Удаление гетероатомных соединений в процессе гидроочистки

Распределение гетероатомных соединений по нефтяным фракциям. Теоретические основы процесса гидроочистки. Кинетика гидроочистки реальных промышленных видов сырья. Катализаторы гидроочистки. Методы анализа азотсодержащих соединений в нефтяных фракциях.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 30.07.2012
Размер файла 170,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КУРСОВАЯ РАБОТА

По дисциплине

«Химия нефти и газа»

Тема:

"Удаление гетероатомных соединений в процессе гидроочистки"

Введение

В сырой нефти можно найти примеси самых разных видов. Во время перемещения нефтяных фракций по установкам нефтеперерабатывающего завода эти примеси могут оказывать вредное влияние на оборудование, катализаторы и качество конечных продуктов. Кроме того, содержание многих примесей в нефтепродуктах официально или неофициально ограничивается. Совершенно очевидно, что качество прямогонных нефтяных дистиллятов напрямую зависит от химического состава перерабатываемой нефти.

Наиболее универсальным, эффективным и экологически предпочтительным процессом очистки нефтепродуктов от вредных примесей является гидроочистка. Гидроочистка-процесс удаления из нефтепродуктов гетероатомных соединений, непредельных и частично полициклических аренов в среде водорода на катализаторах.

Процессы гидроочистки нефтепродуктов получили развитие в связи с увеличением доли сернистых нефтей в нефтепереработке и повышением требований к качеству топлив, масел, а также сырья для каталитических процессов (каталитического крекинга, реформинга).

Из сказанного вытекает актуальность исследований процесса гидроочистки.

Цель:

Цель работы - определение количественного содержания гетероатомных соединений в нефти, а также подробное рассмотрение процесса гидроочистки.

1. Теоретическая часть

1.1 Распределение гетероатомных соединений по нефтяным фракциям

Гетероатомные соединения - это химические соединения на основе углеводородов любой группы, содержащие один или несколько различных атомов химических элементов - серы, азота, кислорода, хлора и металлов. Соответственно их называют «серосодержащие ГАС», «азотсодержащие ГАС» и т.д.

Между содержанием гетероатомных соединений и плотностью нефтей наблюдается вполне закономерная зависимость: легкие нефти с высоким содержанием светлых бедны гетеросоединениями и, наоборот, ими богаты тяжелые нефти. В распределении их по фракциям наблюдается также определенная закономерность: гетероатомные соединения концентрируются в высококипящих фракциях и остатках.

Сернистые соединения являются наиболее распространенным и среди гетероатомных соединений нефтей и нефтепродуктов. Интерес к серосодержащим соединениям возрос в связи с проблемой переработки высокосернистых нефтей. В пластовых нефтях содержится от 0,01 до 14% масс. сернистых соединений в пересчете на серу. Низким содержанием серы характеризуются нефти Беларуси, Азербайджана, значительным количеством серосодержащих соединений - нефти Урало-Поволжья и Сибири; количество серы в Арланской нефти достигает до 3,0% масс., а в Усть-Балыкской - до 1,8% масс. Из зарубежных наиболее высоким содержанием серы отличаются нефти: месторождения Элбано-Панук (Мексика - 5,4% масс.), Роулз Пойнт (США - до 14% масс.).

Групповой состав сернистых соединений весьма различен. Идентифицировано и частично выделено помимо элементарной серы и сероводорода около 250 сернистых соединений. В нефтях бывшего СССР (арланской, сургутской, тугоровской и др.) идентифицировано 18 тиолов, 22 алифатических сульфида, 20 циклических сульфидов. Большинство идентифицированных соединений относится к легким фракциям. Фракции с температурой кипения до 160°С содержат тиолы, алифатические и алициклические сульфиды, а в более высококипящих фракциях присутствуют замещенные тиофены и бициклические сульфиды. Установлено, что в прямогонном остатке 50% серы входит в состав тиофеновых колец. Сложность идентификации высококипящих сернистых соединений объясняется отсутствием модельных индивидуальных соединений.

Характер распределения сернистых соединений в нефтяных фракциях имеет определение закономерности.

