются останками жертв, убитых и частично съеденных крупными хищниками - львами.

Хищничество - взаимоотношения, при которых один из участников (хищник) умерщвляет другого (жертва) и использует его в качестве пищи. Например, волки и зайцы. Состояние популяции хищника тесно связано с состоянием популяции жертв. Однако при сокращении численности популяции одного вида жертв, хищник переключается на другой вид. Например, волки могут использовать в качестве пиши зайцев, мышей, кабанов, косуль, лягушек, насекомых и т.д.

Частным случаем хищничества является каннибализм - умерщвление и поедание себе подобных. Встречается, например, у крыс, бурых медведей, человека.

Паразитизм - взаимоотношения, при которых паразит не убивает своего хозяина, а длительное время использует его как среду обитания и источник пищи. К паразитам относятся: вирусы, патогенные бактерии, грибы, простейшие, паразитические черви и др. Различают облигатных и факультативных паразитов. Облигатные паразиты ведут исключительно паразитический образ жизни и вне организма хозяина либо погибают, либо находятся в неактивном состоянии (вирусы). Факультативные паразиты ведут паразитический образ жизни, но в случае необходимости могут нормально жить во внешней среде, вне организма хозяина (патогенные грибы и бактерии).

Конкуренция - взаимоотношения, при которых организмы соперничают друг с другом за одни и те же ресурсы внешней среды при недостатке последних. Организмы могут конкурировать за пищевые ресурсы, полового партнера, убежище, свет и т.д. Различают прямую и косвенную, межвидовую и внутривидовую конкуренции.

Косвенная (пассивная) конкуренция - потребление ресурсов среды, необходимых обоим видам. Прямая (активная) конкуренция - подавление одного вида другим.

Внутривидовая конкуренция - это соперничество между особями одного вида, межвидовая - между особями разных видов.

Межвидовая конкуренция возникает между особями экологически близких видов. Ее результатом может быть либо взаимное приспособление двух видов, либо замещение популяцией одного вида популяции другого вида, который переселяется на другое место, переключается на другую пищу или вымирает.

Конкуренция приводит к естественному отбору в направлении увеличения экологических различий между конкурирующими видами и образованию ими разных экологических ниш.

Аменсализм - взаимоотношения, при которых один организм воздействует на другой и подавляет его жизнедеятельность, а сам не испытывает никаких отрицательных влияний со стороны подавляемого. Например, ель и растения нижнего яруса. Плотная крона ели препятствует проникновению солнечных лучей под полог леса и подавляет развитие растений нижнего яруса.

Частным случаем аменсализма является аллелопатия (антибиоз) - влияние одного организма на другой, при котором во внешнюю среду выделяются продукты жизнедеятельности одного организма, отравляя ее и делая непригодной для жизни другого. Аллелопатия распространена у растений, грибов, бактерий.

Например, гриб-пеницилл продуцирует вещества, подавляющие жизнедеятельность бактерий. В последнее время в понятие "аллелопатия" включают и положительное воздействие.

В ходе эволюции и развития экосистем существует тенденция к уменьшению роли отрицательных взаимодействий за счет положительных, увеличивающих выживание обоих видов. Поэтому в зрелых экосистемах доля сильных отрицательных взаимодействий меньше, чем в молодых.

7.2 Трофическая структура биоценоза. Пищевые цепи

Пищевая цепь - это линейная последовательность организмов, в которой происходит передача вещества и энергии от одного звена к другому.

В зависимости от того с чего начинается пищевая цепь, она подразделяется на два типа:

1. пастбищные цепи, или цепи выедания - это пищевые цепи, начинающиеся с продуцентов.

Например: капуста - гусеница - синица - ястреб - человек.

2. Детритные цепи, или цепи разложения - это пищевые цепи, начинающиеся с детрита.

Например: опавшие листья (детрит) - дождевой червь - плесневые грибы - микроорганизмы - биогены (питательное вещество; биогены, биогенные элементы - незаменимые химические элементы, из которых состоит вещество живых организмов углерод, водород, кислород, азот, сера, фосфор).

