Физические основы радиохимии

Понятие элементарных частиц, протонно-нейтронный состав и свойства атомного ядра. Законы радиоактивного распада полураспада, абсолютная радиоактивность. Радиоактивные семейства, типы ядерных превращений. Взаимодействие ядерного излучения с веществом.

Рубрика Химия
Вид курс лекций
Язык русский
Дата добавления 13.05.2014
Размер файла 429,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Физические основы радиохимии

Лекция 1

1. Элементарные частицы

Элементарными частицами называются мельчайшие составные части материи, которые при современном состоянии знания не могут быть разложены на более мелкие частицы.

Элементарные частицы имеют такие общие свойства, которые качественно отличают их от сложных частиц или от макроскопических тел.

К общим свойствам элементарных частиц относятся:

1. У многих элементарных частиц существуют свои двойники (частица и античастица). Они имеют одинаковые значения массы, спина и других характеристик, но отличаются знаком электрического заряда. Например, пары: электрон-позитрон, протон- антипротон.

2. Элементарные частицы способны к аннигиляции, одновременному исчезновению при столкновениях с превращением всей их энергии покоя в энергию других частиц или фотонов. Например, при столкновении электрона с позитроном обе эти частицы исчезают и появляются два фотона, которые обычно разлетаются в разных направлениях, образуя 2 гамма-кванта:

e? + e+ =2 г

3. Основными характеристиками элементарных частиц являются их заряд, масса покоя, механический момент (спин) и магнитный момент; для нестабильных элементарных частиц указываются дополнительно время.

В природе процессы рождения элементарных частиц происходят при взаимодействии с веществом быстрых частиц из состава космического излучения или ускоренных искусственно в специальных установках- ускорителях. нейтронный атомный радиоактивность излучение

2. Протонно-нейтронный состав ядер

Сначала можно рассказать вновь о составе атома

Важнейшими характеристиками протонов и нейтронов, как и других элементарных частиц, являются: масса покоя, заряд, спин (собственный механический момент движения) и среднее время жизни.

Протон (р) несет положительный электрический заряд, по абсолютному значению равный элементарному электрическому заряду. Нейтрон (n) - также элементарная частица, масса которого лишь на 0,1% больше массы протона, а электрический заряд равен нулю. Массы протона и нейтрона выражаются в атомных единицах массы (а.е.м.) 1а.е.м. равна 112 массы изотопа углерода-12 и составляет [(1,660350,0003)10-24г]:

mp = 1,00728а.е.м. = 1,672•10-27кг = 1836 m.е.

mn = 1,00866а.е.м. = 1,675•10-27к = 1838 m.e.

Протон - стабильная частица - представляет собой ядро атома водорода и не изменяет своих свойств во времени.

Нейтрон - вне ядра не стабилен и самопроизвольно превращается в протон, электрон и антинейтрино:

n = p+ + e- +

3. Свойства атомного ядра

Важнейшими характеристиками ядра являются их заряд, масса и размеры.

3.1 Заряд, число нуклонов и масса ядра

Заряд атомного ядра равняется количеству протонов в ядре, которое совпадает с порядковым номером элемента (Z) в таблице Д.И. Менделеева.

Заряд ядра, в силу нейтральности атома, в свою очередь определяет количество электронов в атоме. Поэтому в конечном итоге можно сделать вывод о том, что химические свойства атома определяются зарядом ядра и не зависят от его массы.

Другой важной характеристикой атомного ядра является его масса.

Массу ядра вычисляют как сумму масс протонов и нейтронов, которые составляют ядро

При изучении строения ядра следует различать два понятия: масса ядра, выражаемая в атомных единицах массы (а.е.м.) и число нуклонов А. Число нуклонов А равно сумме протонов и нейтронов в ядре.

А= (p +n)

Значения А и Z являются главнейшими характеристиками ядра, определяющими его природу.

Z и его числовое значение одновременно обозначают следующие физические величины:

1. Число протонов в атомном ядре;

2. Электрический заряд ядра;

3. Число электронов на всех оболочках атома;

4. Порядковый номер элемента в таблице периодического закона Д.И. Менделеева.

3.2 Изотопы, изобары, изомеры

Разновидность атомов, ядра которых имеют определенное число нуклонов (протонов и нейтронов), называется нуклидом.

Символическая запись нуклидов включает химический символ ядра Х и индексы слева внизу “Z” ( число протонов в ядре) и “А” слева вверху- полное число нуклонов. Например,

Х,H, Ba, U, Na

В зависимости от содержания нуклонов нуклиды могут быть объединены в различные группы: изотопы, изобары, изотоны.

Изотопными нуклидами (изотопами) называются нуклиды, имеющие одинаковое число протонов. Они различаются только числом нейтронов. Поэтому все изотопы принадлежат одному и тому же химическому элементу. Так, например, изотопы

U ,U,U, U, U

являются изотопами одного и того же элемента урана (Z= const).

Поскольку изотопы имеют одинаковое число протонов и одинаковое строение электронных оболочек, то они являются атомами близнецами- их химические свойства практически совпадают. Исключение составляют изотопы водорода - протий Н, дейтерий D, тритий Т, которые из-за слишком большого относительного различия атомных масс существенно отличаются по физико-химическим свойствам.

Изобарами называют разновидность нуклидов, ядра которых имеют разное число и протонов и нейтронов, но имеют одинаковое число нуклонов. Пример изобаров: Тi и Са.

Изомеры--нуклиды, имеющие одинаковое число протонов и нуклонов и отличающиеся только энергией связи ядра ().

3.3 Энергия ядра

Энергия является одной из важнейших характеристик протекания любых физических процессов. Применительно к ядру рассмотрим несколько различных форм энергии.

3.3.1 Энергия покоя

В соответствии с теорией относительности массе атома m можно сопоставить полную энергию покоя

Е0=mc2

Если в этой формуле с выражать в метрах на секунду, а m в килограммах, то Е0 получится в джоулях. Обозначим через m0 единицу атомной массы, выраженную в килограммах: m0= 1,66•10-27 кг. Тогда m= m0Аr и Е0= Аr ·m0 c2 . Величину m0 c2 легко вычислить в джоулях, а затем в электрон-вольтах: m0 c2= 931,5 Мэв. Отсюда

Е0= 931,5Аr

Здесь Аrотносительная атомная масса, Е0полная энергия покоя атома, МэВ.