В нефтях идентифицированы следующие типы серосодержащих соединений:

элементная сера и сероводород - не являются непосредственно сероорганическими соединениями, но появляются в результате деструкции последних;

меркаптаны - тиолы, обладающие, как и сероводород, кислотными свойствами и наиболее сильной коррозионной активностью;

алифатические сульфиды (тиоэфиры) - нейтральны при низких температурах, но термически мало устойчивы и разлагаются при нагревании свыше 130-160°С с образованием сероводорода и меркаптанов;

моно- и полициклические сульфиды - термически наиболее устойчивые.

Моноциклические сульфиды представляют собой пяти- или шестичленные гетероциклы с атомом серы (XXI-XXIII). Кроме того, в нефтях идентифицированы полициклические сульфиды и их разнообразные гомологи, а также тетра- и пентациклические сульфиды (XXIV-XXX).

В то же время в последние годы во многих странах мира разрабатываются и интенсивно вводятся многотоннажные промышленные процессы по синтезу сернистых соединений, аналогичных нефтяным, имеющих большую народнохозяйственную ценность. Среди них наибольшее промышленное значение имеют меркаптаны.

Меркаптаны (тиолы) RSH - тип сернистых соединений, встречающийся только в легких фракциях бензина и отчасти керосина. В вышекипящих фракциях нефти меркаптаны отсутствуют.

По своим химическим свойствам меркаптаны напоминают спирты, но атом водорода в группе SH более подвижен.

Меркаптаны, содержащиеся в бензинах, окислением воздухом в присутствии катализаторов(Cu2Cl2) превращаются в дисульфиды:

R-S-H+O2+H-S-R R-S-S-R+H2O

Окисление меркаптанов азотной кислотой приводит к сульфокислотам:

R-SH R-SO2-OH

Меркаптаны содержаться в нефтях в небольших количествах, и их общее содержание обычно составляет 2-10% (мас.) от всех серосодержащих соединений нефти. Одним из характерных свойств меркаптанов является их коррозионная активность, в связи с чем содержание меркаптановой серы в авиационном керосине и дизельном топливе ограничивается (не более 0,001-0,005 и 0,01% мас. соответственно). В бензинах они ухудшают антидетонационные свойства, химическую стабильность и уменьшают полноту сгорания.

Меркаптаны имеют очень сильный и неприятный запах, ощущаемый уже при концентрациях 1•%. Это свойство используется в газовых хозяйствах, где они применяют в качестве одорантов (этилмеркаптан) для обнаружения утечки бытового газа. Неприятный запах меркаптанов уменьшается с повышением их молекулярной массы.

Метилмеркаптан применяют в производстве метионина - белковой добавке в корм скоту и птице. Этилмеркаптан - одорант топливных газов. Тиолы С1 - С4 - сырье для синтеза агрохимических веществ, применяются для активации (осернения) некоторых катализаторов в нефтепереработке. Тиолы от бутилмеркаптана до октадецилмеркаптана используют в производстве присадок к смазочным и трансформаторным маслам, к смазочно-охлаждающим эмульсиям, применяемым при холодной обработке металлов, в производстве детергентов, ингредиентов резиновых смесей. Тиолы С8 - С,6 являются регуляторами радикальных процессов полимеризации в производстве латексов, каучуков, пластмасс. Среди регуляторов полимеризации наибольшее значение имеют третичный до-децилмеркаптан и нормальный додецилмеркаптан. Меркаптаны применяют для синтеза флотореагентов, фотоматериалов, красителей специального назначения, в фармакологии, косметике и многих других областях.

Сульфиды - нейтральные на холоду и термически малоустойчивые сульфиды (R-S-R' алифатические, Ar-S-Ar диарилсульфиды или Ar-S-R смешанные) и дисульфиды (R-S-S-R').

Ациклические сульфиды при 5,0 МПа и 375°С превращаются полностью, давая соответствующие углеводороды:

R-S-R? + 2H2 RH + R?H + H2S

Сульфиды обладают более слабым запахом, чем меркаптаны, они нейтральны и поэтому щёлочью не извлекаются. По своему строению сульфиды являются аналогами простых эфиров. Они также склонны к окислению, и это их свойство используется для получения сульфоксидов. Дисульфиды в нефтях содержатся в небольших количествах, но они более реакционноспособны, чем сульфиды. При нагревании легко разлагаются на углеводород, меркаптан и сероводород.

RSR - присутствуют во всех фракциях нефти и имеют разнообразные структуры углеродных радикалов. Они могут быть разделены на три большие группы: сульфиды с насыщенными углеводородными радикалом, тиофены и сульфиды с ароматическим или нафтено- или парафино-ароматическим радикалом. Циклически насыщенные сульфиды являются главными сернистыми компонентами в керосиновых и газойлевых фракциях.

