Химический элемент Цезий

Цезий: открытие, нахождение в природе, методы получения (хлоридное и сульфатное вскрытие), основные свойства (высокая активность, быстрая реакция с кислородом), биологическая роль и области применения. Применение Цезия в оптике, энергетике и космосе.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 16.10.2013
Размер файла 23,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МГТУ имена Н.Э. Баумана

Реферат

по химии на тему:

Химический элемент Цезий

Студент: Федоров А.Л.

1. Открытие

Цезий открыт сравнительно недавно, в 1860 г., в минеральных водах Дюркхеймского источника в районе Шварцвальда учеными Р. В. Бунзеном и Г. Р. Кирхгофом, использовавшими для этого метод спектрального анализа. Названный так в честь двух ярких линий в синей части спектра ( ведь в переводе с латинского caesius - небесно-голубой, ) цезий все же имеет бледно-золотистую окраску.

2. Нахождение в природе

Цезий относится к числу редких химических элементов. Полагают, что его содержание в земной коре во всяком случае в несколько сот раз меньше, чем другого редкого элемента - рубидия, и не превышает 7·10-4 %.

Цезий встречается в крайне рассеянном состоянии (порядка тысячных долей процента) во многих горных породах; ничтожные количества этого металла были обнаружены и в морской воде. В большей концентрации (до нескольких десятых процента) он содержится в некоторых калиевых и литиевых минералах. Однако, в отличие от большинства других редких элементов, цезий образует собственные минералы - Поллуцит, Авогадрит, Родицит, Лепидолит, Биотит, Амазонит, Лейцит и другие. Все они, кроме Авогадрита, являются алюмоселикатами. Родицит ( R2O · 2Al2O3 · 3B2O3 ) крайне редок. Авогадрит (K, Cs) [BF4] тоже редок, да и Поллуциты встречаются нечасто; их залежи маломощны, зато цезия они содержат не менее 20, а иногда и до 35%. поэтому наибольшее практическое значение имеют как раз они.

Поллуциты - сложные и весьма прочные соединения. Их состав определяют формулой (Cs, Na) [AlSi2O6] · nH2O, и хотя цезия в них много, извлечь его не так просто. Чтобы перевести в растворимую форму ценные компоненты минерала, его обрабатывают при нагревании концентрированными минеральными кислотами - соляной и серной. Затем освобождают раствор от всех тяжелых и легких металлов и, что особенно трудно, от постоянных спутников цезия - щелочных металлов: калия, натрия и рубидия.

3. Методы получения

Промышленности требуется цезий особой чистоты, и в настоящем основным способом получения подобного материала (несмотря на взрывоопасность процесса) является длительное разложение небольших количеств азида цезия в вакууме.

Обычно выделяют два основных способа извлечения цезия в виде соединений из поллуцита:

1) Хлоридное вскрытие - минерал обрабатывается подогретой соляной кислотой, а потом при добавлении SbCl3 осаждают Cs3[Sb2Cl9], который затем обрабатывают горячей водой или раствором аммиака.

2) Сульфатное вскрытие - минерал обрабатывается подогретой серной кислотой, в результате чего получают алюмо-цезиевые квасцы ( CsAl(SO4)2 · 12H2O ).

Чтобы понять всю сложность решения этой задачи, достаточно знать, что первооткрывателю цезия - крупнейшему немецкому химику Бунзену - так и не удалось получить этот элемент в свободном состоянии: все способы, пригодные для восстановления других металлов, не дали желаемых результатов.

Металлический цезий был впервые получен только через 20 лет, в 1882 г., шведским химиком Сеттербергом в процессе электролиза расплавленной смеси цианидов цезия и бария, взятых в отношении 4:1. Цианид бария добавляли для снижения температуры плавления. Однако барий загрязнял конечный продукт, а работать с цианидами было трудно ввиду их крайней токсичности. Но выход цезия при этом способе был весьма мал.

Более рациональный способ был найден в 1890 г. известным русским химиком Н.Н. Бекетовым, предложившим восстанавливать гидроокись цезия металлическим магнием в водороде при повышенной температуре. Водород заполняет прибор и препятствует окислению цезия, который отгоняется в специальный приемник. Однако и в этом случае выход цезия не превышает 50% теоретического.