3.3.2 Энергия связи ядра

Известно, что любая система стремится перейти в состояние с наименьшим запасом энергии. Это заключение термодинамики применимо и к таким микроскопическим образованиям, как атомные ядра. Исходя из этого, суммарная энергия нуклонов, взятых порознь, должна быть больше энергии ядра, состоящего из того же числа нуклонов.

Действительно, при сравнении массы нуклонов с массой ядра, оказывается, что последняя меньше на 0,005-0,01%, т.е. масса ядра всегда меньше суммы масс протонов и нейтронов, составляющих это ядро на величину Дm.

Величина Дm называется дефектом массы и служит мерой энергии связи ядра, т.е. той энергии, которая расходуется на взаимосвязь нуклонов в ядре. Поэтому чем больше выделившаяся при образовании ядра энергия, тем прочнее связано ядро. С другой стороны эта энергия является той энергией, которую необходимо затратить для того чтобы разделить ядро на составляющие его нуклоны. Эту энергию называют энергией связи ядра.

Исследование кривой энергии связи от количества нуклонах в атомных ядрах показывает, что атомы элементов, имеющих массовое число около 60 , обладают наибольшей стабильностью, так как при их образовании на один нуклон выделяется наибольшее количество энергии. Эти же элементы наиболее распространены в природе.

3.4 Устойчивость ядер

Многие ядра устойчивы по отношению к одним видам распада и неустойчивы к другим. Нуклиды, ядра которых устойчивы по отношению к любым видам распада, называются стабильными.

С увеличением Z все более начинает проявляться разрыхляющее действие протонов, вследствие чего в атомах тяжелых ядер начинает наблюдаться избыток нейтронов. У элементов, начиная с Z82 ядерные силы притяжения уже не способны обеспечить полную устойчивость ядер. Такое ядро стремится перейти в стабильное состояние. В результате чего происходят процессы их внутренней перестройки.

Способность ядер или их возбужденных состояний спонтанно, самопроизвольно переходить в другие с меньшей энергией, испуская частицы или кванты, называется радиоактивным распадом, а явление испускания ядрами частиц или гамма - квантов, называется радиоактивностью.

При этом при переходе ядра в более стабильное состояние нейтроны переходят в протоны с испусканием электрона (бета-распад). Если в ядре будет недостаток нейтронов (отношение N / Z лежит ниже области стабильности), то неустойчивость ядер определяется кулоновскими силами отталкивания. В этом случае переход в устойчивое состояние обычно реализуется путем испускания ядром альфа - частиц, состоящих из 2 нейтронов и двух протонов. Для более легких ядер переход в более устойчивое состояние ядра может осуществляться путем превращения протона в нейтрон и испусканием позитрона и нейтрино.

3.4.1 Ядерные силы

Нуклоны в атомных ядрах, несмотря на электростатическое отталкивание существующее между протонами, очень сильно связаны между собой. Об этом свидетельствует высокая стабильность ядер и тот факт, что для расщепления ядра требуется чрезвычайно высокая энергия. Следовательно, при взаимодействии между протонами и нейтронами проявляются особые силы притяжения, намного превосходящие по величине кулоновские. Эти силы называют ядерными силами. Некоторые свойства ядерных сил:

1. Ядерные силы очень велики и действуют на очень коротких расстояниях (радиус их действия ограничен размерами ядер, 10-15м);

2. Особенностью ядерных сил является их избирательность. Они действуют только между нуклонами;

3. Каждый нуклон взаимодействует не со всеми нуклонами, находящимися в ядре, а только с несколькими соседними (свойство насыщения).

Несмотря на очень быстрое возрастание ядерных сил с уменьшением расстояния, нуклоны в ядре не уплотнены до геометрически возможных пределов - ядро проницаемо;

4. Нуклоны удерживаются в ядрах короткодействующими силами притяжения.

Таким образом, ядерные силы принадлежат к так называемым обменным квантово-механическим силам, которые могут действовать только в ядре.

Лекция 2. Радиоактивность

1. ЗАКОНЫ РАДИОАКТИВНОГО РАСПАДА

Ранее было показано, что все ядра стремятся к устойчивости. Ядра, обладающие избытком протонов или нейтронов, становятся неустойчивыми в результате чего они распадаются на более устойчивые ядра. При этом происходит испускания из ядер (-частиц, -частиц) или происходит захват ядрами К-электронов и выделение энергии (в форме кинетической энергии частиц или -квантов).

Нестабильность радиоактивных атомных ядер обусловлена их внутренним строением, и их распад происходит с определенной вероятностью.

В обычных лабораторных условиях на этот процесс не оказывают никакого влияния ни изменение температуры, ни повышение или уменьшение давления, ни магнитные, ни электрические поля. Скорость распада изменяется при непосредственном воздействии на атомные ядра (космическое излучение, бомбардировка быстрыми частицами), а также при очень высоких температурах.

Радиоактивность есть свойство ядер атомов к самопроизвольному распаду, получившему название радиоактивный распад.

Активность радионуклида определяется как отношение числа спонтанных ядерных превращений нуклида, происходящих в данном источнике за определённый интервал времени к величине этого интервала.

Период полураспада ()--промежуток времени, за который распадается половина от начального числа ядер (паспортная характеристика нуклида).

--постоянная распада; численно равна доле ядер, распадающихся в единицу времени.

Связь между периодом полураспада и постоянной распада выражается следующим образом:

Среднее время жизни радиоактивного ядра равно обратной величине от постоянной распада (=1/).

Радиоактивность есть свойство ядер атомов к самопроизвольному распаду, получившему название радиоактивный распад. Число ядерных превращений не всегда совпадает с числом испущенных частиц и еще реже с числом испущенных гамма-квантов. Поэтому недопустимо применение таких терминов как «б-, в-, г- активность»!!! Экспериментально было установлено, что число радиоактивных атомов данного радионуклида уменьшается со временем по экспоненциальному закону в интегральной форме:

Или в дифференциальной форме

поэтому в любой момент времени t имеются ещё не распавшиеся ядра со временем жизни больше t. Знак минус указывает на то, что число радиоактивных ядер со временем уменьшается.