В высших фракциях нефти главную часть сульфидов составляют ароматические сульфиды, которые также могут быть полиароматическими циклами типа:

и S

Дисульфиды RSSR - сернистые соединения с двумя атомами серы в молекуле, легко образуются из меркаптанов при окислении воздухом. Поэтому дисульфиды присутствуют во всех фракциях нефтей, содержащих меркаптаны, и имеют вторичное происхождение. Первичных дисульфидов в легких и средних фракциях содержится незначительно. Из этих фракций выделены 2-метилтиено - (3,2) - и 3-метилтиено - (2,3) - тиофены. По мере увеличения молекулярной массы количество сернистых компонентов с двумя атомами серы возрастает, достигая максимального значения в асфальтено-смолистых веществах.

Сульфиды служат компонентами при синтезе красителей, продукты их окисления - сульфоксиды, сульфоны и сульфокислоты - используют как эффективные экстрагенты редких металлов и флотореагенты полиметаллических руд, пластификаторы и биологически активные вещества. Перспективно применение сульфидов и их производных в качестве компонентов ракетных топлив, инсектицидов, фунгицидов, гербицидов, пластификаторов, комплексообразователей и т.д. За последние годы резко возрастает применение полифениленсульфидных полимеров. Они характеризуются хорошей термической стабильностью, способностью сохранять отличные механические характеристики при высоких температурах, великолепной химической стойкостью и совместимостью с самыми различными наполнителями. Твердые покрытия из полифенилсульфида легко наносятся на металл, обеспечивая надежную защиту его от коррозии, что уже подхвачено зарубежной нефтехимической промышленностью, где наблюдается поли-фенилсульфидный «бум». Важно еще подчеркнуть, что в этом полимере почти одна треть массы состоит из серы.

Тиофеновые и тиофено-полициклические сернистые соединения составляют в нефтях от 45 до 92% от всего количества серосодержащих компонентов. Тиофен и шестнадцать его гомологов С49 были выделены из разных нефтей.

Тиофены и бензитиофены в конечном счёте превращаются в насыщенные или ароматические углеводороды:

Тиофен и 2-метилтиофен являются эффективными выносителями соединений марганца из карбюраторных двигателей при использовании в качестве антидетонатора циклопентадиенил-карбонил-марганца. В настоящее время этот антидетонатор широко применяется в США, где около 40% неэтилированных бензинов содержат не свинцовые антидетонаторы.

Учитывая наличие значительных ресурсов серосодержащих соединений в нефтях, исключительно актуальной является проблема их извлечения и рационального применения в народном хозяйстве.

Типичное соотношение перечисленных серосодержащих соединений в нефтях различных месторождений составляет: меркаптаны-2-10%, сульфиды-7-40% (в среднем 18%), тиофены-50-90% (в среднем 50%). Кроме перечисленных представителей серосодержащих соединений в высококипящих фракциях нефтей содержатся и другие более сложные полициклические соединения нефти.

Кислородосодержащие соединения:

Содержание кислорода в нефтяных системах колеблется от 0,1-1,0 до 3,6%(масс.). С повышением температуры кипения дистиллятных фракций оно возрастает, причем основная часть кислорода сосредоточена в смолоасфальтеновых веществах.

Среди них традиционно выделяют вещества кислого и нейтрального характера. К кислым компонентам относятся карбоновые кислоты и фенолы. Нейтральные кислородосодержащие соединения представлены кетонами, ангидридами и амидами кислот, сложными эфирами, фурановыми производными, спиртами и лактонами.

В настоящее время методы выделения кислот и фенолов также основаны на взаимодействии их функциональных групп (карбоксильной и гидроксильной) с каким-либо реагентом.

Основная часть кислорода нефтей входит в состав асфальто - смолистых веществ и только около 10% его приходится на долю кислых (нефтяные кислоты и фенолы) и нейтральных (сложные эфиры, кетоны) кислородсодержащих соединений. Они сосредоточены преимущественно в высококипящих фракциях. Нефтяные кислоты (CnHmCOOH) представлены в основном циклопентан- и циклогексан-карбоновыми (нафтеновыми) кислотами и кислотами смешанной нафтеноароматической структуры. Из нефтяных фенолов идентифицированы фенол (С6Н5ОН), крезол (СН3С6Н4ОН), ксилеиолы ((СН3)2С6Н3ОН) и их производные.