Наилучшее же решение трудной задачи получения металлического цезия было найдено в 1911 г. французским химиком Акспилем. При методе Акспиля, до сих пор остающемся наиболее распространенным, хлорид цезия восстанавливают металлическим кальцием в вакууме, причем реакция

2CsCl + Ca > CaCl2 + 2Cs

идет практически до конца. Процесс ведут в специальном приборе из кварца или тугоплавкого стекла, снабженном отростком. Если давление снижено почти до вакуума, температура процесса может не превышать 675°C. Выделяющийся в результате реакции цезий испаряется и отгоняется в отросток, а хлористый кальций полностью остается в реакторе, так как в этих условиях летучесть соли ничтожна (температура плавления CaCl2 равна 773°C, т.е. на 100°C выше температуры процесса). В результате повторной дистилляции в вакууме получается абсолютно чистый металлический цезий.

Существует еще множество других способов получения цезия, но все они не сравнятся по рациональности с методом Акспиля, являясь при этом еще и довольно трудоемкими. Пожалуй лишь разложение азида металла может встать с этим методом в один ряд, т.к. позволяет получать очень чистый металлический цезий, но тем не менее способ этот очень опасен.

4. Свойства

Цезий - один из самых легкоплавких металлов: он плавится при 28,5°C, кипит при 705°C в обычных условиях и при 330°C в вакууме. Легкоплавкость цезия сочетается с большой легкостью. Несмотря на довольно большую атомную массу (132,905) элемента, его плотность при 20°C всего 1,87. Цезий во много раз легче своих соседей по менделеевской таблице. Лантан, например, имеющий почти такую же атомную массу, по плотности превосходит цезий в три с лишним раза. Цезий всего вдвое тяжелее натрия, а их атомные массы относятся, как 6:1. цезий оптика энергетика

Самое замечательное свойство цезия - его исключительно высокая активность. По чувствительности к свету он превосходит все другие металлы.

Он очень быстро реагирует с кислородом и не только моментально воспламеняется на воздухе, но способен поглощать малейшие следы кислорода в условиях глубокого вакуума. Воду он бурно разлагает уже при обычной температуре; при этом выделяется много тепла, и вытесняемый из воды водород тут же воспламеняется:

2Cs + 2H2O = 2CsOH + H2;

Цезий взаимодействует даже со льдом при -116°C, поэтому его хранение требует большой предосторожности.

Цезий взаимодействует и с углеродом. Только самая совершенная модификация углерода - алмаз - в состоянии противостоять его «натиску». Жидкий расплавленный цезий и его пары разрыхляют сажу, древесный уголь и даже графит, внедряясь между атомами углерода и образуя своеобразные, довольно прочные соединения золотисто-желтого цвета, которые в пределе, по-видимому, отвечают составу C8Cs5. Они воспламеняются на воздухе, вытесняют водород из воды, а при нагревании разлагаются и отдают весь поглощенный цезий.

Даже при обычной температуре реакции цезия с фтором, хлором и другими галогенами сопровождаются воспламенением:

2Cs + Сl2 = 2CsСl;

а с серой и фосфором - взрывом:

2CS + S = Cs2S;

При нагревании цезий соединяется с водородом, азотом и другими элементами, а при 300°C разрушает стекло и фарфор. Гидриды, получаемые реакцией: 2Cs + Н2 = 2CsH, и дейтериды цезия легко воспламеняются на воздухе, а также в атмосфере фтора и хлора. Неустойчивы, а иногда огнеопасны и взрывчаты соединения цезия с азотом, бором, кремнием и германием, а также с окисью углерода. Галоидные соединения цезия и цезиевые соли большинства кислот, напротив, очень прочны и устойчивы. Активность исходного цезия проявляется у них разве только в хорошей растворимости подавляющего большинства солей. Кроме того, они легко превращаются в более сложные комплексные соединения. Цезий растворяется почти во всех кислотах с образованием солей: 2Cs + 2НСl = 2CsСl + Н2

Сплавы и интерметаллические соединения цезия всегда сравнительно легкоплавки.

У цезия имеется еще одно весьма важное свойство, тесно связанное с его электронной структурой. Дело в том, что он теряет свой единственный валентный электрон ( валентность цезия постоянно равна единице ) легче, чем любой другой металл; для этого необходима очень незначительная энергия - всего 3,89 эВ. Поэтому получение плазмы из цезия требует гораздо меньших энергетических затрат, чем при использовании любого другого химического элемента.

