Теоретические основы сбалансированного питания. Обмен веществ

Суточный расход энергии у здорового человека. Определение уровня метаболизма. Понятие обмена веществ. Обмен воды и минеральных веществ в организме. Биологическая и энергетическая ценность пищевых продуктов. Изучение принципов составления пищевых рационов.

Рубрика Кулинария и продукты питания
Вид реферат
Язык русский
Дата добавления 18.11.2013
Размер файла 31,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Определение уровня метаболизма. Основной обмен

Почти половина всей энергии, получаемой в результате катаболизма, теряется в виде тепла в процессе образования молекул АТФ. Мышечное сокращение - процесс еще менее эффективный. Около 80% энергии, используемой при мышечном сокращении, теряется в виде тепла и только 20% превращается в механическую работу (сокращение мышцы). Если человек не совершает работу, то практически вся генерируемая им энергия теряется в форме тепла (например, у человека, лежащего в постели). Следовательно, величина теплопродукции является точным выражением величины обмена в организме человека.

Для определения количества затрачиваемой организмом энергии применяют прямую и непрямую калориметрию. Первые прямые измерения энергетического обмена провели в 1788 г. Лавуазье и Лаплас.

Прямая калориметрия заключается в непосредственном измерении тепла, выделяемого организмом. Для этого животное или человек помещается в специальную герметическую камеру, по трубам, проходящим через нее, протекает вода. Для вычисления теплопродукции используются данные о теплоемкости жидкости, ее объеме, протекающем через камеру за единицу времени, и разности температур поступающей в камеру и вытекающей жидкости.

Непрямая калориметрия основана на том, что источником энергии в организме являются окислительные процессы, при которых потребляется кислород и выделяется углекислый газ. Поэтому энергетический обмен можно оценивать, исследуя газообмен. Наиболее распространен способ Дугласа-Холдейна, при котором в течение 10-15 мин собирают выдыхаемый обследуемым человеком воздух в мешок из воздухонепроницаемой ткани (мешок Дугласа). Затем определяют объем выдохнутого воздуха и процентное содержание в нем О2 и СО2. По соотношению между количеством выделенного углекислого газа и количеством потребленного за данный период времени кислорода - дыхательному коэффициенту (ДК) - можно установить, какие вещества окисляются в организме. ДК при окислении белков равен 0,8, при окислении жиров - 0,7, а углеводов - 1,0. Каждому значению ДК соответствует определенный холерический эквивалент кислорода, т.е. то количество тепла, которое выделяется при окислении какого-либо вещества на каждый литр поглощенного при этом кислорода. Количество энергии на единицу потребляемого 02 зависит от типа окисляющихся в организме веществ. Калорический эквивалент кислорода при окислении углеводов равен 21 кДж на 1 л 02 (5 ккал/л), белков - 18,7 кДж (4,5 ккал), жиров - 19,8 кДж (4,74 ккал).

Для косвенного определения интенсивности обмена могут быть использованы некоторые физиологические параметры, связанные с потреблением кислорода: частота дыханий и вентиляционный объем, частота сокращений сердца и минутный объем кровотока - все они отражают затраты энергии. Однако эти показатели недостаточно точны.

Основной обмен. Интенсивность энергетического обмена значительно варьирует и зависит от многих факторов. Поэтому для сравнения энергетических затрат у разных людей была введена условная стандартная величина - основной обмен. Основной обмен [00] - это минимальные для бодрствующего организма затраты энергии, определенные в строго контролируемых стандартных условиях:

1) при комфортной температуре (18-20 градусов тепла);

2) в положении лежа (но обследуемый не должен спать);

3) в состоянии эмоционального покоя, так как стресс усиливает метаболизм;

4) натощак, т.е. через 12- 16 ч после последнего приема пищи.

Основной обмен зависит от пола, возраста, роста и массы тела человека. Величина основного обмена в среднем составляет 1 ккал в 1 ч на 1 кг массы тела. У мужчин в сутки основной обмен приблизительно равен 1700 ккал, у женщин основной обмен на 1 кг массы тела примерно на 10% меньше, чем у мужчин, у детей он больше, чем у взрослых, и с увеличением возраста постепенно снижается.

Суточный расход энергии

Суточный расход энергии у здорового человека значительно превышает величину основного обмена и складывается из следующих компонентов: основного обмена; рабочей прибавки, т.е. энергозатрат, связанных с выполнением той или иной работы; специфического-динамического действия пищи. Совокупность компонентов суточного расхода энергии составляет рабочий обмен. Мышечная работа существенно изменяет интенсивность обмена. Чем интенсивнее выполняемая работа, тем выше затраты энергии. Степень энергетических затрат при различной физической активности определяется коэффициентом физической активности - отношением общих энергозатрат на все виды деятельности в сутки к величине основного обмена. По этому принципу все население делится на 5 групп.