Каждое звено пищевой цепи называется трофическим уровнем (греч. trophos «питание»).

Трофических уровней столько, сколько пищевых звеньев в цепи питания.

Каждая экосистема содержит совокупность животных и растительных организмов, которые по формам питания можно разделить на 2 группы:

? автотрофы (кормящие себя сами) - зеленые растения, способные осуществлять фотосинтез и использующие минеральные элементы для роста и воспроизводства. Автотрофные растения - это продуценты экосистемы (от лат. слова - производящий), создающие органические вещества из неорганических. Из этих органических веществ и образуются ткани растений и животных. Фотосинтезирующие растения продуцируют пищу для всех остальных организмов экосистемы, отсюда их название - продуценты.

? гетеротрофы (питающиеся другими)- организмы, которым для питания необходимы органические вещества. Эти организмы имеют значительно сложный обмен веществ. Все гетеротрофы делятся на организмы-потребители (консументы) и организмы, разлагающие органические вещества на исходные неорганические компоненты (редуценты).

Консументы (потребляю) - это организмы, потребляющие органические вещества. Сюда относятся как простейшие, рыбы, моллюски, насекомые, птицы, пресмыкающиеся, так и млекопитающие, в т.ч. человек.

Различают:

? консументы первого порядка - растительноядные животные (клещ, слон);

? консументы второго, третьего и более порядков, потребляющих животную пищу,

- хищники (или плотоядные), а также

- всеядные (или эврифаги), которые могут поедать животную и растительную пищу (лисы, свиньи, тараканы).

Редуценты (с лат. - возвращающий, восстанавливающий) или деструкторы - организмы, разлагающие мертвое органическое вещество.

К редуцентам относятся различные животные (как правило, беспозвоночные), грибы, прокариоты:

* некрофаги - трупоеды;

* копрофаги (копрофилы, копротрофы) - питаются экскрементами;

* сапрофаги (сапрофиты, сапрофилы, сапротрофы) - питаются мертвым органическим веществом (опавшими листьями, линочными шкурками);

к сапрофагам относятся:

? ксилофаги (ксилофилы, ксилотрофы) - питаются древесиной;

? кератинофаги (кератинофилы, кератинотрофы) - питаются роговым веществом;

? детритофаги - питаются полуразложившимся органическим веществом;

? окончательные минерализаторы - полностью разлагают органическое вещество.

В схемах пищевых цепей каждый организм представлен питающимся организмами какого-то определённого типа. Действительность намного сложнее, и организмы (особенно, хищники) могут питаться самыми разными организмами, даже из различных пищевых цепей. Таким образом, пищевые цепи переплетаются, образуя пищевые сети.

7.3 Сукцессия, ее виды

Сукцессия - последовательная необратимая смена биоценозов, преемственно возникающих на одной и той же территории в результате влияния природных факторов или воздействия человека.

Выделяют два основных типа сукцессий:

1. автотрофные сукцессии - это сукцессии, начинающиеся с состояния, когда продукция больше трат на дыхание. Они протекают как с участием автотрофов, так и гетеротрофов;

2. гетеротрофные сукцессии - это сукцессии, начинающиеся с состояния, когда продукция меньше трат на дыхание. Они протекают только с участием гетеротрофов и имеют место только в условиях, когда есть запас и поступление органического вещества (загрязненные водоемы, кучи компостов, трупы животных, гнилое дерево и т.д.).

Автотрофные сукцессии в зависимости от места подразделяются на первичные и вторичные.

Первичные начинаются на месте лишенном жизни (скаля, песчаные дюны, вулканическая лава и т.д.). Они включают несколько этапов:

1) возникновение места, лишенного жизни;

2) миграция на него разных организмов или их расселительных зачатков;

3) приживание организмов;

4) конкуренция их между собой и вытеснение отдельных видов;

5) преобразование организмами их местообитания, постепенная стабилизация условий и отношений.

Вторичные сукцессии - это сукцессии, которые начинаются на месте разрушенного биоценоза.

