Структура экологии

История, структура современной экологии и основные определения: биосфера, биоценоз, биотоп, экосистема, окружающая среда, экологическая ниша, ноосфера. Полевые, лабораторные, экспериментальные исследования. Классификация загрязняющих атмосферу веществ.

Рубрика Экология и охрана природы
Вид шпаргалка
Язык русский
Дата добавления 18.11.2010
Размер файла 357,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Содержание

1. История экологии. Структура современной экологии

2. Методы экологических исследований

3. Полевые, лабораторные, экспериментальные исследования

4. Основные показатели численности организм

5. Математические методы и моделирование

6. Экологическое прогнозирование и мониторинг

7. Проблемы, связанные с антропогенным воздействием на биосферу

8. Экологический кризис и возможные пути его преодоления

9. Основные понятия и определения экологии: биосфера, биоценоз, биотоп, экосистема, окружающая среда, экологическая ниша, ноосфера

10. Биосфера и ее составляющие

11. Учение Вернадского о биосфере

12. Понятие о среде жизни, основные среды жизни на земле

13. Эволюция биосферы и ноосферы

14. Закономерности действия экологических факторов: закон Либиха и Шелфорда

15. Классификация экологических факторов

16. Адаптация живых организмов к экологическим факторам

17. Абиотические факторы

18. Главнейшие климатические факторы

19. Абиотические факторы почвенного покрова

20. Абиотические факторы водной среды

21. Биотические факторы

22. Антропогенные факторы

23. Водная среда

24. Наземно-воздушная среда жизни

25. Почва как среда жизни

26. Живые организмы как среда жизни

27. Популяция. Ее структура и динамика. Устойчивость популяции

28. Численность и плотность популяции

29. Регуляция численности популяций

30. Популяция как саморегулирующаяся система

31. Экологическая система

32. Биогеоценоз

33. Экологичсекая ниша

34. Структура биоценоза

38. Энергетика экосистем

39. Цепи и циклы питания

40. Поток веществ и энергии

41. Биологичсекия продуктивность

42. Круговорот кислорода

43. Круговорот воды

44. Круговорот серы

45. Круговорот фосфора

46. Круговорот азота

47. Круговорот углерода

48. Экологичсекая ниша человека

49. Действие человека на биогеохимические циклы

50. Помехи в экосистемах

51. Структура и состав атмосферы

52. Классификация загрязняющих атмосферу веществ

53. Источники загрязнений

54. Последствия загрязнений атмосферы

55. Предельно допустимая концетрация (ПДК) вредных веществ в Атмосфере

56. Предельно допустимые выбросы

57. Основные способы защиты атмосферы от загрязнений

58. Санитарно-защитная зона (СЗЗ)

59. Приборы контроля качества воды

60. Методы очистки сточных вод: механические, химические, физико-химические, биологические

61. Экологичсекие последствия загрязнений природных вод

62. Водные ресурсы 12063. Классификация природных ресурсов

64. Утилизация отходов. Классификация твердых отходов, транспортировка отходов, полигоны твердых отходов

65. Хранение и нейтрализация токсичных промышленных отходов

66. Переработка твердых отходов

67. Радиоактивные загрязнения

68. Основные источники шума в городе. Влияние шума на организм человека и животных. Уровень шума для человека

1. История экологии. Структура современной экологии

Термин «экология» был предложен в 1866 году немецким зоологом и философом Э. Геккелем, который, разрабатывая систему классификации биологических наук, обнаружил, что нет никакого специального названия для области биологии, изучающей взаимоотношения организмов со средой. Геккель определял также экологию как «физиологию взаимоотношений», хотя «физиология» понималась при этом очень широко -- как изучение самых разных процессов, протекающих в живой природе.

В научную литературу новый термин входил довольно медленно и более или менее регулярно стал использоваться только с 1900-х годов. Как научная дисциплина экология формировалась в 20-м столетии, но предыстория ее восходит к 19, и даже к 18 веку.

Во второй половине 18-го в. на смену представлениям естественной истории, неотделимым от церковных догматов, стали приходить новые идеи, постепенное развитие которых привело к той картине мира, которая разделяется и современной наукой. Важнейшим моментом был отказ от чисто внешнего описания природы и переход к выявлению внутренних, порой скрытых, связей, определяющих ее естественное развитие. Так, И. Кант в своих лекциях по физической географии, прочитанных в университете Кенигсберга, подчеркивал необходимость целостного описания природы, которое учитывало бы взаимодействие процессов физических и тех, что связаны с деятельностью живых организмов. Во Франции, в самом начале 19 в. Ж.Б. Ламарк предложил свою, в значительной мере умозрительную концепцию круговорота веществ на Земле. Живым организмам при этом уделялась очень важная роль, поскольку предполагалось, что только жизнедеятельность организмов, приводящая к созданию сложных химических соединений, способна противостоять естественным процессам разрушения и распада. Хотя концепция Ламарка была довольно наивной и не всегда соответствовала даже тогдашнему уровню знаний в области химии, в ней были предугаданы некоторые идеи о функционировании биосферы, получившие развитие уже в начале 20-го столетия.

На рубеже 19 и 20 столетий само слово «экология», почти не использовавшееся в первые 20-30 лет после того, как оно было предложено Геккелем, начинает употребляться все чаще и чаще. Появляются люди, называющие себя экологами и стремящиеся развивать именно экологические исследования. В 1895 г. датский исследователь Й.Э. Варминг публикует учебное пособие по «экологической географии» растений, вскоре переведенное на немецкий, польский, русский (1901 г.), а потом и на английский языки. В это время экология чаще всего рассматривается как продолжение физиологии, только перенесшей свои исследования из лаборатории непосредственно в природу. Основное внимание уделяется при этом изучению воздействия на организмы тех или иных факторов внешней среды. Иногда, однако, ставятся совсем новые задачи, например, выявить общие, регулярно повторяющиеся черты в развитии разных природных комплексов организмов (сообществ, биоценозов).