Группа

Группа

Особенности профессии

Коэффициент физической активности

Суточный расход энергии, кДж (ккал)

Первая

Умственный труд

1,4

9799 - 10265(2100 - 2450)

Вторая

Легкий физический труд

1,6

10475 - 11732(2500 - 2800)

Третья

Физический труд средней тяжести

1,9

12360 - 13827(2950 - 3300)

Четвертая

Тяжелый физический труд

2,2

14246 - 16131(3400 - 3850)

Пятая

Особо тяжелый физический труд

2,5

16131 - 17598(3850 - 4200)

Для людей, выполняющих легкую работу сидя, нужно 2400 - 2600 ккал в сутки, работающих с большей мышечной нагрузкой, требуется 3400 - 3600 ккал, выполняющих тяжелую мышечную работу - 4000-5000 ккал и выше. У тренированных спортсменов при кратковременных интенсивных упражнениях величина рабочего обмена может в 20 раз превосходить основной обмен. Потребление кислорода при физической нагрузке не отражает общего расхода энергии, так как часть ее тратится на гликолиз (анаэробный) и не требует затраты кислорода.

Разность между потребностью в 02 и его потреблением составляет энергию, получаемую в результате анаэробного распада, и называется кислородным долгом. Потребление 0 и после окончания мышечной работы остается высоким, так как в это время происходит возвращение кислородного долга. Кислород затрачивается на превращение главного побочного продукта анаэробного метаболизма - молочной кислоты в пировиноградную, на фосфорилирование энергетических соединений (креатинфосфат) и восстановление запасов 02 в мышечном миоглобине.

Прием пищи усиливает энергетический обмен (специфическое динамическое действие пищи). Белковая пища повышает интенсивность обмена на 25 - 30%, а углеводы и жиры - на 10% или меньше. Во время сна интенсивность метаболизма почти на 10% ниже основного обмена. Разница между бодрствованием в состоянии покоя и сном объясняется тем, что во время сна мышцы расслаблены. При гиперфункции щитовидной железы основной обмен повышается, а при гипофункции - понижается. Понижение основного обмена происходит при недостаточности функций половых желез и гипофиза.

При умственном труде энерготраты значительно ниже, чем при физическом. Даже очень интенсивный умственный труд, если он не сопровождается движениями, вызывает повышение затрат энергии лишь на 2 - 3% по сравнению с полным покоем. Однако если умственная активность сопровождается эмоциональным возбуждением, энерготраты могут быть заметно большими. Пережитое эмоциональное возбуждение может вызывать в течение нескольких последующих дней повышение обмена на 11 -19%.

Обмен веществ

энергия пищевой рацион метаболизм

Обмен веществ начинается с поступления питательных веществ в желудочно-кишечный тракт и воздуха в легкие.

Первым этапом обмена веществ являются ферментативные процессы расщепления белков, жиров и углеводов до растворимых в воде аминокислот, моно- и дисахаридов, глицерина, жирных кислот и других соединений, происходящие в различных отделах желудочно-кишечного тракта, а также всасывание этих веществ в кровь и лимфу.

Вторым этапом обмена являются транспорт питательных веществ и кислорода кровью к тканям и те сложные химические превращения веществ, которые происходят в клетках. В них одновременно осуществляются расщепление питательных веществ до конечных продуктов метаболизма, синтез ферментов, гормонов, составных частей цитоплазмы. Расщепление веществ сопровождается выделением энергии, которая используется для процессов синтеза и обеспечения работы каждого органа и организма в целом.

Третьим этапом является удаление конечных продуктов распада из клеток, их транспорт и выделение почками, легкими, потовыми железами и кишечником.

Превращение белков, жиров, углеводов, минеральных веществ и воды происходит в тесном взаимодействии друг с другом. В метаболизме каждого из них имеются свои особенности, а физиологическое значение их различно, поэтому обмен каждого из этих веществ принято рассматривать отдельно.

Обмен белков

Белки используются в организме в первую очередь в качестве пластических материалов. Потребность в белке определяется тем его минимальным количеством, которое будет уравновешивать его потери организмом. Белки находятся в состоянии непрерывного обмена и обновления. В организме здорового взрослого человека количество распавшегося за сутки белка равно количеству вновь синтезированного. Десять аминокислот из 20 (валин, лейцин, изолейцин, лизин, метионин, триптофан, треонин, фенилаланин, аргинин и гистидин) в случае их недостаточного поступления с пищей не могут быть синтезированы в организме и называются незаменимыми. Другие десять аминокислот (заменимые) могут синтезироваться в организме.

Из аминокислот, полученных в процессе пищеварения, синтезируются специфические для данного вида, организма и для каждого органа белки. Часть аминокислот используются как энергетический материал, т.е. подвергаются расщеплению. Сначала они дезаминируются - теряют группу Nh3 в результате образуются аммиак и кетокислоты. Аммиак является токсическим веществом и обезвреживается в печени путем превращения в мочевину. Кетокислоты после ряда превращений распадаются на СО2 и Н2О.

Скорость распада и обновления белков организма различна - от нескольких минут до 180 суток (в среднем 80 суток). О количестве белка, подвергшегося распаду за сутки, судят по количеству азота, выводимого из организма человека. В 100 г белка содержится 16 г азота. Таким образом, выделение организмом 1 г азота соответствует распаду 6,25 г белка. За сутки из организма взрослого человека выделяется около 3,7 г азота, т.е. масса разрушившегося белка составляет 3,7 х 6,25 = 23 г, или 0,028-0,075 г азота на 1 кг массы тела в сутки (коэффициент изнашивания Рубнера).

Если количество азота, поступающего в организм с пищей, равно количеству азота, выводимого из организма, то организм находится в состоянии азотистого равновесия.