В зависимости от причин сукцессии различают экзодинамические (от греческого слова эксо - снаружи) сукцессии, вызванные внешними по отношению к данной экосистеме факторами, могут быть вызваны изменениями климата, понижением уровня грунтовых вод, подъемом уровня мирового океана и т.п. Такие смены могут длиться столетиями и тысячелетиями. И эндодинамические (от греческого слова эндон - внутри) сукцессии, вызванные внутренними механизмами экосистемы, приводятся в действие особыми законами, механизмы которых до сих пор во многом непонятны. Известно, что на любом, даже абсолютно безжизненном, субстрате типа песчаных дюн или затвердевшей лавы, рано или поздно расцветает жизнь.

Типы сообществ, в данном пространстве последовательно сменяют друг друга, постепенно усложняясь и увеличивая видовое разнообразие, формируя так называемый сукцессионный ряд, состоящий из последовательных стадий, отмечающих смену одного сообщества другим. Сукцессионный ряд заканчивается стадией зрелости, на которой экосистема изменяется очень мало. Экосистемы на этой стадии называются климаксными (от греческого слова климакс - лестница).

Продолжительность сукцессии от зарождения экосистемы до стадии климакса может составлять до сотен и даже до тысяч лет. Столь длительная продолжительность связана в основном с необходимостью накопления питательного вещества в субстрате. За 5-10 лет они несколько обогащают субстрат питательными веществами, формируя зачатки почвы. Затем на этих еще совсем бедных почвах поселяются травы, еще более обогащая почву. Лет через 15 от начала сукцессии на когда-то безжизненном пространстве поселяются первые кустарники, которые постепенно вытесняются лиственными светолюбивыми деревьями, чаще всего березой и осиной, которые характеризуются быстрым ростом. К 50-летнему возрасту в молодом лиственном лесу выделяются наиболее сильные деревья, которые затеняют более слабую поросль, которая погибает, давая возможность поселиться под пологом лиственного леса поросли ели. Ель более теневынослива, под защитой лиственных деревьев она постепенно догоняет их в росте, отвоевывая у них жизненное пространство. Где-то к 70 годам экосистема достигает стадии смешанного елово-лиственного леса. Лиственные деревья к тому времени успевают состариться, и постепенно ель выходит на первый ярус, затеняя и изреживая всю лиственную растительность. К 90 годам данная экосистема достигает стадии климакса, для которой характерно практически полное отсутствие лиственных деревьев, ель становится доминирующим видом-эдификатором, формируя особым образом всю жизнь населяющего данную экосистему сообщества.

Тема 8. Биосферно - ноосферная концепция В.И. Вернадского

8.1 Учение В.И. Вернадского о биосфере

Самым высоким уровнем организации жизни на планете Земля является биосфера.

Термин "биосфера" введен в 1875 г. австрийским геологом Эдуардом Зюссом, а учение о биосфере было создано в 1926 году В.И. Вернадским. В основе учения Вернадского лежат представления о планетарной геохимической роли живого вещества и о самоорганизованности биосферы.

«Ни один живой организм в свободном состоянии на Земле не находится. Все организмы неразрывно и непрерывно связаны, прежде всего, питанием и дыханием - с окружающей их материально-энергетической средой. Вне ее в природных условиях они существовать не могут». В.И. Вернадский.

Биосфера (греч. bios - жизнь) - часть Земли, в которой развивается жизнь организмов, населяющих поверхность суши, нижние слои атмосферы, и гидросферу.

Биосфера - область жизни организмов, оболочка земли, состав, структура и энергетика которой в настоящем (или прошлом) обусловлена действием живых организмов.

Биосфера имеет свои границы, обусловленные распространением жизни.

В.И. Вернадский в биосфере выделял три сферы жизни:

1. атмосфера - газообразная оболочка земли (газы, пыль и водяные пары). Границы биосферы в атмосфере находятся на высоте примерно 25-27 км, где располагается озоновый слой, поглощающий около 99% ультрафиолетовых лучей. Наиболее заселенным является приземистый слой атмосферы (1-1,5 км, а в горах до 6 км над уровнем моря).