Если необходимо установить число распавшихся ядер к моменту времени t, то записывают:

Nр= No - Nt , или

Nр = No(1- e-t),

где Nр- число распавшихся ядер к моменту времени t.

2. Абсолютная радиоактивность

Скорость радиоактивного распада называется абсолютной радиоактивностью и обозначается:

А =  = N,

а в интегральной форме:

А = Аоe(-t)

Итак, активность уменьшается во времени по такому же экспоненциальному закону, что и число ядер N.

В соответствии с определением - радиоактивность измеряется числом распадов в 1с. Единицей активности в СИ является беккерель(Бк).

До введения СИ применялись и другие единицы радиоактивности: кюри(Ки) и резерфорд(Рд).

Ки - 3,7 1010расп/сек, Рд - 1 106расп/сек.

Отметим, что чистого 226Ra имеет активность 1Ки.

В практической работе абсолютная радиоактивность препаратов, как правило, не определяется непосредственно. Измерительные приборы обычно дают величину, пропорциональную А, ее называют регистрируемой активностью I, которая связана с абсолютной радиоактивностью через коэффициент :

I= А М,

где  - коэффициент пропорциональности, или коэффициент регистрации.

Регистрируемая активность также следует основному закону распада:

It = Ioe(-t).

3. Период полураспада

Кроме величины радиоактивной постоянной и средней продолжительности жизни, устойчивость радиоактивного ядра можно характеризовать также с помощью периода полураспада Т1/2.

Периодом полураспада Т1/2 называется промежуток времени, в течение которого распадается половина наличного количества ядер данного изотопа.

Число ядер N, абсолютная активность а, регистрируемая активность I, за время, равное периоду полураспада уменьшается в двое. Заменив Nt на Nо/2 , а t на Т1/2 получим

Nо/2 = Noe -Т1/2 или= e -Т1/2

 ,

Отсюда следует, что

 ,

Так же как и постоянная распада , Т1/2 не зависит от внешних факторов и одинаков для всех радиоактивных ядер данного вида не зависимо от того в какие соединения они входят.

Уравнения позволяют быстро рассчитать степень распада радиоактивного вещества за данный промежуток времени, выражаемый числом периодов полураспада n =t/ Т. В этом случае

=.(2)

В общем случае по истечении n периодов полураспада в образце останется (1/2)n первоначального числа ядер. Из (2) следует так называемое правило десяти периодов полураспада, т.е. промежутка времени, когда практически все вещество распадется (останется меньше 0,1 % от исходного количества). Теоретически же радиоактивный образец никогда не распадается целиком, так как выражение е(-t) не превращается в ноль ни при каких значениях t. Следует отметить, что это правило имеет относительный характер, так как при больших исходных количествах радиоактивного вещества конечная величина также будет большой.

4. Радиоактивное равновесие

Экспоненциальный закон радиоактивного распада в дифференциальной и интегральной формах справедлив, если количество радиоактивных ядер только уменьшается за счет распада.

Часто в результате распада образуется ядро нестабильного нуклида. В этом случае оно со временем также распадается, затем может последовать третий распад и т.д., пока не возникнет ядро стабильного нуклида.

Схематично цепочку последовательных распадов можно изобразить:

А  В  С  . . . S(стаб.)

Совокупность нуклидов, связанных между собой взаимными радиоактивными превращениями называют радиоактивными семействами. При этом при любом акте распада А  В, нуклид А называется материнским по отношению к В, а В - дочерним по отношению к А.

В этих случаях, закон радиоактивного распада имеет более сложный вид. Обозначим числа ядер материнского вещества А через N1 , а дочернего вещества В через N2 . Каждый акт распада ядер материнского вещества А приводит к образованию ядер дочернего вещества В, также радиоактивного. Запишем систему уравнений реакций распада и накопления материнского и дочернего вещества. Для материнского вещества А скорость распада:

(3.12)

Для дочернего вещества В скорость изменения числа ядер выражается уравнением

(3.13)

Откуда можно записать:

dN2 = 1N1dt - 2N2dt (3.14)

Проинтегрировав выражение (3.15) и приняв, что в первоначальный момент количество ядер дочернего элемента было N2 = 0, а период полураспада материнского вещества намного больше периода полураспада дочернего: 1/2)1  (Т1/2)2, т. е. 12 и t1/2)1 , получим:

1 N= 2N2 ( 3.15)

Такое состояние системы, содержащей материнский нуклид и связанные с ним дочерние нуклиды, при котором соотношение количества материнского и дочерних ядер не меняется с течением времени, называют радиоактивным равновесием или вековым равновесием.

Вековое равновесие позволяет определять периоды полураспада долгоживущих радионуклидов по определенным экспериментально периодам полураспада дочерних элементов.

5. Радиоактивные семейства

Как было отмечено выше, радиоактивные нуклиды, возникающие друг за другом, вследствие распада одного материнского вещества, образуют радиоактивное семейство, последний элемент которого представляет собой стабильный не радиоактивный элемент.

Переход одних элементов в другие осуществляется путем и - распада. Массовые числа при - распаде меняются сразу на 4, заряд ядра меняется на 2 единицы:

Х Х + Не

и новый элемент отстоит в этом случае на две клеточки влево в периодической системе, например:

Ra Rn

При - распаде массовые числа не меняются вовсе, а заряд увеличивается на 1 и новый элемент сдвигается вправо в периодической системе:

ХX + e

Очевидно, например, что все продукты распада изотопа тория 232Th , массовое число которого кратно четырем ( 4n), тоже должны иметь делящиеся на четыре массовые числа: А= 232, 228, 224 и т. д. Соответственно все продукты распада урана 238U (4n+2) будут иметь массовые числа А= 238, 234, 230, и т.д., деление которых на 4 дает 4n+2. Поэтому, в принципе, в природе могут существовать 4 независимых семейства радиоактивных элементов с массовыми числами 4n, 4n+1, 4n+2, 4n+3, где n - целое число. Фактически в природе найдено три ряда радиоактивных семейств. Это ряд тория( 4n), ряд урана (4n+2) и ряд актиния (4n+3) .