Для превращения экологии в самостоятельную науку очень важными были 1920-1940-е годы. В это время публикуется ряд книг по разным аспектам экологии, начинают выходить специализированные журналы (некоторые из них существуют до сих пор), возникают экологические общества. Но самое главное -- постепенно формируется теоретическая основа новой науки, предлагаются первые математические модели и вырабатывается своя методология, позволяющая ставить и решать определенные задачи. Тогда же оформляются два достаточно разных подхода, существующие и в современной экологии: популяционный -- уделяющий основное внимание динамике численности организмов и их распределению в пространстве, и экосистемный -- концентрирующийся на процессах круговорота вещества и трансформации энергии.

Современная экология -- это быстро развивающаяся наука, характеризующаяся своим кругом проблем, своей теорией и своей методологией. Сложная структура экологии определяется тем, что объекты ее относятся к очень разным уровням организации: от целой биосферы и крупных экосистем до популяций, причем популяция нередко рассматривается как совокупность отдельных особей. Масштабы пространства и времени, в которых происходят изменения этих объектов, и которые должны быть охвачены исследованиями, также варьируют чрезвычайно широко: от тысяч километров до метров и сантиметров, от тысячелетий до недель и суток. В 1970-е гг. формируется экология человека. По мере давления на окружающую среду возрастает практическое значение экологии, ее проблемами широко интересуются философы и социологи.

Структура современной экологии

2. Методы экологических исследований

Многообразие связей, формирующихся на уровне биологических макросистем, обусловливает разнообразие путей и способов изучения экологических явлений. Основные методы экологических исследований: полевые, экспериментальные исследования с использованием экосистемного подхода, изучения сообществ (синэкология), популяционного подхода (демэкология), анализ местообитаний, эволюционного и исторических подходов.

3. Полевые, лабораторные, экспериментальные исследования

Первостепенное значение для эколога имеют полевые исследования, т.е. изучение популяций видов и их сообществ в естественной обстановке, непосредственно в природе. Полевые методы позволяют установить результат влияния на организм или популяцию определенного комплекса экологических факторов, выяснить общую картину развития и жизнедеятельности вида в конкретных условиях.

Однако наблюдения в естественной обстановке не могут дать точного ответа на некоторые вопросы, например, какой конкретно фактор среды определяет характер жизнедеятельности особи, популяции, сообщества, как он влияет на их функционирование. На эти вопросы можно ответить с помощью эксперимента, задачей которого является выяснение причин наблюдаемых в природе явлений, взаимосвязей и взаимоотношений. В связ с этим экологический эксперимент, как правило, носит аналитический характер. Следует иметь в виду, что выводы, полученные в ходе лабораторного эксперимента, обязательно должны быть проверены в природе.

Эксперимент отличается от наблюдения тем, что в эксперименте организмы искусственно ставятся в условия, при которых можно строго фиксировать и дозировать тот или иной экологический фактор. Вообще в экологическом эксперименте очень трудно воспроизвести весь комплекс природных условий, но изучить влияние отдельных факторов на организм, популяцию или сообщество возможно.

Для современных экологических исследований характерно то, что они основываются на количественной оценке изучаемых объектов и явлений.

4. Основные показатели численности организма

Численность - общее количество особей на данной территории или данном объеме (количество растений района) численность может колебаться по времени. Некоторые колебания незакономерны, другие закономерны и носят циклический характер. Это «волны жизни». В одних случаях волны жизни связаны с пищевым фактором , другие с климатической и солнечной активностью. Резкие изменения численности имеют отрицательное следствие для жизни популяций. Для высокой численности ослабление всей особи при недостатке пищи, заболеваний. При низкой численности из за превышении порога. Чем меньше особи, тем выше критическое значение их численности.

Численность тех или иных животных определяется различными методами. Например, подсчетом с самолета или вертолета при облетах территории. Численность гидробионтов определяют путем отлавливания их сетями (рыбы), для микроскопических (фитопланктон, зоопланктон) применяют специальные мерные емкости.

Численность человеческой популяции определяется путем переписи населения всего государства, его административных подразделений и т. п.

Знание численности и структуры населения (этнической, профессиональной, возрастной, половой и т. п.) имеет большое экономическое и экологическое значение.

5. Математические методы и моделирование

Все биосистемы обладают способностью к саморегуляции, т.е. к восстановлению экологического равновесия, а законы их развития имеют причинно-следственную связь, то в экологических исследованиях широкое распространение получили математические методы (математическая статистика, методы теории информации и кибернетики, теории чисел, дифференциальные и интегральные исчисления и др.) и на основе этих методов - моделирование.

Модели экосистем строятся на основе многочисленных сведений, накопленных в полевых и лабораторных условиях. При этом правильно построенные математические модели помогают увидеть то, что трудно или невозможно проверить в эксперименте. Однако сама по себе математическая модель не может служить абсолютным доказательством правильности той или иной гипотезы, но она служит одним из путей анализа реальности.

Моделирование биологических явлений, т.е. воспроизведение в искусственных системах процессов свойственных живой природе, получило широкое распространение в современной экологии.

Модели подразделяются на реальные (аналоговые) и знаковые.

Примеры аналоговых моделей - аппараты искусственного кровообращения, искусственная почка, протезы рук, управляемые биотоками. Аквариумы и океанариумы модели разных водоемов, теплицы - модели экосистем соответствующих природных зон.

Знаковые модели представляют собой отображение оригинала с помощью математических выражений или подробного описания и, в свою очередь, делятся на концептуальные и математические. Первые могут быть представлены текстом, схемами, научными таблицами, графиками и т.д., а вторые - формулами, уравнениями. Математические модели, особенно при наличии количественных характеристик, являются более эффективным методом изучения экосистем. Математические символы позволяют сжато описать сложные экосистемы, а уравнения дают возможность формально выразить взаимодействия различных компонентов экосистем.

6. Экологическое прогнозирование и мониторинг

Под экологическим прогнозированием понимается предсказание состояния такой системы, среди существенных элементов которой фигурирует хотя бы одна биотическая компонента экосистемы (популяция, сообщество, синузия и пр.). Инструментом экологического прогнозирования является экологический предиктор - модель (не обязательно математическая), служащая для формирования экологического прогноза. Отдельный экологический предиктор, построенный модельером (под модельером здесь понимается человек, коллектив, организация, разрабатывающие модель, или программа, синтезирующая модель, и пр.), называется предиктором-индивидуумом.