Если в организм поступает азота больше, чем выделяется, то это свидетельствует о положительном азотистом балансе (ретенция азота). Он возникает при увеличении массы мышечной ткани (интенсивные физические нагрузки), в период роста организма, беременности, во время выздоровления после тяжелого заболевания. Состояние, при котором количество выводимого из организма азота превышает его поступление в организм, называют отрицательным азотистым балансом. Оно возникает при питании неполноценными белками, когда в организм не поступают какие-либо из незаменимых аминокислот, при белковом или полном голодании.

Необходимо потребление не менее 0,75 г белка на 1 кг массы тела в сутки, что для взрослого здорового человека массой 70 кг составляет не менее 52,5 г полноценного белка. Для надежной стабильности азотистого баланса рекомендуется принимать с пищей 85 - 90 г белка в сутки. У детей, беременных и кормящих женщин эти нормы должны быть выше. Физиологическое значение в данном случае означает, что белки в основном выполняют пластическую функцию, а углеводы - энергетическую.

Обмен липидов

Липиды являются сложными эфирами глицерина и высших жирных кислот. Жирные кислоты бывают насыщенными и ненасыщенными (содержащими одну и более двойных связей). Липиды играют в организме энергетическую и пластическую роль. За счет окисления жиров обеспечивается около 50% потребности в энергии взрослого организма. Жиры служат резервом питания организма, их запасы у человека в среднем составляют 10 - 20% от массы тела. Из них около половины находятся в подкожной жировой клетчатке, значительное количество откладывается в большом сальнике, околопочечной клетчатке и между мышцами.

В состоянии голода, при действии на организм холода, при физической или психоэмоциональной нагрузке происходит интенсивное расщепление запасенных жиров. В условиях покоя после приема пищи происходит ресинтез и отложение липидов в депо. Главную энергетическую роль играют нейтральные жиры - триглицериды, а пластическую осуществляют фосфолипиды, холестерин и жирные кислоты, которые выполняют функции структурных компонентов клеточных мембран, входят в состав липопротеидов, являются предшественниками стероидных гормонов, желчных кислот и простагландинов.

Липидные молекулы, всосавшиеся из кишечника, упаковываются в эпителиоцитах в транспортные частицы (хиломикроны), которые через лимфатические сосуды поступают в кровоток. Под действием липопротеидлипазы эндотелия капилляров главный компонент хиломикронов - нейтральные триглицериды - расщепляются до глицерина и свободных жирных кислот. Часть жирных кислот может связываться с альбумином, а глицерин и свободные жирные кислоты поступают в жировые клетки и превращаются в триглицериды. Остатки хиломикронов крови захватываются гепатоцитами, подвергаются эндоцитозу и разрушаются в лизосомах.

В печени формируются липопротеиды для транспорта синтезированных в ней липидных молекул. Это липопротеиды очень низкой и липопротеиды низкой плотности, которые транспортируют из печени к другим тканям триглицериды, холестерин. Липопротеиды низкой плотности захватываются из крови клетками тканей с помощью липопротеидных рецепторов, эндоцитируются, высвобождают для нужд клеток холестерин и разрушаются в лизосомах. В случае избыточного накопления в крови липопротеидов низкой плотности, они захватываются макрофагами и другими лейкоцитами. Эти клетки, накапливая метаболически низкоактивные эфиры холестерина, становятся одними из компонентов атеросклеротических бляшек сосудов.

Липопротеиды высокой плотности транспортируют избыточный холестерин и его эфиры из тканей в печень, где они превращается в желчные кислоты, которые выводятся из организма. Кроме того, липопротеиды высокой плотности используются для синтеза стероидных гормонов в надпочечниках. Как простые, так и сложные липидные молекулы могут синтезироваться в организме, за исключением ненасыщенных линолевой, линоленовой и арахидоновой жирных кислот, которые должны поступать с пищей. Эти незаменимые кислоты входят в состав молекул фосфолипидов. Из арахидоновой кислоты образуются простагландины, простациклины, тромбоксаны, лейкотриены. Отсутствие или недостаточное поступление в организм незаменимых жирных кислот приводит к задержке роста, нарушению функции почек, заболеваниям кожи, бесплодию. Биологическая юность пищевых липидов определяется наличием в них незаменимыx жирных кислот и их усвояемостью. Сливочное масло и свиной жир усваиваются на 93 - 98%, говяжий - на 80 - 94%, подсолнечное масло - на 86- 90%, маргарин - на 94-98%.

Обмен углеводов

Углеводы являются основным источником энергии, а также выполняют в организме пластические функции, в ходе окисления глюкозы образуются промежуточные продукты - пентозы, которые входят в состав нуклеотидов и нуклеиновых кислот. Глюкоза необходима для синтеза некоторых аминокислот, синтеза и окисления липидов, полисахаридов. Организм человека получает углеводы главным образом в виде растительного полисахарида крахмала и в небольшом количестве в виде животного полисахарида гликогена. В желудочно-кишечном тракте осуществляется их расщепление до уровня моносахаридов (глюкозы, фруктозы, лактозы, галактозы).

Моносахариды, основным из которых является глюкоза, всасываются в кровь и через воротную вену поступают в печень. Здесь фруктоза и галактоза превращаются в глюкозу. Внутриклеточная концентрация глюкозы в гепатоцитах близка к ее концентрации в крови. При избыточном поступлении в печень глюкозы она фосфорилируется и превращается в резервную форму ее хранения - гликоген. Количество гликогена может составлять у взрослого человека 150-200 г. В случае ограничения потребления пищи, при снижении уровня глюкозы в крови происходит расщепление гликогена и поступление глюкозы в кровь.