Четвертое семейство с формулой 4n + 1 (семейство нептуния) не было обнаружено в природе, так как оно состоит из нуклидов со сравнительно короткими периодами полураспада. Поэтому за время существования Земли все они давно распались.

Для любого члена радиоактивного ряда справедливо выражение

1 N= 2N2.= і Nі ,(3,16)

где i Ni постоянная распада и число ядер i-того члена радиоактивного семейства. Исходя из этого выражения, можно вычислить содержание любого дочернего элемента, зная содержание материнского и наоборот.

Таблица 5.1. Некоторые данные о четырех радиоактивных семействах

Структура массового ядра

Название семейства

Материнское ядро

Период полураспада

замыкающее стабильное ядро

А = 4n

ториевое

1,391010 лет

А = 4n+1

нептуниевое

2,2106 лет

А = 4n+2

урано-радиевое

4.5109 лет

А = 4n+3

урано-актиниевое

7.18108 лет

6. Типы ядерных превращений

После открытия явления радиоактивного распада, Э. Резерфорд, сосредоточил внимание на изучении этого явления. В 1899 г. Э. Резерфорд установил, что излучение урана состоит из двух компонент, обозначенных впоследствии первыми буквами греческого алфавита и , спустя год П. Вийар открыл гамма-излучение (г).

Рис.6.1.Отклонение альфа-, бета- и гамма-лучей в электрическом и магнитном полях

В 1903 г Резерфордом и Содди была предложена теория радиоактивного распада атомов, согласно которой в результате радиоактивного распада происходит превращение одного химического элемента в другой. В процессе эмиссии радиоактивного излучения вещество претерпевает ряд изменений. При этом довольно быстро было обнаружено, что разные ядра распадаются по-разному с испусканием различных частиц в зависимости от комбинации частиц в ядре или его состояния.

В 1913 г. Содди и Фаянс независимо друг от друга сформулировали правило смещения при различных видах радиоактивного распада.

Радиоактивные превращения обладают двумя особенностями, делающие их более простыми по сравнению с химическими превращениями.

Первая особенность заключается в том, что для всех типов радиоактивных превращений справедлив один кинетический закон.

Вторая особенность состоит в том, что количество типов радиоактивных превращений очень ограничено.

В настоящее время известно семь основных типов радиоактивного распада: альфа-распад, бета-распад, электронный захват, гамма-распад, спонтанное деление, испускание запаздывающего нейтрона и запаздывающего протона.

Испускание каждой частицы или -кванта переводит ядро с энергетически более высокого уровня на новый более низкий уровень. Разность между исходным и конечным энергетическим уровнем (за вычетом энергии, связанной с массой покоя вылетающей частицы) характеризуют полную энергию распада.

Радиоактивный распад в общем виде можно записать уравнением:

А В + Х + Е, где:

А - материнский нуклид,

В - дочерний нуклид,

Х - испускаемая частица или квант,

Е - кинетическая энергия испускаемых частиц или гамма- квантов.

Рассмотрим основные типы ядерных превращений.

6.1 Альфа-распад

Альфа распадом, называются ядерные превращения, при котором из ядра вылетает -частица, являющаяся ядром атома гелия Не и движущаяся со скоростью 1,4103-2,6103 км/с. Пробег в воздухе 2,5 - 9 см.

Превращения с испусканием -частиц характерны в основном для ядер атомов тяжелых элементов, исключение составляют ядра Ве, практически мгновенно распадающиеся на две -частицы, а также искусственно получаемого изотопа 152Sm.

Согласно правилу смещения Фаянса и Соддии -распад всегда приводит к возникновению изотопа элемента, смещенного на две клетки левее от исходного элемента в периодической системе и имеющего на четыре единицы меньшее массовое число.

Образуется Возникшее при альфа - распаде ядра находятся в возбужденном состоянии и постепенно переходят в основное состояние, испуская г - кванты.

А В + б + г + Е( 4.1)

Ро Рb + Не.

Часть энергии при -распаде может быть выделена в виде фотона:

U Th + Не + .

Как правило, испускаемый г - квант в реакции не записывается. Энергетический баланс этой реакции можно записать в следующем виде

Еобщ = Еб + Ег + Еотд

Схематично -распад можно записать

или (А,Z) (А - 4, Z - 2) + .

Если обозначить массу исходного (материнского) ядра М, массу дочернего М и массу -частицы m, то энергетическое условие самопроизвольного -распада может быть записано как:

МС2 МС2 + mС2, (4. 2)

Таким образом, -распад происходит тогда, когда масса исходного ядра превышает массу конечного, более чем на массу одной -частицы или разница в дефектах масс материнского и дочернего ядер больше дефекта массы альфа- частицы:

Д m( A,Z)- Д m (A-4, Z-2)> Д m (б) (4.3)

Нетрудно подсчитать, что эти условия одновременно выполнимы для элементов периодической системы, начиная с А>120.

По современным представлениям альфа- частиц в ядре постоянно не существует, Они образуются при встрече двух протонов и двух нейтронов, т.е. при избытке протонов и нейтронов. В то же время, чтобы альфа- частица могла покинуть ядро, ей необходимо преодолеть ядерные силы, потенциальный барьер, величина которого 25 - 30 Мэв. На самом деле энергия альфа-частиц покидающих ядро лежит в пределах 4-9 Мэв. Это несоответствие объясняется квантовой механикой, согласно которой, альфа - частицам присущи волновые свойства.

Важное свойство - распада заключается в том, что периоды полураспада исходного ядра меняются в громадных пределах, а энергия всех измеряемых частиц лежит в сравнительно узком интервале приблизительно от 4 до 9 Мэв.

Установлено также, что чем меньше период полураспада, тем больше энергия -частиц.

Гейгер и Неттол вывели эмпирическое уравнение, описывающее с хорошей точностью большинство случаев -распада:

lgT1/2 = A - BE ( 4. 4)

6.2 Бета-распад

Бета распадом называется процесс самопроизвольного превращения нейтрального ядра в ядро - изобар с зарядом отличным на Z = ±1. Скорость, испускаемых при бета-распаде - частиц близка к скорости света.