Научное прогнозирование (в отличие от разнообразных форм ненаучного предвидения) - это соответственно непрерывное, специальное, имеющее свою методологию и технику исследование, проводимое в рамках управления, с целью повышения уровня его обоснованности и эффективности.

Мониторингом окружающей среды называют регулярные, выполняемые по заданной программе наблюдения природных сред, природных ресурсов, растительного и животного мира, позволяющие выделить их состояния и происходящие в них процессы под влиянием антропогенной деятельности.

Под экологическим мониторингом следует понимать организованный мониторинг окружающей природной среды, при котором, во-первых, обеспечивается постоянная оценка экологических условий среды обитания человека и биологических объектов (растений, животных, микроорганизмов и т. д.), а также оценка состояния и функциональной ценности экосистем, во-вторых, создаются условия для определения корректирующих воздействий в тех случаях, когда целевые показатели экологических условий не достигаются.

В соответствии с приведенными определениями и возложенными на систему функциями, мониторинг включает несколько основных процедур:

выделение (определение) объекта наблюдения;

обследование выделенного объекта наблюдения;

составление информационной модели для объекта наблюдения;

планирование измерений;

оценка состояния объекта наблюдения и идентификации его информационной модели;

прогнозирование изменения состояния объекта наблюдения;

представление информации в удобной для пользователя форме и доведение ее до потребителя.

Следует принять во внимание, что сама система мониторинга не включает деятельность по управлению качеством среды, но является источником необходимой для принятия экологически значимых решений информации.

Система экологического мониторинга должна накапливать, систематизировать и анализировать информацию:

о состоянии окружающей среды;

о причинах наблюдаемых и вероятных изменений состояния (т.e. об источниках и факторах воздействия);

о допустимости изменений и нагрузок на среду в целом;

о существующих резервах биосферы.

Таким образом, в систему экологического мониторинга входят наблюдения за состоянием элементов биосферы и наблюдения за источниками и факторами антропогенного воздействия.

Экологические мониторинги окружающей среды могут разрабатываться на уровне промышленного объекта, города, района, области, края, республики в составе федерации.

7. Проблемы, связанные с антропогенным воздействием на биосферу

Антропогенные факторы, т.е. результаты деятельности человека, приводящие к изменению среды обитания можно рассматривать на уровне региона, страны или глобальном уровне.

Антропогенное загрязнение атмосферы приводит к глобальному изменению. Загрязнения атмосферы поступают в виде аэрозолей и газообразных веществ. Наибольшую опасность представляют газообразные вещества, на долю которых приходится около 80% всех выбросов. Прежде всего -- это соединения серы, углерода, азота. Углекислый газ сам по себе не ядовит, но с его накоплением связана опасность такого глобального процесса как «парниковый эффект».

С попаданием в атмосферу соединений серы и азота связано выпадение кислотных дождей. Двуокись серы и окислы азота в воздухе соединяются с парами воды, затем вместе с дождями выпадают на землю фактически в виде разбавленных серной и азотной кислот. Такие осадки резко нарушают кислотность почвы, способствуют гибели растений и высыханию лесов, особенно хвойных. Попадая в реки и озера угнетающе действуют на флору и фауну, нередко приводя к полному уничтожению биологической жизни -- от рыб до микроорганизмов. Расстояние между местом образования кислотных осадков и местом их выпадения может составлять тысячи километров.

Эти отрицательные воздействия глобального масштаба усугубляются процессами опустынивания и вырубки лесов. Главный фактор опустынивания -- это деятельность самого человека. Среди антропогенных причин -- это избыточный выпас скота, вырубка лесов, чрезмерная и неправильная эксплуатация земель.

Ученые подсчитали, что общая площадь антропогенных пустынь превысила площадь естественных. Вот почему опустынивание относят к числу глобальных процессов.

8. Экологический кризис и возможные пути его преодоления

Поскольку случаи значительного превышения предельно допустимой концетрации достаточно часты и наблюдается рост заболеваемости, связанной с загрязнением природной среды, в последние десятилетия специалисты и средства массовой информации, а вслед за ними и население стали употреблять термин "экологический кризис" (ЭК).

Прежде всего, следует разделить понятия "локальный ЭК" и "глобальный ЭК". Локальный ЭК выражается в местном повышении уровня загрязнений - химических, тепловых, шумовых, электромагнитных - за счет одного или нескольких близко расположенных источников. Как правило, локальный ЭК может быть более или менее легко преодолен административными и / или экономическими мерами, например за счет совершенствования технологического процесса на предприятии-загрязнителе или за счет его перепрофилирования или даже закрытия. Много более серьезную опасность представляет глобальный ЭК. Он является следствием всей совокупности хозяйственной деятельности нашей цивилизации и проявляется в изменении характеристик природной среды в масштабах планеты и, таким образом, опасен для всего населения Земли. Бороться с глобальным ЭК гораздо труднее, чем с локальным, и эта проблема будет считаться решенной только в случае минимизации загрязнений, произведенных человечеством, до уровня, с которым природа Земли будет в состоянии справиться самостоятельно. В настоящее время глобальный ЭК включает четыре основных компонента: кислотные дожди, парниковый эффект, загрязнение планеты суперэкотоксикантами и так называемые озоновые дыры.

Чтобы справиться с глобальным экологическим кризисом, сначала необходимо, чтобы каждый житель нашей планеты осознал, что экологическая угроза исходит не от безымянного человечества вообще, а от каждого конкретного человека, то есть от нас с вами. Главную роль в решении этой задачи играет экологическое просвещение всех слоев и всех возрастных категорий общества. Следующий шаг - создание эффективного природоохранного законодательства. Помимо национальных законов, регулирующих отношения между предприятиями, государством и его жителями в области ответственности за загрязнение природной среды, важное значение имеют межгосударственные правовые отношения. Действительно, глобальный ЭК касается всей планеты, границы между странами не служат препятствием для перемещения газов, радионуклидов и экотоксикантов. Общая цель национального и международного природоохранного законодательства достаточно ясна: ни отдельному человеку, ни государству в целом не должно быть выгодно загрязнять планету сверх заранее согласованной международным сообществом меры и каждый случай сверхнормативного загрязнения должен преследоваться законом.