5. Применение

Цезий длительное время после своего открытия представлял чисто научный интерес, но в начале XX века, в связи с разработкой технологии его получения в чистом виде и нахождением ряда (хотя и очень редких) собственных минералов, постепенно вошел в сферу человеческой деятельности и развитие технологий, и приобрел ряд весьма важных и стратегических областей своего применения.

В настоящее время цезий и его соединения применяются в электронике, радио-, электро-, рентгенотехнике, химической промышленности, оптике, медицине, ядерной энергетике. В основном применяется стабильный природный цезий-133, и ограниченно -- его радиоактивный изотоп цезий-137, выделяемый из суммы осколков деления урана, плутония, тория в реакторах АЭС.

Значительное практическое применение цезия имеет производство фотоэлектрических приборов -- фотоэлементов, фотоумножителей. Цезий является элементом с наиболее низкой работой выхода электрона и соответственно затраты энергии излучения для получения электрического тока в приборах на его основе наиболее низкие. В связи с этим приборы на основе цезия наиболее чувствительны к воздействию излучения и кроме того обладают весьма малой инерционностью.

В фотоэлементах цезий обычно применяется в виде сплавов с сурьмой, кальцием, барием, алюминием, или серебром (для улучшения эффективности, экономии чрезвычайно дорогого цезия и удобства использования), кроме того, недавно обнаружено свойство цезия при диффузии в золото очень резко снижать работу выхода.

Диапазон работы таких фотоэлементов очень широк: от дальней ультрафиолетовой, до видимой и дальней инфракрасной области электромагнитного излучения. В этой связи применение цезия намного более эффективно, чем применение рубидия.

6. Оптика

Йодид и бромид цезия применяются в качестве оптических материалов в специальной оптике -- инфракрасные приборы, очки и бинокли ночного видения, прицелы, обнаружение техники и живой силы противника (в том числе из космоса).

Источники света. В электротехнике цезий применяется в изготовлении светящихся трубок, где он применяется в виде соединений с цирконием или оловом (метацирконаты и ортостаннаты цезия).

Катализаторы. Цезий нашел большое применение в производственной химии в качестве катализатора (органический и неорганический синтез). Каталитическая активность цезия используется в процессах получения аммиака, серной кислоты, бутилового спирта, в реакциях дегидрогенизации и при получении муравьиной кислоты. Особенно эффективным является применения цезия как промотора при каталитическом получении аммиака, синтезе бутадиена, и имеет очень большое экономическое значение так как резко увеличивает эффективность синтеза. Очень большое значение приобрел рутений-цезий-углеродный катализатор. В целом применение цезия в катализе имеет не только большую сферу его потребления но и большие перспективы дальнейшего развития. В ряде катализаторов оказалось чрезвычайно эффективным применение цезия совместно с рубидием (оба металла значительно увеличивают каталитическую активность друг друга). Цезий промотирует действие серебряного катализатора, и повышает его селективность при эпоксидировании этилена.

Изотопы. Радиоактивный изотоп цезий-137 (период полураспада 33 года) используется гамма-дефектоскопии, измерительной технике и при стерилизации пищевых продуктов (консервы, туши птиц и животных, мяса), а также для стерилизации медицинских препаратов и лекарств. В радиотерапии - для лечения злокачественных опухолей ( кроме того на основе соединений цезия созданы эффективные лекарственные препараты для лечения язвенных заболеваний, дифтерии, шоков, шизофрении. Так же цезий-137 используется в производстве радиоизотопных источников тока, где он применяется в виде хлорида.

7. Применение цезия в энергетике и космосе

Значительной сферой применения металлического цезия являются новейшие и стремительно развивающиеся работы и производство энергетических агрегатов. Цезиевая плазма является важнейшей и неотъемлемой компонентой МГД-генераторов с повышенным кпд до 65--70 %. Ионизированные пары цезия являются лучшим рабочим телом для ионных двигателей в космосе.