фицированы фенол (С6Н5ОН), крезол (СН3С6Н4ОН), ксиленолы ((СН3) 2С6НзОН) и их производные.

Из бензиновой фракции некоторых нефтей выделены ацетон, метилэтил-, метилпропил-, метилизопропил-, метилбутил- и этили-зопропилкетоны и некоторые другие кетоны RCOR».

В средних и высококипящих фракциях нефтей обнаружены циклические кетоны типа флуоренона (XXXIX), сложные эфиры (AcOR, где АС - остаток нефтяных кислот) и высокомолекулярные простые эфиры (R'OR) как алифатической, так и циклической структур, например, типа бензофуранов (XL), обнаружены в высококипящих фракциях и остатках.

В бензиновых фракциях нефтей встречаются в малых количествах только алифатические кислоты нормального и слаборазветвленного строения. По мере повышения температуры кипения их фракций в них появляются алифатические кислоты сильноразветвленной структуры, например, изопреноидного типа, а также на¬фтеновые кислоты. Последние составляют основную долю (до 90%) от всех кислородсодержащих соединений в средних и масляных фракциях. Наиболее богаты ими бакинские, грозненские, эмбенские, сахалинские и бориславские нефти (содержание их достигает до 1,7% масс). Содержание фенолов в нефтях незначительно (до 0,1% масс).

Промышленное значение из всех кислородных соединений нефти имеют только нафтеновые кислоты и их соли - нафтенаты, обладающие хорошими моющими свойствами. Поэтому отходы щелочной очистки нефтяных дистиллятов - так называемый мылонафт - используется при изготовлении моющих средств для текстильного производства.

Технические нефтяные кислоты (асидол), выделяемые из керосиновых и легких масляных дистиллятов, находят применение в качестве растворителей смол, каучука и анилиновых красителей; для пропитки шпал; для смачивания шерсти; при изготовлении цветных лаков и др. Натриевые и калиевые соли нафтеновых кислот служат в качестве деэмульгаторов при обезвоживании нефти. Нафтенаты кальция и алюминия являются загустителями консистентных смазок, а соли кальция и цинка являются диспергирующими присадками к моторным маслам. Соли меди защищают древесину и текстиль от бактериального разложения.

Азотистые соединения

Содержание азота в нефтях составляет десятые доли процента (обычно до 0,3 мас.%), но в отдельных случаях может доходить до 1,5 мас.%. Азот входит в основном в состав смолисто-асфальтеновых веществ нефти. При перегонке эти вещества могут разлагаться с образованием азотистых соединений, которые таким путём попадают в нефтяные фракции. Интересно отметить что, видимо, этим и объясняется повышение содержания азота в нефтяных фракциях по мере увеличения их температуры кипения. Азотистые соединения нефтей подразделяются на две основные группы: азотистые основания и «нейтральные» (слабоосновные) соединения.

Азотистые основания нефти представляют собой гетероциклические соединения с атомом азота в одном (реже в двух) из колец, с общим числом колец до трех. В основном они являются гомологами пиридина (XXXI), хинолина (XXXII) и реже акридина (XXXIII).

Нейтральные азотистые соединения составляют большую часть (иногда до 80%) азотсодержащих соединений нефти. Они представлены гомологами пиррола (XXXIV), бензпиррола-индола (XXXV) и карбазола (XXXVI).

С повышением температуры кипения нефтяных фракций в них увеличивается содержание нейтральных и уменьшается содержание основных азотистых соединений (табл. 3.2).

В кислотных экстрактах газойлевых фракций обнаружены гомологи пирролхинолина (XXXVII) и карбазолхинолина (XXXVIII), содержащие по 2 атома азота, один из которых имеет основную функцию, а другой нейтрален.

Теоретический интерес, с точки зрения генезиса нефти, представляет обнаружение производных аминокислот (содержат карбоксильные и аминогруппы, являются исходным материалом в растениях при биосинтезе гормонов, витаминов, пигментов и др.) и порфиринов, входящих в состав гемоглобинов, хлорофиллов, витаминов и др., участвующих в биологических процессах. Порфирины содержат в молекуле 4 пиррольных кольца и встречаются в нефтях в виде комплексов металлов - ванадия и никеля. Установлено, что они обладают каталитической активностью. Они сравнительно легко выделяются из нефти экстракцией полярными растворителями, такими, как ацетонитрил, пиридин, диметилформамид и др.