2. литосфера - твердая оболочка земли. Она заселена организмами неполностью. Распространение жизни ограничено температурой. Максимальная глубина, на которой обнаружены живые организмы в литосфере, составляет 4-4,5 км. Это и есть граница биосферы в литосфере.

3. гидросфера - жидкая оболочка земли. Она заселена жизнью полностью.

В.И. Вернадский предложил все, что входит в состав биосферы, объединить в группы в зависимости от характера происхождения вещества. Он выделил 7 групп вещества:

1) живое вещество - вся совокупность всех продуцентов, консументов и редуцентов, населяющих биосферу;

2) косное вещество - это совокупность веществ, в образовании которых живые организмы не участвовали, это вещество образовалось до появления жизни на земле (горные, скалистые породы, вулканические извержения);

3) биогенное вещество - это совокупность веществ, которые образованы самими организмами или являются продуктами их жизнедеятельности (каменный уголь, нефть, известняк, торф, и другие полезные ископаемые);

4) биокосное вещество - это вещество, которое представляет собой систему динамического равновесия между живым и косным веществом (почва, вода, ил, кора выветривания);

5) радиоактивное вещество - это совокупность всех изотопных элементов, находящихся в состоянии радиоактивного распада (радий, уран, торий и т.д.);

6) вещество рассеянных атомов - это совокупность всех элементов, находящихся в атомарном состоянии и не входящих в состав никакого другого вещества;

7) космическое вещество - это совокупность веществ, попадающих и имеющих космическое происхождение (метеориты, космическая пыль).

В учении о биосфере выделяют следующие основные подходы:

1. энергетический (связь биосферных явлений с космическим излучением (прежде всего, излучением Солнца) и радиоактивными процессами в недрах Земли);

2. биогеохимический (роль живого в распределении атомов в биосфере);

3. информационный (принципы организации и управления в живой природе);

4. пространственно-временной (формирование и эволюция различных структур биосферы);

5. ноосферный (глобальные аспекты воздействия человека на окружающую среду).

Решающее значение в истории образования биосферы имело появление на Земле растений, которые в процессе фотосинтеза синтезируют органические вещества из и под действием солнечного света. В результате фотосинтеза ежегодно образуется 100 млрд. тонн органического вещества. Именно благодаря растениям на Земле получили развитие различные виды животных, и осуществляется обмен веществом и энергией между живой и неживой природой.

8.2 Функции живого вещества в биосфере

В.И. Вернадский считал, что главную преобразующую роль в биосфере играет живое вещество. Оно выполняет 5 основных биосферных функций:

1. Энергетическая функция - это способность живых организмов поглощать солнечную энергию, превращать ее энергию в энергию химических связей и передавать по пищевым цепям. Благодаря этой функции поддерживается жизнь в биосфере.

2. Газовая функция - это способность живых организмов поддерживать постоянство газового состава биосферы в результате сбалансированного фотосинтеза и дыхания;

3. Концентрационная функция - это способность живых организмов накапливать в своем теле определенные элементы окружающей среды, благодаря чему произошло перераспределение элементов в пределах биосферы и образовались полезные ископаемые;

4. Окислительно-восстановительная функция - это способность живых организмов в ходе биохимических реакций изменять степень окисления элементов и создавать, таким образом, разнообразие соединений в природе, необходимое для поддержания разнообразия в биосфере;

5. Деструктивная функция - это способность живых организмов разлагать отмершее органическое вещество до биогенов, благодаря чему осуществляется круговорот веществ в биосфере.

8.3 Круговорот веществ в биосфере

Основой динамического равновесия и устойчивости биосферы являются кругооборот веществ и превращение энергии.

Различают два вида круговоротов веществ: большой (геологический) (между сушей и океаном), и малый (биогеохимический) (в пределах экосистем). Малые круговороты чаще нарушаются в результате несоответствия между массой веществ, поставляемых в среду, и потенциалами организмов по их разложению.