В течение первых 12 часов и более после приема пищи поддержание концентрации глюкозы крови обеспечивается за счет распада гликогена в печени. После истощения запасов гликогена усиливается синтез ферментов, обеспечивающих реакции глюконеогенеза - синтеза глюкозы из лактата или аминокислот. В среднем за сутки человек потребляет 400-500 г углеводов, из которых обычно 350 - 400 г составляет крахмал, а 50 - 100 r - моно- и дисахариды. Избыток углеводов депонируется в виде жира.

Обмен воды и минеральных веществ

Содержание воды в организме взрослого человека составляет в среднем 73,2±3% от массы тела. Водный баланс в организме поддерживается за счет равенства объемов потерь воды и ее поступления в организм. Суточная потребность в воде колеблется от 21 до 43 мл/кг (в среднем 2400 мл) и удовлетворяется за счет поступления воды при питье (~1200 мл), с пищей (~900 мл) и воды, образующейся в организме в ходе обменных процессов (эндогенной воды (~300 мл). Такое же количество воды выводится в составе мочи (~1400 мл), кала (~100 мл), посредством испарения с поверхности кожи и дыхательных путей (~900 мл).

Потребность организма в воде зависит от характера питания. При питании преимущественно углеводной и жирной пищей и при небольшом поступлении NaCI потребности в воде меньше. Пища, богатая белками, а также повышенный прием соли обусловливают большую потребность в воде, которая необходима для экскреции осмотически активных веществ (мочевины и минеральных ионов). Недостаточное поступление в организм воды или ее избыточная потеря приводят к дегидратации, что сопровождается сгущением крови, ухудшением ее реологических свойств и нарушением гемодинамики.

Недостаток в организме воды в объеме 20% от массы тела ведет к летальному исходу. Избыточное поступление воды в организм или снижение ее объемов, выводимых организма, приводит к водной интоксикации. В результате повышенной чувствительности нервных клеток и нервных центров к уменьшению осмолярности водная интоксикация может сопровождаться мышечными судорогами.

Обмен воды и минеральных ионов в организме тесно взаимосвязаны, что обусловлено необходимостью поддержания осмотического давления на относительно постоянном уровне во внеклеточной среде и в клетках. Осуществление ряда физиологических процессов (возбуждения, синоптической передачи, сокращения мышцы) невозможно без поддержания в клетке и во внеклеточной среде определенной концентрации Na+, K+, Са2+ и других минеральных ионов. Все они должны поступать в организм с пищей.

Питание

Исходным материалом для создания живой ткани и ее постоянного обновления, а также единственным источником энергии для человека и животных является пища. Поэтому рациональное питание является важнейшим фактором, обеспечивающим здоровье человека. Питание - это процесс поступления, переваривания, всасывания и усвоения в организме пищевых веществ (нутриентов).

Для поддержания процессов жизнедеятельности питание должно обеспечивать все пластические и энергетические потребности организма. С пищей организм получает вещества, необходимые для биосинтеза, обновления биологических структур. Энергия поступающих в организм питательных веществ преобразуется и используется для синтеза компонентов клеточных мембран и органелл клетки, для выполнения механической, химической, осмотической и электрической работы.

Биологическая и энергетическая ценность пищевых продуктов определяется содержанием в них питательных веществ: белков, жиров, углеводов, витаминов, минеральных солей, органических кислот, воды, ароматических и вкусовых веществ. Важное значение имеют такие свойства питательных веществ, как их перевариваемость и усвояемость.

Потребность организма в пластических веществах может быть удовлетворена тем минимальным уровнем их потребления с пищей, который будет уравновешивать потери структурных белков, липидов и углеводов при поддержании энергетического баланса. Эти потребности индивидуальны и зависят от таких факторов, как возраст человека, состояние здоровья, интенсивность и вид труда.

Теоретические основы питания

Каждому человеку необходим собственный набор компонентов рациона, отвечающий индивидуальным особенностям его обмена веществ.

Согласно теории сбалансированного питания (А.А. Покровский) - полноценное питание характеризуется оптимальным соответствием количества и соотношений всех компонентов пищи физиологическим потребностям организма. Принимаемая пища должна с учетом ее усвояемости восполнять энергетические затраты человека, которые определяются как сумма основного обмена, специфического динамического действия пищи и расхода энергии на выполняемую работу.

При регулярном превышении суточной калорийности пищи над затратами энергии происходит увеличение количества депонированного жира. Например, ежедневное употребление сверх нормы одной сдобной булочки (300 ккал) в течение года может привести к отложению 5,4- 10,8 кг жира. В рационе должны быть сбалансированы белки, жиры и углеводы. Среднее соотношение их энергетической ценности должно составлять - 15:30:55%, что обеспечивает энергетические и пластические потребности организма. Должны быть сбалансированы белки с незаменимыми и заменимыми аминокислотами, жиры с разной насыщенностью жирных кислот, углеводы с разным числом мономеров и наличием балластных веществ (целлюлоза, пектин и др.).