Как и -излучение, - излучение отклоняется в магнитном и электрическом полях, но в противоположную сторону и на большее расстояние. Это указывает на то, что бета-излучение является потоком отрицательно заряженных частиц малой массы. По отношению e/m Резерфорд идентифицировал бета-частицы как обычные электроны.

Согласно правилу смещения Фаянса-Содди - распад приводит к возникновению изотопа элемента, смещенного на одну клетку правее от исходного элемента без изменения массового числа.

Для того, чтобы отличать электроны, возникающие при ядерных превращениях, их стали называть бета-частицами. Несмотря на то, что обычно говорится об испускании электронов ядрами, атомные ядра в чистом виде не содержат электроны. Бета - частица образуется в самом акте ядерного превращения.

Известны три вида -распада: электронный -распад, позитронный +-распад и электронный К-захват электрона ядром с одной из ближайших к ядру оболочек.

При бета-распаде массовые числа ядер не изменяются, а изменяется лишь заряд, на единицу больше в случае --распад и на единицу меньше в случае +-распада и К-захвата. Согласно правилу сдвига Фаянса-Содди, для этих типов распада можно записать:

Все три вида -распада сводятся к следующим видам взаимного превращения нуклонов в ядре.

--распад - no р+ + e- + ; Р S + e- + ; (-распад);

+-распад - р no + е+ + ; С В + е+ + (+-распад);

К-захват - р+ + e- n + ; Cs + e- Xe + ( К- захват)

Таким образом, электроны и позитроны не находятся в ядре, а возникают в момент перехода одного нуклона в другой. Как видно из схем - превращений, характерной чертой всех видов превращений является испускание нейтрино или антинейтрино.

Впервые понятие о нейтрино ввел В. Паули в 1930 году для объяснения «потерянной» части энергии при радиоактивном распаде с испусканием электрона. Суммарная энергия частиц и гамма квантов, оказывалась несколько меньшей энергии частиц, вступающих во взаимодействие. Паули предположил, что недостающая часть энергии улетает с частицей, которую он назвал «нейтрино». Нейтрино - незаряженная элементарная частица обладает массой покоя, близкой к нулю. Нейтрино обладает исключительной проникающей способностью. Его крайне трудно обнаружить, так как прохождение нейтрино через материальную среду практически не сопровождается каким-либо эффектом. Такими же свойствами обладает и антинейтрино.

Как видно из схем превращений при электронном бета-распаде один из нейтронов превращается в протон, и материнское ядро испускает электрон и антинейтрино. Схематически этот процесс представляется таким образом:

+

Электронный бета-распад может сопровождаться также гамма- излучением. Это происходит в том случае, когда в процессе распада, образуется ядро, находящееся не в основном, а в возбужденном состоянии. Примером такого распада служит превращение стронция в иттрий:

+ +

Обратный процесс превращения протона в нейтрон в свободном состоянии невозможен, поскольку масса нейтрона больше массы протона. Однако ядра, расположенные в координатах N и Z ниже линии стабильности, в результате перегруппировки нуклонов, могут перейти из менее стабильного состояния в более стабильное состояние путем замены одного протона на нейтрон. При этом протон теряет свой заряд, превратившись в нейтрон и позитрон (е+), частицу несущую положительный заряд, но обладающую массой электрона. Так как при испускании позитрона происходит захват электрона с электронной оболочки, обеспечивающий сохранение электронейтральности атома, позитронный распад может протекать в случае, если разность энергий в конечном и исходном состояниях превышает 1,02 МэВ, то есть больше массы покоя двух электронов. При позитронном распаде позитрон немедленно покидает ядро, и после замедления его масса аннигилирует вместе с массой электрона. О наличии позитронного распада свидетельствует регистрация двух гамма - квантов с энергиями 0,51 МэВ. Этот процесс идет с поглощением энергии, так как масса нейтрона больше массы протона.

При аннигиляции позитрона с электроном их масса полностью превращается в энергию двух  - квантов. Эта энергия образуется за счет перестройки остального ядра:

е_ + е+ 2 + 1,02 Мэв

Позитронная эмиссия очень редка у естественных радионуклидов и встречается в основном у искусственно полученных радионуклидов с помощью ускорителей частиц:

О N + e+;Fe Mn + e+ +

Если значение энергии превращения меньше 1,02 Мэв, то эмиссия позитронов не возможна. В этом случае материнский нуклид переходит в дочерний путем захвата электрона так называемого К-захвата.

Для ядер тяжелых элементов с недостатком нейтронов (нейтронодефицитное ядро), превращения протонов в нейтроны происходит только по механизму электронного К-захвата. Поскольку в атоме К-электроны в среднем находятся наиболее близко к ядру, то существует некоторая вероятность захвата ядром электрона с К - оболочки.

Так как масса нейтрона больше суммарной массы протона и электрона, для реализации этой реакции нужна дополнительная энергия. Эта энергия берется за счет увеличения энергии связи у вновь образовавшегося ядра. Для атомов тяжелых элементов К-захват более вероятен, чем позитронная эмиссия.

Захват электрона ядром всегда сопровождается рентгеновским излучением, так как на освободившееся место на нижнем энергетическом уровне сразу переходят орбитальные электроны из оболочек расположенных выше.

Кроме того, К-захват сопровождается испусканием электронов Оже с возбужденных электронных оболочек атома.

Для ядер легких элементов распространены все три варианта - распада.

AsSe +e-+

AsGe +e++

As+ e-Ge +

Бета-распад энергетически возможен, если масса покоя системы в начальном состоянии больше ее массы покоя в конечном.

Поскольку масса покоя нейтрино (антинейтрино) равно 0, энергетические условия - превращений имеют вид:

М(Z,A)  М(Z + 1), A + me- () - распад

М(Z,A)  М(Z - 1), A + me+ (+) распад

М(Z,A) + me  М(Z - 1), A -К захват

Из этих условий видно, что К- захват энергетически более выгодный, чем позитронный распад.