Следует особо подчеркнуть бессмысленность постановки вопроса о преодолении ЭК без решения проблемы финансирования природозащитных мероприятий. Мы должны привыкнуть к тому, что охрана Земли от загрязнений - дело дорогое, и, планируя бюджет - государственный, общественный или личный, - предусматривать немалые расходы на экологические нужды.

Ключевым элементом в борьбе с ЭК является поиск грамотных и действенных научно-технических решений. Это означает, что на экологию должны работать многочисленные институты, лаборатории, университеты, фирмы. Природоохранной экспертизе должно подвергаться любое действующее или реконструируемое предприятие, каждый проект нового строительства независимо от его социальной направленности. И наконец, экологический компонент среднего, специального и высшего образования должен стать неотъемлемой частью подготовки любого специалиста в области техники, естественных наук, медицины, экономики и даже гуманитарных наук. Особое значение имеет экологическая подготовка учителей. Экологический кризис является наибольшей опасностью, стоящей сегодня перед человечеством. Анализ показывает, что другие глобальные кризисы - энергетический, сырьевой, демографический - в своей основе сводятся к проблемам охраны природы. У жителей Земли нет альтернативы: либо они справятся с загрязнением, либо загрязнение расправится с большей частью землян.

9. Основные понятия и определения экологии: биосфера, биоценоз, биотоп, экосистема, окружающая среда, экологическая ниша, ноосфера

Биосфера -- оболочка Земли, заселённая живыми организмами, находящаяся под их воздействием и занятая продуктами их жизнедеятельности; «пленка жизни»; глобальная экосистема Земли.

Экосистема -- единый естественный комплекс, образованный за длинный период живыми организмами и средой, в которой они существуют, и где все компоненты тесно связаны обменом веществ и энергии. Но, в соответствии с представлением Ю. Одума, не всякая комбинация жизнь-среда -- может быть экосистемой. Ею может стать лишь среда, где имеет место стабильность и четко функционирует внутренний кругооборот веществ. Выделяют микроэкосистемы (пенек с грибами, небольшое болото), мезоэкосистемы (участок леса, озеро, водохранилище) и макроэкосистемы (континент, океан). Глобальной экосистемой есть биосфера нашей планеты. Часто экосистему отождествляют с биогеоценозом. И. Дедю считает, что категории экосистема и биогеоценоз совпадают на уровне растительной общности и принципиально различаются лишь выше и ниже этого уровня. «Экосистема» -- понятие более общее. Компоненты биогеоценоза -- биотоп и биоценоз. Биотоп -- однородное за абиотическими факторами среды пространство, занятое биоценозом (то есть место жизни вида, организма), а биоценоз -- сообщество организмов (продуцентов, консументов и редуцентов), которые живут в границах одного биотопа. Понятие «биоценоз» -- условное, поскольку вне среды существования организмы жить не могут, но ним удобно пользоваться в процессе изучения экологических связей между организмами.

«Окружающая среда» -- обобщенное понятие, характеризующее природные условия в конкретно избранном месте и экологическое состояние данной местности. Как правило, применение термина относится к описанию природных условий на поверхности Земли, состоянию её локальных и глобальных экосистем, включая неживую природу, и их взаимодействие с человеком.

Экологическая ниша -- место, занимаемое видом (точнее -- его популяцией) в сообществе (биоценозе), комплекс его биоценотических связей и требований к абиотическим факторам среды. Этот термин введен в 1927 году Чарльзом Элтоном. Экологическая ниша представляет собой сумму факторов существования данного вида, основным из которых является его место в пищевой цепочке.

Экологическая ниша может быть:

фундаментальной -- определяемой сочетанием условий и ресурсов, позволяющим виду поддерживать жизнеспособную популяцию;

реализованной -- свойства которой обусловлены конкурирующими видами.

Ноосфера -- сфера взаимодействия общества и природы, в границах которой разумная человеческая деятельность становится определяющим фактором развития (эта сфера обозначается также терминами «интропосфера», «социосфера», «биотехносфера»). Ноосфера -- новая, высшая стадия эволюции биосферы, становление которой связано с развитием человеческого общества, оказывающего глубокое воздействие на природные процессы.

10. Биосфера и ее составляющие

Биосфера - это совокупность частей земных оболочек (лито, гидро и атмосфер), которая заселена живыми организмами, находится под их воздействием и занята продуктами их жизнедеятельности.

Биосфера - это глобальная экосистема, она не образует сплошного слоя с четкими границами, а как бы пропитывает другие геосферы планеты, охватывая всю гидросферу, верхнюю часть литосферы и нижнюю атмосферы.

Литосфера - земная кора, внешняя твердая оболочка земного шара, образованная осадочными и базальтовыми породами. Основная масса организмов, обитающих в литосфере, сосредоточена в почвенном слое, глубина которого не превышает нескольких метров.

Гидросфера - водная оболочка Земли, составленная Мировым океаном, который занимает примерно 70,8% поверхности земного шара. В гидросферу биосфера проникает практически на всю глубину Мирового океана.

Атмосфера - воздушная оболочка земли, состоящая из смеси газов, в которой преобладают кислород и азот. Наибольшее значение для биологических процессов имеют кислород атмосферы, используемый для дыхания организмов и минерализации омертвевшего живого вещества; углекислый газ, используемый при фотосинтезе, а также озон, экранизирующий земную поверхность от жестокого ультрафиолетового излучения. В атмосфере различают: тропосферу - примыкающий к поверхности Земли нижний слой атмосферы высотой около 15км, в который входят взвешенные в воздухе водяные пары и стратосферу - слой над тропосферой высотой около 100км. В стратосфере под действием жесткого излучения Солнца из молекулярного кислорода образуется атомарный кислород, который затем, соединяясь с кислородом, превращается в озон, образующий озоновый слой, задерживая космические и ультрафиолетовые лучи, губительно действующие на живые организмы.

Вся совокупность живых организмов планеты - живое вещество, обладающее способностью расти, размножаться и расселяться по планете, составляет биомассу Земли. Вещество биосферы состоит из:

живого вещества - биомасса современных живых организмов;

биогенного вещества - всех форм детрита, а также торфа, угля, нефти и газа биогенного происхождения;

биокостного вещества - смесей биогенных веществ с минеральными породами небиогенного происхождения (почва, илы, природные воды, газо и нефтеносные сланцы);

костного вещества - горных пород, минералов, осадков не затронутых прямых биохимических воздействий организмов.