Согласно теории адекватного питания (А.М. Уголев), важно соответствие набора пищевых веществ ферментному составу пищеварительной системы. В ней подчеркивается трехэтапность пищеварения и необходимость индивидуальной адекватности питания этим этапам. Например, при недостаточности лактазы молоко является неадекватным видом пищи.

В этой теории считается, что первичный поток нутриентов формируется в результате переваривания и всасывания пищи, но кроме него есть поток вторичных пищевых веществ, который образуется в результате деятельности микроорганизмов кишечника. Из компонентов пищи с участием микроорганизмов образуются вещества, которые обладают не только энергетической и пластической ценностью, но и способностью влиять на многие физиологические процессы (иммунные, защитные, поведенческие).

Принципы составления пищевых рационов

Питание должно точно соответствовать потребностям организма в пластических веществах и энергии, минеральных солях, витаминах и воде, обеспечивать нормальную жизнедеятельность, хорошее самочувствие, высокую работоспособность, сопротивляемость инфекциям, рост и развитие организма. При составлении пищевого рациона (т. е. количества и состава продуктов питания, необходимых человеку в сутки) следует соблюдать ряд принципов. 1. Калорийность пищевого рациона должна соответствовать энергетическим затратам организма, которые определяются видом трудовой деятельности.

2. Учитывается калорическая ценность питательных веществ, для этого используются специальные таблицы, в которых указано процентное содержание в продуктах белков, жиров и углеводов и калорийность 100 г продукта.

3. Используется закон изодинамии питательных веществ, т. е. взаимозаменяемость белков, жиров и углеводов, исходя из их энергетической ценности. Например, 1 г жира (9,3 ккал) можно заменить 2,3 г белка или углеводов. Однако такая замена возможна только на короткое время, так как питательные вещества выполняют не только энергетическую, но и пластическую функцию.

4. В пищевом рационе должно содержаться оптимальное для данной группы работников количество белков, жиров и углеводов, например, для работников 1-й группы в суточном рационе должно быть 80 -120 г белка, 80 -100 г жира, 400 - 600 г углеводов.

5. Соотношение в пищевом рационе количества белков, жиров и углеводов должно быть 1:1,2:4.

6. Пищевой рацион должен полностью удовлетворять потребность организма в витаминах, минеральных солях и воде, а также -одержать все незаменимые аминокислоты (полноценные белки).

7. Не менее одной трети суточной нормы белков и жиров должно поступать в организм в виде продуктов животного происхождения.

8. Необходимо учитывать правильное распределение калорийности рациона по отдельным приемам пищи. Первый завтрак должен содержать примерно 25-30% всего суточного рациона, з торой завтрак - 10-15%, обед 40 - 45% и ужин - 15-20%..

Введение в биохимию

Биохимия - это наука, изучающая химический состав живых организмов и химические процессы в них. Это относительно молодая наука, возникшая во второй половине XIX века. Открытия в области энзимологии, молекулярной генетики, биоэнергетики выдвинули биохимию в ряд фундаментальных дисциплин и сделали мощным оружием в решении многих проблем биологии, медицины, животноводства и растениеводства. Биохимия объединяет все науки о живом, помогает познать как протекают в живых организмах физические и химические процессы, как действуют лекарственные препараты. Зная состав различных органов и тканей и их количественное изменение, можно поставить диагноз, знать правильно ли назначено лечение, следить за проводимой терапией, поставить прогноз заболеванию. Т.о., биохимия дает врачу сведения, длагодаря которым можно сознательно разбираться в химизме процессов, протекающих в больном и здоровом организме. Она позволяет управлять этими процессами, рационально использовать химиотерапию.

От биохимии отпочковались другие науки - молекулярная генетика, генная хирургия и инженерия, молекулярная биология и т.д.

Функции и классификация белков

Белки - это высокомолекулярные биополимеры, состоящие из остатков аминокислот. Название происходит от греческого слова protos - первый, важнейший. Термин предложен в 1838 году Мульдером, отражает первостепенное биологическое значение белков. В природе содержится огромное количество разнообразных белков. В природе имеется около 1010- 1012 различных белков, обеспечивающих существование около 106 живых существ. В организме человека имеется более 50000 белков. С белками связаны все признаки, отличающие живое от неживого: воспроизводимость себе подобных, сократимость, обмен веществ, высокий уровень структурной организации, способность преобразовывать и использовать энергию.

Функции белков. 1) структурная (пластическая, опорная) - определяет структуру тела человека, растений, животных, вирусов, микроорганизмов, входят в состав различных биологических мембран. Имеется целая группа белков, для которых эта функция является основной - коллагены, эластины, кератины.

2) Каталитическая - белки обладают свойствами биокатализаторов (ферментов), ускоряя течение биологических процессов в организме.

3) Энергетическая - за счет части аминокислот. На долю белка приходится 10-20% энергопотребления у человека.

4) Транспортная - белки переносят с кровью и другими биологическими жидкостями вещества, нерастворимые в воде (витамины, металлы, липиды, газы) и способствуют транспорту этих веществ через мембраны.