Так как энергия возбуждения, которая уносится из ядер при - распаде перераспределяется между электроном и антинейтрино или между позитроном и нейтрино и подчиняется закону случайностей, - распад имеет непрерывный энергетический спектр. Сумма энергий - частицы и нейтрино (антинейтрино) всегда равна постоянной величине, характерной для данного изотопа и называется максимальной энергией - спектра.

Э. Ферми вывел эмпирическое уравнение, связывающее максимальную энергию - излучения с постоянной распада, л:

л = k E

Максимальная энергия бета- частиц лежит в интервале 0,015 - 15 МэВ, а периоды полураспада изменяются от 0.3 с до 6.1014 лет

6.3 Гамма - излучение ядер (изомерный переход)

Под гамма - излучением понимается электромагнитное (фотонное) излучение, испускаемое при ядерных превращениях.

Гамма - излучение является вторичным процессом, сопровождающим процессы - и -распада. Гамма- кванты испускаются не непосредственно радиоактивным веществом, а дочерним нуклидом, который находится не в основном, а в возбужденном состоянии. Переход дочернего ядра из возбужденного состояния в основное приводит к эмиссии - квантов.

При испускании гамма - квантов в ядре не изменяется ни число нуклонов А, ни его заряд Z.

Так как время жизни ядер в возбужденных состояниях очень мало (t 10-10 с), то при - и - распадах -квант вылетает практически одновременно с заряженной частицей. Поэтому обычно этот процесс не выделяют в самостоятельный вид распада, а говорят лишь о гамма - излучении, сопутствующем другим видам распада :

Th Ra + He + ;

Cl Ar + - +

Pa + e- Th +

Однако в некоторых случаях, из-за квантово - механических запретов время жизни ядра в возбужденном состоянии может оказаться весьма большим.

Внешне распад таких возбужденных ядер выглядит как обычный радиоактивный распад с испусканием только -квантов, т.е. как -распад.

Уровни ядер с аномально большими временами жизни 10 -10 с называют метастабильными уровнями, а ядро находящееся в метастабильном состоянии, называется изомером к ядру, находящемся в основном состоянии.

В случае изомерных переходов интенсивность -излучения убывает во времени по обычному экспоненциальному закону с периодом полураспада данного метастабильного уровня. Например: Bа образуется при позитронном распаде La:

LamBа,

который затем путем эмиссии гамма- квантов с периодом полураспада 38,9 ч переходит в

133 Ba:

m

Гамма-излучение имеет ту же природу, что и радиоволны, рентгеновские, видимый, ультрафиолетовый, инфракрасный цвет все эти виды излучения различаются условиями образования и свойствами (энергией, частотой, длиной волны). В таблице 4. 1 приведены основные виды электромагнитного излучения в зависимости от энергии фотонов и длины волны.

Таблица 6.1. Основные виды электромагнитного излучения в зависимости от энергии фотонов и длины волны

Вид излучения

Энергия фотонов, эВ

Длина волны, см

Радио (до УВЧ)

0,00001 (10-5)

10

Микроволновое

110-5 -110-2

0,01 - 10

Инфракрасное

0,01 - 1

0,0001 - 0,01

Видимое

1 - 6

10-5 - 10-4

Ультрафиолетовое

6 - 103

10-7 -210-5

Рентгеновское

103 -105

10-9 - 10-7

Собственно -излучение

105

10-8 - 10-12

Как видно из таблицы, радиоволны, видимый свет, УФ и - излучения имеют одну и ту же природу, но различаются условиями образования и свойствами (энергией или частотой).

Во многих процессах -кванты проявляют себя как частицы, которые называются фотонами. Масса покоя их равна нулю. Скорость распространения гамма - квантов равна скорости света. Энергия фотона зависит от частоты или от длины волны гамма-излучения связь между которыми дается соотношением:

E = h = h, где с - скорость света, h - постоянная Планка.

6.4 Спонтанное деление

Планетарная модель атома, предложенная Резерфордом справедлива даже для очень тяжелых элементов, вплоть до 176 элемента. Однако до настоящего времени столь тяжелых атомов никто не находил - значительно раньше ядро самопроизвольно распадается на две части. Это явление - спонтанное (самопроизвольное) деление урана-238 обнаружили в 1940 г. советские физики Г.Н. Флеров и К.А. Петржак. Период полураспада был ими оценен приблизительно в 10151016 лет.

Спонтанное деление это процесс радиоактивного распада, при котором материнское ядро распадается в основном состоянии и без всякого влияния извне на два осколка с близкими массами. Например, при делении ядра урана могут образовываться осколочные ядра Ba и Kr, La , Br и так далее.

Процесс спонтанного деления принято обозначать буквой f.

Спонтанное деление атомных ядер особый процесс, характерный только для самых тяжелых ядер, начиная от тория и дальше в сторону больших Z. Обнаружено, что периоды полураспада спонтанного деления изотопов уменьшаются с увеличением порядкового номера Z ( табл.4.2).

Таблица 6.2. Периоды полураспада спонтанного деления тяжелых ядер

Ядро

U

Pu

Cm

Cf

Fm

Т1/2,

3.0 ·1017лет

7.4 ·1010лет

6.0·106лет

5 час

2.6 час с

Для нечетных ядер значение периода полураспада спонтанного деления в среднем на 3-4 порядка больше, чем среднее значение периодов полураспада соседних четно-четных рядов. Для нуклидов с числами протонов и нейтронов близкими к магическим числам Z=114 и N=184, рассчитаны очень большие периоды полураспада спонтанного деления, что является предпосылкой для поиска еще не известных сверхтяжелых элементов.

Спонтанное деление, как и альфа-распад, можно объяснить с помощью туннельного эффекта, который наблюдается только у самых тяжелых ядер (Z>90, А>230 ). Известно лишь небольшое число нуклидов (250Cm, 254Cf, 256Fm, 260Rf), для которых спонтанное деление преобладает над другими видами распада.

Спонтанное деление хорошо описывается моделью жидкой капли. Делению способствует кулоновское отталкивание между протонами, энергия которого (Uкул) в сферическом ядре с радиусом R пропорциональна Z2/ R; делению препятствует, стремящееся сохранить сферическую форму ядра поверхностное натяжение, его энергия(Uп.н.) пропорциональна R2. В результате способность ядер к делению возрастает с увеличением отношения Uкул /Uп.н., пропорционального Z2/ R3, а тем самым параметру деления Z2/А, поскольку объем ядра пропорционален числу содержащихся в ядре нуклонов А.