Специфической особенностью биосферы является биогенный, то есть связанный с жизнедеятельностью живых организмов, круговорот веществ, в котором они (организмы) связаны в трофические сети (цепи потребления пищи). Здесь каждый вид использует определенные источники питания и вместе с тем сам служит пищевым объектом. Источники питания, количество, свойства и доступность пищи в значительной мере лимитируют распределение и численность любой популяции и во многом определяют её эволюционную судьбу.

В устойчивой биосфере должны быть представлены три экологических категории организмов.

Продуценты, как правило, аутотрофы, то есть сами себя обеспечивают пищей. Это в первую очередь водоросли и растения, они используют внешние источники энергии (солнечную, геотермальную) и минеральных веществ для построения своих организмов. Процессы их жизни идут с накоплением рассеянного вещества и концентрацией превращенной энергии солнца или тепла Земли в химическую энергию биомассы.

Консументы - потребители, они используют по большей части уже произведенную органику, то есть растения, насекомых, животных. В своих клетках они преобразуют старые и создают новые органические вещества (белки, липиды, ферменты и другие), а в окружающую среду выделяют шлаки.

Редуценты необходимы для обратного процесса - деполимеризации белков и других, сложных по структуре и составу органических соединений в более простые формы, которые могут быть использованы продуцентами, наряду с неорганическими материалами.

Реальными зонами, в которых происходит биогенный круговорот веществ, являются биоценозы или экосистемы.

11. Учение Вернадского о биосфере

Центральным в этой концепции является понятие о живом веществе, которое В.И.Вернадский определяет как совокупность живых организмов. Кроме растений и животных, В.И.Вернадский включает сюда и человечество, влияние которого на геохимические процессы отличается от воздействия остальных живых существ, во-первых, своей интенсивностью, увеличивающейся с ходом геологического времени; во-вторых, тем воздействием, какое деятельность людей оказывает на остальное живое вещество.

Это воздействие сказывается прежде всего в создании многочисленных новых видов культурных растений и домашних животных. Такие виды не существовали раньше и без помощи человека либо погибают, либо превращаются в дикие породы. Поэтому Вернадский рассматривает геохимическую работу живого вещества в неразрывной связи животного, растительного царства и культурного человечества как работу единого целого.

По мнению В.И. Вернадского, в прошлом не придавали значения двум важным факторам, которые характеризуют живые тела и продукты их жизнедеятельности:

· открытию Пастера о преобладании оптически активных соединений, связанных с дисимметричностью пространственной структуры молекул, как отличительной особенности живых тел;

· явно недооценивался вклад живых организмов в энергетику биосферы и их влияние на неживые тела. Ведь в состав биосферы входит не только живое вещество, но и разнообразные неживые тела, которые В.И. Вернадский называет косными (атмосфера, горные породы, минералы и т.д.), а также и биокосные тела, образованные из разнородных живых и косных тел (почвы, поверхностные воды и т.п.). Хотя живое вещество по объему и весу составляет незначительную часть биосферы, но оно играет основную роль в геологических процессах, связанных с изменением облика нашей планеты.

Поскольку живое вещество является определяющим компонентом биосферы, постольку можно утверждать, что оно может существовать и развиваться только в рамках целостной системы биосферы. Не случайно поэтому В.И. Вернадский считает, что живые организмы являются функцией биосферы и теснейшим образом материально и энергетически с ней связаны, являются огромной геологической силой, ее определяющей.

Решающее отличие живого вещества от косного заключается в следующем:

· изменения и процессы в живом веществе происходят значительно быстрее, чем в косных телах. Поэтому для характеристики изменений в живом веществе используется понятие исторического, а в косных телах - геологического времени. Для сравнения отметим, что секунда геологического времени соответствует примерно ста тысячам лет исторического;

· в ходе геологического времени возрастают мощь живого вещества и его воздействие на косное вещество биосферы. Это воздействие, указывает В.И. Вернадский, проявляется прежде всего "в непрерывном биогенном токе атомов из живого вещества в косное вещество биосферы и обратно";

· только в живом веществе происходят качественные изменения организмов в ходе геологического времени. Процесс и механизмы этих изменений впервые нашли объяснение в теории происхождения видов путем естественного отбора Ч. Дарвина (1859 г.);

· живые организмы изменяются в зависимости от изменения окружающей среды, адаптируются к ней и, согласно теории Дарвина, именно постепенное накопление таких изменений служит источником эволюции.

В.И. Вернадский высказывает предположение, что живое вещество, возможно, имеет и свой процесс эволюции, проявляющийся в изменении с ходом геологического времени, вне зависимости от изменения среды.

Для подтверждения своей мысли он ссылается на непрерывный рост центральной нервной системы животных и ее значение в биосфере, а также на особую организованность самой биосферы. По его мнению, в упрощенной модели эту организованность можно выразить так, что ни одна из точек биосферы "не попадает в то же место, в ту же точку биосферы, в какой когда-нибудь была раньше”. В современных терминах это явление можно описать как необратимость изменений, которые присущи любому процессу эволюции и развития.

Непрерывный процесс эволюции, сопровождающийся появлением новых видов организмов, оказывает воздействие на всю биосферу в целом, в том числе и на природные биокосные тела, например, почвы, наземные и подземные воды и т.д. Это подтверждается тем, что почвы и реки девона совсем другие, чем третичной и тем более нашей эпохи. Таким образом, эволюция видов постепенно распространяется и переходит на всю биосферу.

Поскольку эволюция и возникновение новых видов предполагают существование своего начала, постольку закономерно возникает вопрос: а есть ли такое начало у жизни? Если есть, то где его искать - на Земле или в Космосе? Может ли возникнуть живое из неживого?