Сплав цезия с барием является лучшим из известных материалов для выпрямления сверхмощных потоков электроэнергии (превосходя в этом отношении ртутные и полупроводниковые вентили) и в будущем займёт важнейшее положение в большой энергетике и космических электроракетных установках. Одним из его отличительных особенностей является возможность выпрямления и коммутирования чудовищных мощностей в импульсном режиме. В виду того что цезий имеет большую теплоёмкость, теплопроводность и ряд собственных сплавов с очень низкой температурой плавления (цезий 94,5 и натрий 5,5 %) -30 °C, то используется в качестве теплоносителя в атомных реакторах и высокотемпературных турбоэнергетических установках, а сплав состава: натрий 12%, калий 47%, цезий 41% обладает рекордно низкой температурой плавления -78°С.

8. Биологическая роль

Помимо ряда вышеназванных положительных свойств изотоп цезия 137 оказывает и некоторое отрицательное влияние на окружающую среду. Цезий-137 (137Cs) - бета-гамма-излучающий радиоизотоп цезия; один из главных компонентов радиоактивного загрязнения биосферы. Содержится в радиоактивных выпадениях, радиоактивных отходах, сбросах заводов, перерабатывающих отходы атомных электростанций. Интенсивно сорбируется почвой и донными отложениями; в воде находится преимущественно в виде ионов. Содержится в растениях и организме животных и человека. Коэффициент накопления 137Cs наиболее высок у пресноводных водорослей и арктических наземных растений, особенно лишайников. В организме животных 137Cs накапливается главным образом в мышцах и печени. Наибольший коэффициент накопления его отмечен у северных оленей и северных американских водоплавающих птиц. В организме человека 137Cs распределён относительно равномерно и не оказывает значительного вредного действия.

Размещено на Allbest.ru


Подобные документы

  • Характеристика цезия как химического элемента, история его открытия и исследований, современные знания и применение. Своеобразие структуры атомов цезия, его основные физические и химические свойства, реакционная способность и способы получения сплавов.

    реферат [116,7 K], добавлен 21.11.2009

  • Цезий - один из редчайших химических элементов. Мировой объём добычи цезия и его содержание в микроорганизмах. Природный цезий как мононуклидный элемент. Стронций - составная часть микроорганизмов, растений и животных. Содержание стронция в морепродуктах.

    реферат [47,5 K], добавлен 20.12.2010

  • Основные физические и химические свойства, технологии получения бериллия, его нахождение в природе и сферы практического применения. Соединения бериллия, их получение и производство. Биологическая роль данного элемента. Сплавы бериллия, их свойства.

    реферат [905,6 K], добавлен 30.04.2011

  • Свойства бета-дикетонов. Пути образования комплексов с металлами. Применение комплексов с цезием. Синтез 2,2,6,6 – тетраметилгептан – 3,5 – дионата цезия Cs(thd) и тетракис – (2,2 – диметил – 6,6,6 – трифторгексан – 3,5 – дионато) иттрат(III) цезия.

    курсовая работа [99,1 K], добавлен 26.07.2011

  • Характеристика брома как химического элемента. История открытия, нахождение в природе. Физические и химические свойства этого вещества, его взаимодействие с металлами. Получение брома и его применение в медицине. Биологическая роль его в организме.

    презентация [2,0 M], добавлен 16.02.2014

  • Медь - химический элемент I группы периодической системы Менделеева. Общая характеристика меди. Физические и химические свойства. Нахождение в природе. Получение, применение, биологическая роль. Использование соединений меди.

    реферат [13,4 K], добавлен 24.03.2007

  • Характеристика щелочных металлов, их биологическая роль, распространение в природе и применение. Химические и физические свойства щелочных металлов. Литий, рубидий и цезий в составе живых организмов. Натрий и калий как необходимые для организма элементы.

    курсовая работа [75,4 K], добавлен 27.05.2013

  • Кальций как один из самых распространенных элементов на Земле, его главные физические и химические свойства, история открытия и исследований. Нахождение элемента в природе, сферы его практического применения. Существующие соединения и биологическая роль.

    контрольная работа [818,8 K], добавлен 26.01.2014

  • История открытия азота, его формула и свойства, нахождение в природе и химические реакции, которые происходят непосредственно в природе при участии азота. Методы связывания, получение и свойства нескольких важнейших соединений, области применения азота.

    курсовая работа [896,1 K], добавлен 22.05.2010

  • Периодическая система химических элементов. История открытия Арфведсоном лития, Дэвием натрия и калия, Бунзеном и Кирхгоффом рубидия и цезия, Маргаритой Пере франция. Методы качественного определения щелочных металлов. Описание областей их применения.

    презентация [906,5 K], добавлен 28.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.