Круговорот воды - это большой круговорот. Круговорот воды в целом играет основную роль в формировании природных условий на нашей планете. Влага, испарившаяся с поверхности Мирового океана (на что затрачивается почти половина поступающей к поверхности Земли солнечной энергии), переносится на сушу, где выпадает в виде осадков, которые вновь возвращаются в океан в виде поверхностного и подземного стоков. Круговорот воды происходит и по более простой схеме: испарение влаги с поверхности океана - конденсация водяного пара - выпадение осадков на эту же водную поверхность океана. Подсчитано, что в круговороте воды на земле ежегодно участвует более 500 тыс. км3 воды.

Малый кругооборот, являясь частью большого, происходит на уровне экосистемы (лишь в пределах биосферы) и заключается в том, что питательные вещества почвы, вода, углерод аккумулируются в веществе растений, расходуются на построение тела и жизненные процессы. Продукты распада почвенной микрофлоры вновь разлагаются до минеральных компонентов, доступных растениям и вновь вовлекаются в поток вещества.

Кругооборот химических веществ из неорганической среды через растения и животные обратно в неорганическую среду с использованием солнечной энергии химической реакций называется биохимическим циклом.

Круговорот углерода. Содержащийся в атмосфере углерод в процессе фотосинтеза вводится в органическое вещество растений, а далее - в цепи питания. Высвобождение углерода из органического вещества совершается в процессе дыхания организмов. Большая масса углерода высвобождается из мертвого органического вещества организмами-редуцентами. Нарушение циклов углерода связано с высвобождением его из геологических структур и в результате изменения площадей и производительности растительных сообществ и т. п. Часть углерода накапливается в атмосфере в форме углекислого газа и метана, создавая парниковый эффект.

Круговорот азота. Главным источником этого элемента является атмосфера, откуда в почву, а потом в растительные организмы азот попадает лишь в результате превращения в усвояемое соединение - нитраты. Последние формируются в результате деятельности организмов-азотофиксаторов. К ним относят отдельные виды бактерий, сине-зеленых водорослей и грибов. Немалая доля азота, попадая в океан, используется водными фотосинтезирующими организмами, попадает в цепи питания животных, возвращается на сушу с продуктами морского промысла, птицами Изменения в круговороте азота обусловлены переводом его в усвояемые формы из атмосферного воздуха в итоге техногенных процессов как целенаправленно (получение азотных удобрений), так и непреднамеренно (высокие температуры, создаваемые например двигателями внутреннего сгорания). Отрицательные последствия нарушения круговорота азота проявляются через загрязнение оксидами, аммиаком, другими соединениями атмосферного воздуха и вод, накопление нитратов в пищевых продуктах.

Круговорот фосфора. После многократного потребления фосфора организмами на суше и в водной среде он выводится в донные осадки. Возвращение фосфора с организмами океана не компенсирует его потребности на суше. Негативным следствием нарушения круговорота фосфора является попадание его в водные экосистемы с минеральными удобрениями и моющими синтетическими средствами.

Круговорот серы. Сера является одним из самых агрессивных и общераспространенных загрязнителей среды. Нарушения круговорота серы связаны со сжиганием органических веществ, переработкой серосодержащих руд. Сера поступает в атмосферу в виде токсичного соединения, диоксидов.

Насколько регулярно осуществляется кругооборот любого элемента, зависит продуктивность экосистемы, что важно для с/хозяйства и выращивания лесов. Вмешательство человека нарушает процессы кругооборота. Вырубка леса и сжигание топлива влияет на кругооборот углерода.

Считается, что время переноса углерода - 8 лет, азота - 110 лет, кислорода - 2500 лет.

8.4 Современная биосфера

Ноосфера - сфера разума, высшая стадия развития биосферы, когда разумная человеческая деятельность становится главным, определяющим фактором ее развития.

Ноосфера - это последнее эволюционное состояние биосферы. Это понятие ввел французский математик и философ Ле-Руа в 1927 году, а обосновал В.И. Вернадский в 1944 г.

Основные характеристики перехода биосферы в ноосферу:

1) Возрастающее количество извлекаемого материала из литосферы.

2) Массовое употребление продуктов фотосинтеза прошлых геоэпох.