5) Защитная - а) белки стоят на страже химической индивидуальности вида (при поступлении чужеродного белка - антигена, несущего «чужую» генетическую или химическую информацию в организме вырабатываются антитела, образуется комплекс антиген-антитело и он исключается из метаболического круга путем осаждения, лизиса и т.д. б) защита организма при ранении путем свертывания крови (только у млекопитающих). Для выполнения этой функции в организме образовался целый комплекс белков, главным из них является фибриноген. Плазмин - белок плазмы крови, ускоряющий расщепление фибрина. Это обеспечивает восстановление проходимости сосудов, закупоренных фибриновым сгустком. В) связывание токсических веществ, поступивших извне или образовавшихся в результате метаболических реакций (например, альбумины плазмы крови связывают билирубин, СЖК, лекарства). Г) антитела - гамма-глобулины, или иммуноглобулины - защищают от антигенов (чужеродных белков и высокомолекулярных углеводов). Д) интерфероны - блокируют синтез вирусных белков путем индукции синтеза ряда внутриклеточных ферментов.

6) Сократительная - обеспечивает способность к перемещению тела в пространстве, сокращение сердца, дыхание, перистальтику кишечника и др.

7) Регуляторная - белки играют важную роль в обменных процессах, осуществляют связь внутренней среды организма с внешней средой. Это гормоны, ферменты, БАВ, пептиды и т.д.). Рецепторы, через которые осуществляются регуляторные процессы также являются белками.

8) Трансформирующая - белки участвуют в превращении электрической и осмотической энергии в химическую энергию АТФ.

9) Передача наследственных признаков. Белки «запускают» процесс передачи наследственной информации и контролируют его на всем протяжении.

Кроме того, белки способствуют поддержанию стабильного онкотического давления, входят в состав буферных систем, поддерживающих рН внутренней среды и т.д.

Классификация белков. По химическому составу белки делятся на 2 класса - простые (при гидролизе распадаются только на аминокислоты), сложные (при гидролизе дают не только аминокислоты, но и другие структуры - простетические группы). Простые белки по растворимости и пространственному строению разделяют на глобулярные и фибриллярные. Глобулярные имеют шарообразную форму молекулы, растворимы в воде и солевых растворах. К этой группе относятся все ферменты и большинство других БАБ, исключая структурные. Среди глобулярных белков можно выделить альбумины, глобулины, протамины и гистоны. Фибриллярные белки характеризуются волокнистой структурой, делятся на растворимые и нерастворимые. К первой подгруппе относятся миозин, актин, фибриноген, ко второй - склеропротеины (протеноиды - кератины, эластины, коллагены). Сложные белки - НП, МП, ГП, ФП, ХП, ЛП. Такое деление белков условно, поскольку многие простые белки также содержат небелковый компонент.

Различают классификацию белков по функциональному принципу - 1) ферменты, 2) белки-гормоны, 3) белки-регуляторы активности генома, 4) защитные белки (антитела, белки св. и антисв. Систем), 5) токсические белки, 6) транспортные белки, 7) мембранные белки, 8) сократительные белки, 9) рецепторные белки, 10) белки-ингибиторы ферментов, 11) белки вирусной оболочки, 12) белки с иными функциями.

Сложные белки - фосфо-, металло-, хромо-, липопротеиды

Фосфопротеиды - строение, представители, значение.

ФП это сложные белки, обособленной простетической группы не имеют. Ее роль выполняют остатки фосфорной кислоты, связанные сложноэфирными связями с гидроксильными группами оксиаминокислот: сер, тре, тир. К одному остатку аминокислоты может присоединиться несколько фрагментов фосфорной кислоты - формулу фрагмента ФП знать см. Материалы, С. 98, показать на табл.

ФП - это полноценные белки с большой молекулярной массой при нагревании не свертываются (термостабильны), в воде не растворимы, но хорошо растворимы в разбавленных растворах солей и щелочей. Имеют кислый характер (ИЭТ ~ 4,7) из-за остатков фосфорной кислоты, поэтому осаждаются кислотами. Это полноценные белки. Значение ФП - они служат пластическим материалом (источники незаменимых аминокислот и фосфора) и играют важную роль в росте организма, поэтому особенно нужны детям. Представители - казеин молока (Р ~ 1%), вителлин и фосвитин - ФП яичного желтка (Р ~ 10%), ихтуллин - в икре рыб (фосфора более 10%). Казеин (от лат caseus - сыр) - основной белок молока, составляет около 80% от белков коровьего молока. Казеин получают из молока путем осаждения кислотой при рН 4,6 и температуре 20С. казеин - это семейство различных однотипных белков, состоящих из 4 фракций - альфа, хи, бета и гамма. В коровьем молоке идентифицировано до 17 подфракций казеина. Из фракций казеина особое значение имеет хи казеин, с которым связаны загадочные процессы сычужного свертывания молока при производстве сыров.

Хромопротеиды -- строение, представители, значение.

ХП это окрашенные белки (chroma - краска). Молекулы состоят из простого белка и простетической группы, окрашенной обычно за счет металла или витамина. Среди ХП различают дыхательные белки и дыхательные ферменты, которые образуют подгруппу гемопротеидов. Кроме гемопротеидов в группу ХП входят пигменты (родопсин, меланин), магний-порфирины (хлорофилл), желтые ферменты - флавиновые ферменты (выполняют роль дыхательных ферментов).

К дыхательным белкам относятся гемоглобин (Нb) - красный пигмент крови и миоглобин (Мgb) - красный пигмент мышц.