Согласно капельной модели атомного ядра периоды полураспада спонтанного деления уменьшаются с ростом отношения Z2/А и нуклиды с Z2/А>44,8 должны быть вообще нестабильными к спонтанному делению. Энергетической выгодности спонтанного деления отвечает условие Z216, мгновенному делению - Z247.

Каждый акт спонтанного деления сопровождается испусканием одного или нескольких нейтронов. Осколки деления оказываются перегруженными нейтронами и испытывают последовательно ряд - распадов:

стаб.

Cf +3n

Для каждого типа ядер характерно среднее число нейтронов, выделяемое в процессе каждого акта спонтанного деления. Например, для U это число равно 2.30, для Pu 2.28, Cm 2.59, Cf 3.84 и Fm 4.05.

Чаще всего спонтанное деление составляет лишь небольшую часть от общего альфа - распада.

Спонтанное деление и вслед за ним - альфа - распад есть основные виды радиоактивного распада, ограничивающие перспективы получения новых трансурановых элементов.

Именно спонтанное деление определяет границы существования химических элементов, составляющих наш мир.

6.5 Испускание запаздывающего протона

Испускание запаздывающего протона было обнаружено в 1962 году Г. Флеровым у искусственных радионуклидов - продуктов ядерных реакций при высоких энергиях. Этот тип распада характерен только для дочерних ядер, имеющих избыток протонов и претерпевающих позитронный распад. Позитронный распад приводит к образованию ядра - продукта в возбужденном состоянии, практически мгновенно (за время 10-12с) испускающего протон. Здесь позитронный распад сопровождается протонным распадом, причем периоды полураспада для обоих распадов одинаковы. Такое сложное радиоактивное превращение возможно в тех случаях, когда энергия позитронного распада превышает энергию связи протона в дочернем ядре-продукте распада. В качестве «предшественников» испускания таких запаздывающих протонов были идентифицированы +- активные изотопы 17Ne ( t1/2 =0.1 c) и 21Mg( t1/2=0.13 c).

Испускание запаздывающего протона приводит к уменьшению заряда и массового числа образовавшегося ядра на единицу.

Так, например, Ne распадается с периодом полураспада 0.7 с путем в+- эмиссии, образуя F в сильно возбужденном состоянии, который, испуская протон, за время < 10-12с переходит в дважды магическое ядро O.

NeF* O+ p

Трудности обнаружения протонной радиоактивности обусловлены как короткими временами жизни протоноактивных ядер, так и тем, что эти ядра характеризуются очень сильным дефицитом нейтронов и потому могут быть получены в ядерных реакциях, сопровождающихся вылетом большого числа нейтронов и потому маловероятных.

Во всех имеющихся до сих пор наблюдениях радиоактивных распадов с испусканием протона задержка испускания протона была обусловлена не протонной радиоактивностью, а предшествующим + - распадом, возбужденные продукты которого мгновенно испускали запаздывающий протон.

6.6 Испускание запаздывающего нейтрона

Помимо нейтронов, непосредственно сопутствующих делению в ядерном реакторе наблюдается также испускание так называемых запаздывающих нейтронов. Эти нейтроны для отличия от нейтронов, образующихся в момент деления ядер, называют запаздывающими нейтронами. Такой тип распада имеет место тогда, когда энергия возбуждения осколочного ядра, претерпевшего - -распад превышет энергию связи нейтрона в ядре. В этом случае процесс - - распада сопровождается испусканием нейтронов, причем периоды полураспад обоих процессов равны. Эмиссия запаздывающих нейтронов чаще всего наблюдается при числе нейтронов, превышающем магическое число. Так, например I после отдачи одного нейтрона переходит в I с магической нейтронной оболочкой N = 82:

Te I* I +n

Запаздывающие нейтроны играют важную роль в управлении ядерными реакторами, так как они придают реактору некоторую инерцию и тем самым делают его легко управляемым.

Процесс испускания запаздывающих нейтронов подчиняется экспоненциальному закону

Периоды полураспада этих процессов колеблются от 0,114 с до 2 ч.

7. Взаимодействие ядерного излучения с веществом

Как отмечалось раньше, при радиоактивном распаде из ядер вылетают альфа- частицы, электроны и гамма - кванты. Потоки испускаемых при радиоактивном распаде частиц называют радиоактивным излучением. Но радиоактивный распад- не единственный источник быстрых частиц. Космическое пространство пронизывают потоки различных частиц- протонов, альфа - частиц, ядер более тяжелых элементов, электронов, фотонов, энергии которых достигают колоссальных значений вплоть до 1020эВ ( 1 Дж= 6,24·1018 эВ).Это- космическое излучение. Мощные потоки быстрых заряженных частиц получают с помощью ускорителей. Ядерные реакторы также являются источником различных частиц, в том числе нейтронов. При взаимодействии быстрых частиц с веществом возникают новые нестабильные частицы- мезоны, гипероны и др. Потоки всех частиц, возникающих при естественных процессах и получаемых искусственно, объединяют под общим названием ядерного излучения.

Все виды ядерного излучения, как корпускулярные, так и электромагнитные, могут быть обнаружены только по их взаимодействию с веществом.

Излучение высокой энергии возникает при распаде ядер томов или получается с помощью ускорителей заряженных частиц. Его энергия на много порядков выше энергии химических свяей. Взаимодействте такого излучения с веществом подчиняется закону Эйнштейна об эквивалентности массы и энергии.

Различают два типа взаимодействия ядерного излучения с веществом - упругое и неупругое.

При упругом взаимодействии сумма кинетических энергий взаимодействующих частиц (или фотонов и частиц) не изменяется, происходит лишь перераспределение энергии между участниками взаимодействия. При этом сами частицы изменяют направление своего движения, т.е. происходит процесс рассеяния. Это взаимодействие так и называется - упругое рассеяние. Такие процессы не представляют интереса, кроме случая, когда в результате упругого взаимодействия часть энергии гамма-кванта передается свободному электрону.