Над этими вопросами на протяжении столетий задумывались многие религиозные деятели, представители искусства, философы и ученые. В.И.Вернадский подробно рассматривает наиболее интересные точки зрения, которые выдвигались выдающимися мыслителями разных эпох, и приходит к выводу, что никакого убедительного ответа на эти вопросы пока не существует. Сам он как ученый вначале придерживался эмпирического подхода к решению указанных вопросов, когда утверждал, что многочисленные попытки обнаружить в древних геологических слоях Земли следы присутствия каких-либо переходных форм жизни не увенчались успехом. Во всяком случае некоторые останки жизни были обнаружены даже в докембрийских слоях, насчитывающих 600 миллионов лет. Эти отрицательные результаты, по мнению В.И. Вернадского, дают возможность высказать предположение, что жизнь как материя и энергия существует во Вселенной вечно и поэтому не имеет своего начала. Но такое предположение есть не больше, чем эмпирическое обобщение, основанное на том, что следы живого вещества до сих пор не обнаружены в земных слоях. Чтобы стать научной гипотезой, оно должно быть согласовано с другими результатами научного познания, в том числе и с более широкими концепциями естествознания и философии. Во всяком случае нельзя не считаться со взглядами тех натуралистов и философов, которые защищали тезис о возникновении живой материи из неживой, а в настоящее время даже выдвигают достаточно обоснованные гипотезы и модели происхождения жизни. В.И. Вернадский, опираясь на почву точно установленных фактов, он не допускал ни божественного вмешательства, ни земного происхождения жизни. Он перенес возникновение жизни за пределы Земли, а также допускал возможность ее появлении в биосфере при определенных условиях.

12. Понятие о среде жизни, основные среды жизни на земле

Существуют 4 основные среды жизни: наземно-водушная (суша); водная; почва; другие организмы.

Водная среда жизни

По мнению большинства авторов, изучающих возникновение жизни на Земле, эволюционно первичной средой жизни была именно водная среда. Большинство организмов не способны к активной жизнедеятельности без поступления воды в организм или, по крайней мере, без сохранения определенного содержания жидкости внутри организма. Внутренняя среда организма, в которой происходят основные физиологические процессы, очевидно, по-прежнему сохраняет черты той среды, в которой происходила эволюция первых организмов. Так, содержание солей в крови человека (поддерживаемое на относительно постоянном уровне) близко к таковому в океанической воде. Свойства водной океанической среды во многом определили химико-физическую эволюцию всех форм жизни.

Пожалуй, главной отличительной особенностью водной среды является ее относительная консервативность. Скажем, амплитуда сезонных или суточных колебаний температуры в водной среде намного меньше, чем в наземно-воздушной. Рельеф дна, различие условий на различных глубинах, наличие коралловых рифов и проч. создают разнообразие условий в водной среде.

Особенности водной среды проистекают из физико-химических свойств воды. Так, большое экологическое значение имеют высокая плотность и вязкость воды. Удельная масса воды соизмерима с таковой тела живых организмов. Плотность воды примерно в 1000 раз выше плотности воздуха. Поэтому водные организмы (особенно, активно движущиеся) сталкиваются с большой силой гидродинамического сопротивления.

В связи с высокой плотностью водной среды ее обитатели лишены обязательной связи с субстратом, которая характерна для наземных форм и связана с силами гравитации. Поэтому есть целая группа водных организмов (как растений, так и животных), существующих без обязательной связи с дном или другим субстратом, "парящих" в водной толще.

Электропроводность открыла возможность эволюционного формирования электрических органов чувств, обороны и нападения.

Наземно-воздушная среда жизни

Наземно-воздушная среда характеризуется огромным разнообразием условий существования, экологических ниш и заселяющих их организмов. Надо отметить, что организмы играют первостепенную роль в формировании условий наземно-воздушной среды жизни, и прежде всего - газового состава атмосферы. Практически весь кислород земной атмосферы имеет биогенное происхождение.

Основными особенностями наземно-воздушной среды является большая амплитуда изменения экологических факторов, неоднородность среды, действие сил земного тяготения, низкая плотность воздуха. Комплекс физико-географических и климатических факторов, свойственных определенной природной зоне, приводит к эволюционному становлению морфофизиологических адаптаций организмов к жизни в этих условиях, многообразию форм жизни.

Высокое содержание кислорода в атмосфере (около 21%) определяет возможность формирования высокого (энергетического) уровня обмена веществ.

Атмосферный воздух воздух отличается низкой и изменчивой влажностью. Это обстоятельство во многом лимитировало (ограничивало) возможности освоения наземно-воздушной среды, а также направляло эволюцию водно-солевого обмена и структуры органов дыхания.

Почва как среда жизни

Почва является результатом деятельности живых организмов. Заселявшие наземно-воздушную среду организмы приводили к возникнвению почвы как уникальной среды обитания. Почва представляет собой сложную систему, включающую твердую фазу (минеральные частицы), жидкую фазу (почвенная влага) и газообразную фазу. Соотношение этих трех фаз и определяет особенности почвы как среды жизни.

Важной особенностью почвы является также наличие определенного количества органического вещества. Оно образуется в результате отмирания организмов и входит в состав их экскретов (выделений).

Условия почвенной среды обитания определяют такие свойства почвы как ее аэрация (то есть насыщенность воздухом), влажность (присутствие влаги), теплоемкость и термический режим (суточный, сезоный, разногодичный ход температур). Термический режим, по сравнению с наземно-воздушной средой, более консервативный, особенно на большой глубине. В целом, почва отличается довольно устойчивыми условиями жизни.

Вертикальные различия характерны и для других свойств почвы, например, проникновение света, естетсвенно, зависит от глубины.

Для почвенных организмов характерны специфические органы и типы движения (роющие конечности у млекопитающих; способность к изменению толщины тела; наличие специализированных головных капсул у некоторых видов); формы тела (округлая, вольковатая, червеобразная); прочные и гибкие покровы; редукция глаз и исчезновение пигментов. Среди почвенных обитателей широко развита сапрофагия - поедание трупов других животных, гниющих остатков и т.д.

Организм как среда обитания

Живой организм может также служить средой обитания - для паразитов и симбионтов. Например, человеческий организм является средой обитания для огромного числа различных симбионтов (прежде всего, нормальной микрофлоры кишечника), а не редко - и паразитов (разнообразных плоских и круглых червей, простейших).

Организм как среда обитания характеризуется определенным постоянством (гомеостазом). В то же время некоторые виды паразитов вынуждены противостоять агрессивной среде организма (например, агрессивной среде желудочно-кишечного тракта) и иммунной системе орагинзма.