Азотистые соединения как основные, так и нейтральные - достаточно термически стабильны и не оказывают заметного влияния на эксплуатационные качества нефтепродуктов. Азотистые основания используются как дезинфицирующие средства, ингибиторы коррозии, как сильные растворители, добавки к смазочным маслам и битумам, антиокислители и т.д. Однако в процессах переработки нефтяного сырья проявляют отрицательные свойства - снижают активность катализаторов, вызывают осмоление и потемнение нефтепродуктов.

1.2 Теоретические основы процесса гидроочистки

Гидроочистка - процесс удаления из нефтепродуктов гетероатомов в результате гидрирования серу -, азот - и кислородсодержащих соединений. Одновременно гидрируются диены, алкены и отчасти полициклические арены и удаляются металлы, содержащиеся в виде металлорганических соединений.

Этот процесс одноступенчатый, проходящий в наиболее мягких, по сравнению с гидрокрекингом и деструктивной гидрогенизацией, условиях. Процесс протекает при 350-430°С, 3,0-6,0 МПа, циркуляции водородсодержащего газа 100-600 м33 сырья и объемной скорости 3 -10 ч-1 с применением катализатора (обычно алюмокобальтмолибденовый или алюмоникельмолибденовый).

Гидроочистке (или гидрооблагораживанию) может подвергаться различное сырье, получаемое как при первичной перегонке нефти, так и при термокаталитических процессах, от газа до масел и парафина. Наибольшее применение гидроочистка имеет для обессеривания сырья каталитического риформинга, а также для получения реактивного и малосернистого дизельного топлива из сернистых и высокосернистых нефтей. При гидроочистке происходит частичная деструкция в основном сероорганических и частично кислород- и азотсодержащих соединений.

Продукты разложения насыщаются водородом с образованием сероводорода, воды, аммиака и предельных или ароматических углеводородов.

Удаление гетероатомов происходит в результате разрыва связей C-S, C-N и C-O и насыщения образующихся осколков водородом. При этом сера, азот и кислород выделяется соответственно в виде H2S, NH3 и H2O. Алкены присоединяют водород по двойной связи. Частично гидрируются полициклические ароматические углеводороды[3].

Химизм процесса гидроочистки

Основными реакциями гидроочистки, протекающими на металлических центрах катализатора, являются реакции удаления серы и азота, а также реакция сатурации олефинов. Продуктами этих реакций являются свободный от примесей нефтепродукт, а также сероводород (H2S) и аммиак (NH3). К другим реакциям очистки относятся реакции удаления кислорода, металлов и галлоидных соединений, а также реакции сатурации ароматических нефтепродуктов. В каждой из этих реакций, поглощается водород и выделяется тепло.

Сера может встречаться в различных формах во всем диапазоне перегонки сырья. Более легкие соединения, такие как меркаптаны и дисульфиды легко превращаются в H2S. Превращение более тяжелых гетероатомных ароматических соединений, закипающих при более высоких температурах, проходит гораздо тяжелее.

Механизмы десульфуризации всех этих соединений показаны в следующих уравнениях. Большинство реакций являются прямыми, а наиболее сложной является реакция десульфуризации ароматических соединений серы. Она начинается с размыкания кольца и удаления серы, после чего следует сатурация результирующего олефина.

Реакции денитрогенизации протекают намного труднее реакций десульфуризации. Побочные реакции могут давать азотные соединения, которые труднее гидрогенизировать, чем исходное вещество. Сатурации гетероциклических азотосодержащих колец также мешают большие побочные группы.

Этапы механизма реакции отличаются от этапов десульфуризации. За денитрогенизацией пиридина следует ароматическая сатурация кольца, гидрогенолиз кольца, и, наконец, денитрогенизация.

Все рассмотренные выше реакции являются экзотермическими и вызывают повышение температуры в реакторе. Реакция сатурации олефина и некоторые реакции десульфуризации обладают одинаково большими скоростями протекания, но самое большое количество тепла дает реакция сатурации олефинов [4].

Термодинамика процесса

Термодинамически процесс гидроочистки низкотемпературный. Для быстрого протекания реакций на существующих промышленных катализаторах достаточна температура 330-380 С. Поскольку реакции присоединения водорода сопровождаются изменением объёма, давление в реакционной зоне оказывает решающее влияние на глубину процесса. Наиболее часто при гидроочистке применяют давление 2,5-5,0 МПа.