Гемоглобин состоит из простого белка типа гистонов - глобина и 4-х гемов (простетическая группа). Глобин состоит из 2-х п/п альфа цепей (по 141 аминокислоте в каждой) и 2-х бета-цепей (по 146 аминокислот в каждой). Видовая специфичность гемоглобина обусловлена особенностями аминокислотного состава глобина. Например, в глобине человека нет иле. Глобин, соединяясь с гемом, превращает малорастворимую и инертную структуру в хорошо растворимую и активную форму, способную связывать кислород. В свою очередь гемы придают устойчивость большим молекулам глобина.

Гем - производное порфирина, состоит из 4-х пиррольных колец, связанных в циклическую структуру метиновыми мостиками. Порфин с заместителями у бета-углерода называется порфирином. Различные порфирины различаются друг от друга характером заместителей. Гемы гемоглобина у 1,3,5,8 атомов углерода содержат СН3 группу (метил), у 2,4 - винильные радикалы, у 6,7 - остатки пропионовых кислот. Соединяясь с ионом железа, порфирин образует гем. железо присоединяется к атомам азота II и IV колец ковалентными и к III и I колец нековалентными (координационными связями). Строение всех 4-х гемов идентичное - показать на табл или пленке и дать списать. Каждый гем соединен с одной п/п цепью (a или b) двумя координационными связями иона железа с имидазольными кольцами гистидинов. Одна из этих связей постоянна, а другая разрывается, когда к гемоглобину присоединяется кислород.

В 1957 году биохимики Д.Кендрью и М.Перутц получили Нобелевскую премию за расшифровку строения молекулы гемоглобина.

Во время развития организма гемоглобин претерпевает определенные изменения: на ранних стадиях у эмбриона содержится эмбриональный гемоглобин Е, который после 3-4 месяцев развития заменяется фетальным F, содержащим 2 a и 2 g цепи. Кровь новорожденного содержит 80% фетального гемоглобина, но к концу первого года жизни он почти полностью заменяется на гемоглобин А. В крови взрослого человека все же присутствует 1,5% фетального гемоглобина. Он имеет большее сродство к кислороду, чем гемоглобин взрослого организма - гемоглобин А и обеспечивает снабжение плода кислородом при меньшем его парциальном давлении. В дополнение к основному гемоглобину взрослого человека А1, имеется гемоглобин А2, молекула которого состоит из 2 a цепей и 2 s цепей. На долю гемоглобина А2 приходится 2,5% от всего гемоглобина.

Роль гемоглобина. Гемоглобин - основной белок эритроцитов. В 1-ом эритроците содержится 340 млн молекул гемоглобина, каждая из которых состоит из 103 атомов С, Н, О, N, S и 4 атомов железа. Основная роль - перенос кислорода от легких к тканям (оксигенация - показать на доске) и углекислого газа от тканей к легким. Гемоглобин образует буферные системы, которые участвуют в поддержании КОС. При распаде гемоглобина образуются пигменты кала, мочи и желчи. Гемоглобин участвует в обезвреживании оксида азота, который может присоединяться к нему и образовывать нитрозгемоглобин.

Молекула миоглобина состоит из 1-го гема и 1-ой п/п цепи (из 153 аминокислот). Гем миоглобина такой же как у гемоглобина. Роль миоглобина - транспорт кислорода от оксигемоглобина к ферментам дыхательной цепи в клетке - показать на доске реакцию.

Содержится, в основном, в цитоплазме мышечных клеток. Также служит в качестве депо кислорода. Миоглобина больше в натренированных мышцах - у диких животных, особенно у ныряющих - кашалота, тюленей (например, у зайца больше, чем у кролика). Миоглобин специфический белок мышц, поэтому его появление вы сыворотке крови говорит о поражении мышечной ткани (заболевания мышц, инфаркт миокарда).

Дыхательные ферменты. Это биологические катализаторы, ускоряющие ход ОВР в клетках и тканях. это сложные белки, среди них различают гемсодержащие (Цх, каталаза, пероксидазы) и негемовые (флавиновые ферменты). У первых простетической группой являются гемы различного строения, а у вторых - производные витамина В2 (рибофлавина).

К группе ХП относятся также белки-пигменты, которые состоят из продукта окисления тирозина - меланина и простого белка. Это пигменты коричневого и черного цвета, содержатся в волосах, коже, сетчатке глаз. От их количества зависит окраска этих органов.