Организм, как правило, обеспечивает паразитов и симбионтов питательными веществами, находящимися в доступной форме и не требующими дальнейшего пищеварения и переработки. Поэтому у большинства паразитов наблюдается упрощение строения (редукция) органов пищеварения. Стратегия их выживания направлена на оставление как можно большего числа потомков, формирование защитных механизмов и приспособлений к рапространению.

13. Эволюция биосферы и ноосферы

Биосфера не является статичным, неизменным объектом; с течением времени она эволюционирует. Важным фактором этой эволюции являются сами живые организмы. С момента своего возникновения они расширяли границы биосферы, изменяли её состав. В результате их деятельности за миллиарды лет появились горные породы и полезные ископаемые органического происхождения, полностью преобразована атмосфера Земли (в то числе образован озоновый экран, защищающий всё живое на Земле от губительных ультрафиолетовых лучей), постоянно менялся рельеф местности. Значительные изменения биосфера претерпела с момента появления человека. Бурное развитие промышленности, науки и техники за несколько столетий - геологически ничтожный отрезок времени - способствовало значительному ускорению миграции атомов. Человек создал тысячи новых пород и сортов, истребил многие виды диких животных и растений, извлёк из земной коры миллиарды тонн полезных ископаемых; в результате его деятельности образовались новые озёра - водохранилища - и искусственные реки - каналы, на огромных площадях природные экосистемы сменились искусственными. Деятельность человечества, ничтожного по своей биомассе, оказывает влияние на состав земных океанов и атмосферы. Сейчас уже можно сказать, что человек, овладев громадной энергией, сам является мощнейшим фактором эволюции биосферы. Владимир Вернадский предполагал, что человечество должно создать новую оболочку Земли - ноосферу (греч. noos - «разум»), рассматриваемую в качестве некого мыслящего пласта над биосферой.

Человечество не всегда разумно использовало находящиеся в его распоряжении ресурсы. Не зная многих закономерностей природы, человек часто не представляет последствий своей «победы» над природой. Некоторые государства древнего мира исчезли с лица земли в результате хищнического отношения к природе: истощения почв и вырубки лесов. Вырубка лесов вызывает иссушение и эрозию почвы, приводит к увеличению количества наводнений и селевых потоков в горах, сказываются на местном и глобальном климате.

Загрязнение промышленными предприятиями окружающей среды в настоящее время приобретает катастрофический характер

Деятельность человека приводит к сокращению запасов чистой воды. Промышленные предприятия сбрасывают сточные воды зачастую без должной очистки, загрязняя окружающие водоёмы токсичными химическими соединениями. Гидроэлектростанции и плотины мешают нормальной миграции речных рыб. Двигатели внутреннего сгорания в автотранспорте, заводы, тепловые электростанции выделяют в атмосферу вредные вещества. Появление новых городов и накопление промышленных отвалов уменьшает площадь лесов и лугов, поддерживающих концентрацию кислорода в атмосфере на необходимом для жизни уровне. Безответственное использование атомной энергии приводит к загрязнению окружающей среды радиоактивными веществами, вызывающими раковые заболевания.

Увеличение численности населения земного шара (в настоящее время на Земле проживает уже более шести миллиардов человек) может в ближайшее время привести к обострению продовольственной проблемы.

Полёты человека в космос привели к созданию новой отрасли биологии - космической биологии. Помимо исследования возможной жизни на других планетах и в открытом космосе перед этой наукой ставится много проблем прикладного характера: обеспечение человека условиями, необходимыми для жизни в космосе, защита от радиации, проблема приспособления человеческого организма к невесомости и малой подвижности. Многие из этих проблем уже решены.

Серьёзной проблемой являются глобальные климатические изменения в биосфере. Некоторые химические вещества (например, фреон), выбрасываемые в атмосферу, приводят к разрушению озонового слоя.

Согласно В.И. Вернадскому биосфера переходит в новое эволюционное состояние - в ноосферу. Ученый предполагал гармоничное вхождение биосферы в новую реальность, обусловленную коллективной и гуманистической мощью человеческого разума.

Именно за счет революционных изменений в производительных силах, сконцентрировавшихся в человеческом интеллекте и интеллектуальной технике, мир вокруг человека и мир самого человека начали стремительно меняться, что привело к переходу биосферы в ноосферу. Без меры разрастается общественный организм - социум, обеспечиваемый естественной природой..

От понимания единства общества и природы, где общественный организм развивался внутри природы и ей полностью подчинялся, наблюдается переход к новому единству, где природа и общество меняются не только местами, но и своими функциональными ролями. Человечество стало столь большим, что масштаб его влияния на природу практически совпал с масштабами самой природы. В этом проявляется новая тенденция развития нашей планеты, в границах которой просматривается новая история Земли. Если исходить из тенденций последних двух столетий, особенно конца ХХ века, то разрушение биосферы и замена ее техно-ноосферой становятся неизбежными. Разрушение составных частей биосферы идет примерно в десять раз быстрее, чем их восстановление. В ХХ веке человечество уничтожило полностью или частично треть плодородных земель и их гумусного слоя, более половины лесов, значительную часть планктона, чуть ли не всю африканскую саванну, разрушило две трети природных систем.

Переход биосферы в ноосферу анализируется учеными в планетарном значении. Рассмотрение данного вопроса в более узкой территориальной зоне, дает возможность более наглядно увидеть основные черты новой сферы, в том числе появившееся качественно новые признаки. Примером такой территории может стать Донбасс, как один из самых густонаселенных и промышленно загруженных регионов Украины.

Одним из важных признаков ноосферы считается накопление твердых бытовых и промышленных отходов. Необходимо отметить, что при ведении натурального хозяйства человек не имел не перерабатываемых отходов своей деятельности и полностью гармонировал в этом вопросе с круговоротом живого вещества в рамках биосферы. С началом промышленной революции и научно-технического прогресса человечество вышло за рамки биосферы, создавая принципиально новые материалы и вещества, при этом совершенно не заботясь о дальнейшей их утилизации и переработке, полагаясь на естественные природные процессы. Кроме того, создаваемые технологические процессы имели ряд побочных продуктов производства. С нарастанием темпов производства катастрофически увеличивается объем промышленных отходов Перспективным в этом отношении может стать производство керамзита - пористого зернистого материала ячеистого строения полученного вспучиванием глинистых пород при их обжиге. Этот материал можно получить из отвальных горных пород и отходов металлургических заводов, углеобогатительных фабрик и энергетических предприятий. При этом керамзит широко применяется в строительстве, как экологически чистый материал, для изготовления легких бетонов и теплозасыпок. Производство керамзита из техногенных продуктов может помочь в решении таких проблем ноосферы, как снижение использования природных ресурсов и сокращение объемов промышленных отходов.