При неупругом взаимодействии сумма кинетических энергий участников взаимодействия уменьшается, так как часть кинетической энергии переходит в другие формы (энергию возбуждения, энергию разрыва связей (ионизацию) и, в конечном счете рассеивается в виде теплоты и длинноволнового излучения.

Заряженные частицы - протоны, электроны, мезоны, ядра гелия и ядра более тяжелых элементов взаимодействуют с электронами атомных оболочек и ядрами встречных атомов главным образом в результате действия электростатических (кулоновских) сил. При близких столкновениях тяжелых частиц, в том числе и нейтронов, с ядрами, в действие вступают ядерные силы.

Гамма-кванты воздействуют на атомные электроны и ядра своим электромагнитным полем. Взаимодействие гамма- квантов со средой приводит к образованию относительно небольшого числа электронов (в некоторых случаях и позитронов) которые вызывают дальнейшую ионизацию среды. Поэтому гамма-излучение часто называют косвенно ионизирующим.

Ионизирующее излучение характеризуют величиной удельной ионизации - числом пар ионов, образуемых частицей или гамма - квантом на единицу пути.

Ионизирующее действие излучений широко используется для их регистрации.

С ионизирующим действием связан ряд вторичных эффектов, которые также используются для регистрации излучения или измерения доз, создаваемых радиоактивными веществами. Например, возбужденные атомы и молекулы, которые вместе с ионами образуются вдоль пути ионизирующей частицы, могут переходить в основное состояние, испуская электромагнитное излучение.

У некоторых веществ часть спектра лежит в видимой или в УФ - областях, при этом прохождение излучения через такие вещества, сопровождается вспышкой (сцинтилляцией). На этом принципе основано действие сцинтилляционных детекторов.

Все эти виды взаимодействия имеют разную природу и по-разному проявляются для внешнего наблюдателя. В то же время общим для всех видов взаимодействия ядерного излучения с веществом является то, что энергия падающих частиц передается атомам вещества. Соответственно, по мере углубления в среду энергия, скорость и интенсивность излучения уменьшаются, в результате чего слои вещества могут служить защитой от ядерного излучения.

Рис. 7.1 Прохождение ядерного излучения через разные материалы

Процесс взаимодействия, в результате которого заряженные частицы теряют энергию вследствие ионизации и возбуждения, называется ионизационным торможением (ионизационными потерями).

Рассмотрим более подробно вопросы поглощения (ослабления) различных видов излучения при прохождении через вещество.

Характеристика, которая позволяет сравнивать поглощающую способность разных веществ по отношению к излучению, называется тормозной способностью. Она определяется количеством энергии, которую теряет излучение на единицу своего пути.

7.1 Взаимодействие альфа - частиц с веществом

Тяжелые заряженные частицы взаимодействуют главным образом с электронами атомных оболочек, вызывая ионизацию атомов. Максимальная энергия, которая может быть передана в одном акте взаимодействия тяжелой частицей, движущейся со скоростью v << с, неподвижному электрону, равна:


Подобные документы

  • История, предмет и задачи радиохимии. Протонно-нейтронный состав ядер. Законы радиоактивного распада. Взаимодействие ядерного излучения с веществом. Основные виды радиационно-химических превращений. Механизм ядерных реакций и получение радионуклидов.

    учебное пособие [6,1 M], добавлен 06.06.2010

  • Типы радиоактивного распада и радиоактивного излучения. Закон радиоактивного распада. Методики анализа, основанные на измерении радиоактивности. Использование естественной радиоактивности в анализе. Активационный анализ. Радиометрическое титрование.

    реферат [18,4 K], добавлен 01.06.2008

  • Радиоактивный анализ. Типы радиоактивного распада и радиоактивного излучения. Методики анализа, основанные на измерении радиоактивного излучения. Активационный анализ. Метод изотропного разбавления. Радиометрическое титрование.

    реферат [24,7 K], добавлен 05.06.2008

  • Естественные и искусственные радиоактивные ряды. Виды радиоактивного распада. Основные радиоактивные ряды, наблюдающиеся в природе. Характеристика рядов тория, нептуния, радия, актиния. Радиоактивные превращения ядер. Последовательные цепочки нуклидов.

    презентация [938,7 K], добавлен 30.05.2015

  • Понятие и основные разновидности излучений, их признаки и свойства. Взаимодействие бета-излучения с веществом: ионизационные, радиационные, поляризационные потери, упругое рассеяние. Отличительные особенности и отличительные свойства бета-детектирования.

    курсовая работа [318,5 K], добавлен 28.02.2015

  • Природная радиоактивность обусловлена радиоактивными изотопами естественного происхождения, присутствующими во всех оболочках земли. Родоначальниками радиоактивных изотопов, входящие в состав радиоактивных семейств являются радий и торий.

    курсовая работа [204,0 K], добавлен 25.11.2008

  • Современные аналитические методики. Взаимодействие гамма-излучения с веществом. Типы радиоактивности урана. Методика измерения обогащения с использование натрий-йодного детектора. Обработка спектра окиси урана. Измерение обогащения блочков урана.

    дипломная работа [718,3 K], добавлен 16.07.2015

  • Физические свойства целлюлозы. Реакции гидролиза и этерификации целлюлозы; ее нитрирование и взаимодействие с уксусной кислотой. Применение в производстве бумаги, искусственных волокон, пленок, пластмасс, лакокрасочных материалов, бездымного пороха.

    презентация [572,9 K], добавлен 25.02.2014

  • Протоны и нейтроны как составляющие атомного ядра. Атомный номер элемента. Изотопы, ядерная и квантово-механическая модели атома. Волновые свойства электрона. Одноэлектронные и многоэлектронные атомы, квантовые числа. Электронная конфигурация атома.

    реферат [1,3 M], добавлен 26.07.2009

  • Первые представления о строении вещества. Доказательство реальности существования атомов. Открытие периодической системы химических элементов Менделеевым. Классификация элементарных частиц: лептоны, адроны, мезоны, фотоны, кварки. Взаимодействия частиц.

    реферат [28,1 K], добавлен 10.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.