3) Процессы ноосферы приводят к рассеиванию энергии земли, а не к ее накоплению.

4) Создание в массовом количестве веществ, которые раннее в биосфере отсутствовали (металлизация биосферы).

5) Появление новых трансурановых химических элементов, развитие ядерной техники и энергетики.

6) Выход за пределы планеты, развитие космонавтики.

В.И. Вернадский также сформулировал условия, необходимые для перехода биосферы в ноосферу:

1) единое экономическое и информационное поле всего человечества;

2) полное равенство рас;

3) прекращение войн между народами.

Ноосферное видение мира предполагает понимание того, что процессы в системе "человек-общество-природа" находятся в неразрывной связи и развитии и поэтому любое нарушение этих связей, а тем более их разрыв, порождает негативные явления, с которыми сталкивается как отдельный человек, так и общество в целом. С этих позиций все вопросы сохранения и развития мира не множество отдельных проблем, а разные стороны одной проблемы - становления ноосферного мира как глобальной социально-природной системы, сохраняющейся и развивающейся в ходе закономерной эволюции биосферы в ноосферу.


Подобные документы

  • Глобальная экология как самостоятельная сфера экологического познания. Значение развития охраны природы для жизни человека и других организмов. Сущность и специфика основных экологических проблем. Роль окружающей среды для обеспечения здоровой жизни.

    реферат [17,5 K], добавлен 01.03.2010

  • Предмет экологии и эволюция представлений о биосфере. Понятие, энергетическая характеристика, информация и управление в экосистеме, а также её структура. Взаимодействие экосистемы и окружающей её среды. Глобальные экологические проблемы, пути их решения.

    реферат [36,0 K], добавлен 07.12.2010

  • Исследование особенностей эволюции и общая характеристика экологических ниш человека. Размещение населения и анализ комплекса требований к факторам окружающей среды и жизни современного человека. Оценка состояния радиационной экологии наземных экосистем.

    контрольная работа [153,3 K], добавлен 16.09.2011

  • Первая конференция ООН по проблемам окружающей среды: вопросы, участники, значение. Основные глобальные проблемы, которые наиболее остро стоят перед человечеством. Характеристика термина "устойчивое развитие". Решение проблем международными организациями.

    контрольная работа [55,9 K], добавлен 05.06.2011

  • Проблема комплексности социальной экологии. Основные направления охраны окружающей среды. Проблемы методологии природоохранной деятельности. Технико-технологический, воспитательный, правовой, эстетический аспекты охраны окружающей природной среды.

    реферат [21,9 K], добавлен 22.10.2010

  • Динамические и статические свойства популяций. Круговорот веществ и поток энергии в экосистеме. Основные положения учения о биосфере и ноосфере. Стратегия устойчивого развития цивилизации. Антропогенные факторы возникновения неустойчивости в биосфере.

    курс лекций [91,2 K], добавлен 16.10.2012

  • История концепции устойчивого развития. Процесс экологизации научных знаний. Принципы устойчивого развития. Ограничения, накладываемые на способность окружающей среды удовлетворять потребности человечества. Стратегия устойчивого экологического развития.

    презентация [3,1 M], добавлен 18.12.2014

  • Глобальные проблемы окружающей среды. Междисциплинарный подход в исследовании экологических проблем. Содержание экологии как фундаментального подразделения биологии. Уровни организации живого как объекты изучения биологии, экологии, физической географии.

    реферат [16,3 K], добавлен 10.05.2010

  • Сущность понятия "экология". Основные законы экологии. Закон развития системы за счет окружающей ее среды. Классификация экологических законов. Концепции взаимоотношения общества и природы. Необходимые предпосылки для создания ноосферы по Вернадскому.

    контрольная работа [30,3 K], добавлен 14.04.2011

  • Характеристика этапов развития экологии: первобытное общество и античные цивилизации, от Средневековья к Возрождению, век естествознания. Основные принципы экологии. Основные факторы внешней среды. Глобальная экология и опасность экологического кризиса.

    курсовая работа [40,5 K], добавлен 19.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.