Связь между белком и ионами металлов может быть прочной и непрочной у различных МП. Представители: а) ферритин, содержат 20% трехвалентного (окисленного) железа и выполняют роль депо железа в организме. Белок откладывается в печени и селезенке. Железо связано прочной связью с азотом белковой части. Некоторая часть ферритина находится в плазме крови. Определение ферритина в плазме крови позволяет более точно оценить запасы железа. Единственной причиной снижения концентрации ферритина в плазме является уменьшение запсов железа. Концентрация ниже 20 мкг/л указывает на истощение, а ниже 12 мкг/л на полное отсутствие запсов железа. Однако ферритин является острофазовым белком и пациентов с дефицитом железа на фоне острого заболевания концентрация ферритина в плазме может быть в пределах нормы. У пациентов с анемией и хроническим заболеванием концентрация ферритина в плазме укажет на то, имеется ли одновременно дефицит железа и хватит ли его запасов для встраивания в гемоглобин при возросших потребностях, если основное заболевание может быть вылечено. Концентрация ферритина в плазме повышается при избытке железа, например, при гемахроматозе, но может также быть повышена у больных с заболеваниями печени и некоторыми типами рака, что связано с высвобождением белка из тканей. Таким образом, повышение концентрации ферритина следует интерпретировать с осторожностью, но нормальная концентрация говорит об отсутствии перегрузки железом. Б) трансферрин, содержит около 0,13% железа и выполняет роль переносчика железа (главным образом в составе бета-глобулинов), которое в молекуле связано непрочно с ОН-группой тирозина. Каждая молекула трансферрина связывает два иона двухвалентного железа. В норме трансферрин насыщен железом примерно на одну треть. В) гемосидерин. Роль этого белка изучена не достаточно. Это водонерастворимый комплекс, содержащий также УГВ и нуклеотиды. Содержится в РЭС печени и селезенки. Г) церулоплазмин. Роль этого белка в транспорте меди, также обладает ферментативной активностью. К МП относят также ряд ферментов, для которых металл является «мостиком» между белковой и небелковой частями, или непосредственно участвует в выполнении каталитической функции. Например, карбоангидраза содержит цинк, для активности фосфотрансфераз и киназ необходимы ионы магния и марганца, тирозиназа и ЦХО содержат медь.

Липопротеиды -- строение, представители, значение (на откр.лекции) - на обычной лекции -- читают по учебнику, только понятие.

ЛП - это сложные комплексы, включающие в себя большие количества непрочно связанных между собой молекул различных представителей липидов. Различают свободные (ЛП крови) и структурные ЛП (в составе мембран, ЭПР, органоидов). Свободные (сывороточные) ЛП построены по типу мицелл, т.е. имеют гидрофобное ядро, содержащее ХСН и ТАГи. Ядро окружено гидрофильной оболочкой из белков и ФЛ. Различают альфа-ЛП (ЛПВП), b-ЛП (ЛПНП), преb-ЛП (ЛПОНП), которые отличаются разным содержанием липидов и белка. ЛП - это транспортная форма липидов, в которых липиды становятся легко растворимыми в воде и легко переносятся кровью. Структурные ЛП построены иначе: внутри - белок, снаружи - липиды. Их функция тесно связана с метаболизмом клетки.

Размещено на Allbest.ru


Подобные документы

  • Необходимость придерживания принципа сбалансированного питания в еде. Гликемический индекс продуктов, его значение при диете. Перечень вредных пищевых добавок, их негативное воздействие на организм. Сравнение эффективности различных видов упражнений.

    практическая работа [3,7 M], добавлен 28.05.2015

  • Описание рациона современного человека. Рекомендуемые нормы потребления пищевых веществ (белки, жиры, углеводы). Пищевые продукты для отдельных групп населения. Определение потребности в энергии и пищевых веществах. Составление суточного рациона питания.

    реферат [76,6 K], добавлен 13.12.2010

  • Изучение химического состава мяса рыбы, характеризующегося содержанием белков, жиров, углеводов, витаминов, минеральных веществ и воды, а также наличием необходимых для человека аминокислот и их количеством. Энергетическая и биологическая ценность рыбы.

    курсовая работа [35,9 K], добавлен 01.12.2010

  • Химический состав пищевых веществ: свойства воды, макро- и микроэлементов, моно-, олиго- и полисахаридов, жиров, липидов, белков и небелковых азотистых веществ, органических кислот и витаминов. Химический состав и пищевая ценность продуктов питания.

    контрольная работа [66,3 K], добавлен 21.12.2010

  • Ферментные препараты, их характеристика и использование. Применение стабилизаторов, консервантов и веществ, продлевающих сроки хранения продуктов, их характеристика, нормативы и риски. Использование веществ регулирующих вкус и аромат пищевых продуктов.

    курсовая работа [110,9 K], добавлен 10.06.2014

  • Источники антиалиментарных соединений, условия их действия на ингибируемое вещество, пути устранения их вредного влияния. Ингибиторы пищеварительных ферментов. Факторы, снижающие усвоение минеральных веществ. Токсичные компоненты пищевых продуктов.

    курсовая работа [32,8 K], добавлен 29.10.2014

  • Понятие пищевых добавок как веществ, добавляемых в продукты питания для улучшения их внешних качеств, вкуса и увеличения срока хранения. Классификация пищевых добавок, характеристика их свойств. Отрицательное влияние пищевых добавок на здоровье человека.

    реферат [36,5 K], добавлен 21.03.2015

  • Исследование основных постулатов классической теории сбалансированного питания. Определение ценности пищевого продукта. Обзор особенностей разработки пищевых рационов для различных групп населения, учитывающих физические нагрузки и климатические условия.

    презентация [176,9 K], добавлен 09.04.2017

  • Изучение рациона школьника на предмет наличия в продуктах питания пищевых добавок, их влияния на организм. Описания веществ, изменяющих структуру и химические свойства продуктов. Анализ использования натуральных, синтетических и минеральных красителей.

    курсовая работа [62,5 K], добавлен 15.06.2011

  • Обеспечение производства продуктов питания в ассортименте. Рациональное использование пищевых продуктов каждым человеком. Физиологическая потребность организма во всех пищевых веществах и энергии. Соотношение белков, жиров и углеводов в рационе человека.

    реферат [26,4 K], добавлен 18.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.