Таким образом, мы видим наличие всех тех признаков и условий, которые указывал В.И. Вернадский для того, чтобы отличить биосферу от ноосферы. Процесс образования ноосферы постепенный и на данный момент невозможно с особой точностью указать временной интервал перехода биосферы в ноосферу. Данная трансформация имеет как положительное так и отрицательное значение. Мнения ученных по данному вопросу разделились: одни считают, что данный переход является действительной стратегией выживания и достижения разумного будущего для всего человечества, другие же придерживаются мнения, что биосфера не переходит на более высокий уровень сложности, совершенства, а деградирует.

14. Закономерности действия экологических факторов: закон Либиха и Шелфорда

В природе нет такого места, где бы на организм действовал один фактор. Все факторы действуют одновременно и совокупность этих действий называется констелляцией. Значения факторов не всегда равнозначны. Они могут быть все недостаточны, и тогда наблюдается общее угнетение биоты (слабое развитие растительного покрова, снижение продуктивности, изменение фракционной структуры биомассы, изменение других показателей экосистем), но чаще одни из них в достатке, даже в оптимуме, а другие - в дефиците. При этом констелляция не является простой суммой влияния факторов, т.к. степень воздействия одних факторов на организмы и популяции зависит от степени воздействия других факторов.

Однако компенсаторные возможности у факторов ограничены. Нельзя ни один фактор полностью заменить другим, и если значение хотя бы одного из факторов выходит за верхний или нижний пределы выносливости компонента биоты, существование последнего становится невозможным, каковы бы благоприятны не были остальные факторы.

В середине 19 века (1846 г.) немецкий агрохимик Либих вывел «закон минимума». В опыте с минеральными удобрениями он установил, что наибольшее влияние на выносливость растений оказывают те факторы, которые в данном местообитании находятся в минимуме. Он писал в 1955 г.: «Элементы, полностью отсутствующие или не находящиеся в нужном количестве, препятствуют прочим питательным соединениям произвести эффект или уменьшают их питательное действие». Это справедливо не только к элементам питания, но и к другим жизненно важным факторам. Закон Либиха применим только в условиях стационарного состояния экосистемы, т.е. когда приток вещества и энергии в систему уравновешивается их оттоком.

Фактор, уровень которого близок к пределам выносливости конкретного организма, вида и пр. компонентов биоты, называется ограничивающим. И именно к этому фактору организм приспосабливается (вырабатывает адаптации) в первую очередь. Закон ограничивающих, или лимитирующих, факторов распространяется не только на ситуацию, когда эти факторы в «минимуме», но и в «максимуме», то есть выходит за верхний предел выносливости организма (экосистемы).


Подобные документы

  • Проблемы экологии как науки. Среда как экологическое понятие, ее основные факторы. Среды жизни, популяции, их структура и экологические характеристики. Экосистемы и биогеоценоз. Учение В.И. Вернадского о биосфере и ноосфере. Охрана окружающей среды.

    методичка [66,2 K], добавлен 07.01.2012

  • Объект экологии, ее место среди других наук. Основные экологические проблемы. Законы и закономерности взаимодействия надорганизменных биологических систем (популяция), биоценоз (сообщество), биогеоценоз (экосистема), биом, биосфера) с окружающей средой.

    презентация [3,8 M], добавлен 07.12.2016

  • Биосфера как одна из оболочек Земли, ее состав и границы. Источники и основные группы загрязняющих веществ атмосферы России. Роль животных в самоочистке воды и водных экосистемах. Виды мониторинга окружающей среды. Первые договоры по охране природы.

    контрольная работа [30,1 K], добавлен 19.02.2011

  • Структура современной экологии как науки. Понятие среды обитания и экологических факторов. Экологическое значение пожаров. Биосфера как одна из геосфер Земли. Сущность законов экологии Коммонера. Опасность загрязнителей (поллютантов) и их разновидности.

    контрольная работа [2,7 M], добавлен 22.06.2012

  • Описание пищевых цепей, регулирование численности популяций. Современная классическая экология. Основные компоненты экосистемы. Функциональные блоки организмов. Сущность терминов биосфера, биоценоз, биотоп, эдафотоп, климат, экотоп. Биомасса экосистемы.

    презентация [1,9 M], добавлен 27.03.2016

  • Определение экологии. Основные разделы. Законы экологии. Организм и среда. Практическое значение экологии. Взаимодействие сельскохозяйственных и природных экосистем, сочетания окультуренных и естественных ландшафтов.

    реферат [14,4 K], добавлен 25.10.2006

  • Выбросы загрязняющих веществ в атмосферу от котлоагрегатов. Расчеты загрязняющих веществ, выделяющихся в атмосферу при сжигании возобновляемых топлив (древесных отходов) и угля. Техническая и проектно-конструкторская документация в области экологии.

    отчет по практике [441,1 K], добавлен 10.02.2014

  • Предмет и задачи экологии. Основные понятия и определения экологии. Современные экологические проблемы. Экологические аспекты существования человека в современных условиях. Пространственная структура популяции.

    курс лекций [39,1 K], добавлен 18.07.2007

  • Понятие экологической ниши. Экологические группы: продуценты, консументы и редуценты. Биогеоценоз и экосистема и их структура. Трофические цепи, сети и уровни как пути передачи веществ и энергии. Биологическая продуктивность экосистем, правила пирамид.

    курсовая работа [1,4 M], добавлен 19.05.2015

  • Экосистема как биоценоз, биотоп и система связей, осуществляющая обмен веществ и энергии между ними. Классификация и сравнительная характеристика типов наземных и водных природных экологических систем: схема потока энергии, общие признаки и различия.

    курсовая работа [1,6 M], добавлен 21.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.