Гидрирование ароматических углеводородов идёт с выделением теплоты и снижением энтропии, константы равновесия гидрирования быстро уменьшаются с ростом температуры.

Суммарный тепловой эффект гидроочистки составляет 20 - 87 кДж на 1 кг сырья для прямогонных фракций. Добавление к прямогонному сырью до 30% фракций вторичного происхождения повышает теплоту реакции до 125-187 кДж/кг в зависимости от содержания непредельных углеводородов в сырье.

Механизм процесса гидроочистки

В отличие от других гидрогенизационных процессов процесс гидроочистки проходит в сравнительно мягких условиях, однако и ему свойственна совокупность ряда параллельных и последовательных реакций, в которых участвуют все компоненты, содержащиеся в исходной сложной смеси.

Основные реакции гидрирования углеводородов: насыщение алкеновых связей, насыщение ароматических связей, крекинг алканов, деалкилирование алкилбензолов, крекинг цикланов, гидроизомеризация алканов, гидроизомеризация цикланов.

При гидроочистке на алюмокобальтмолибденовом катализаторе не наблюдается заметного гидрирования бензольного кольца. Би-циклические ароматические углеводороды в значительной части гидрируются до тетрадинов, вне зависимости от их исходной концентрации в сырье [8].

Основные реакции серусодержащих соединений. Реакции каталитического гидрогенолиза сераорганических соединений, лежащие в основе процесса гидроочистки нефтепродуктов, изучены довольно подробно [8]. Меркаптаны, сульфиды и дисульфиды легко гидрируются в соответствующие углеводороды уже при сравнительно мягких условиях. В зависимости от строения сернистых соединений глубина их гидрогенолиза различна. Устойчивость сернистых соединений увеличивается в следующем ряду: меркаптан < дисульфид < сульфид < тиофен. Внутри группы сернистых соединений скорость обессеривания уменьшается с увеличением молекулярной массы. Так, этилмеркаптан менее устойчив, чем децилмеркаптан. Прочность S-S-связей в дисульфидах с алифатическими радикалами, начиная с диэтилсульфида и кончая диоктадецилсульфидом, не зависит от длины алкильных цепей. Прочность связи S-S в дисульфидах с ароматическими радикалами меньше, чем с алифатическими [8]. Циклические сульфиды, например, тиофан, подвергаются разрыву кольца с последующим отщеплением сероводорода и образованием соответствующего углеводорода. Тиофен, бензотиофен и дибензотиофен сначала гидрируются до производных тиофана, которые при последующем гидрировании превращаются в парафиновые и алкилароматические углеводороды. Насыщение ароматических колец в условиях гидроочистки не происходит, оно возможно при более жестких условиях гидрирования. Наиболее трудно вступают в реакции гидрирования тиофен и его гомологи.

Сернистые соединения взаимодействуют также с металлическими и окиснометаллическими катализаторами, переводя их в сульфидную форму. В зависимости от состава катализатора это приводит к его активированию или вызывает отравление или дезактивацию.

Основные реакции азотсодержащих соединений. Удаление азотистых соединений из бензиновых, керосиновых и дизельных фракций имеет весьма важное значение в повышении качества последних. Катализаторы риформинга весьма сильно дезактивируются при работе на сырье с любым содержанием азотистых соединений как основного, так и неосновного характера. Наличие азотистых соединений в керосиновых и дизельных фракциях является причиной низкой стабильности цвета и при хранении вызывает образование нерастворимых осадков. Гидрогенолиз азотистых соединений сопровождается выделением свободного аммиака.

Основные реакции кислородсодержащих соединений. Эти соединения обычно легко вступают в реакции гидрирования с образованием соответствующих углеводородов и воды.

Механизм гидрирования сераорганических соединений в значительной степени зависит от их строения. Скорость гидрирования, в общем, возрастает в ряду: тиофены < тиофаны сульфиды < дисульфиды < меркаптаны.

Данных о гидрировании азот- и кислородорганических соединений очень мало. В таблице 1 приведены данные о гидрировании некоторых азот-, кислород- и сероорганических аналогов на Ni2S3 [4].

Таблица 1. Степень превращения различных видов гетероатомных соединений в зависимости от температуры

Углеводород

Превращение, %

при 200 С

при 350 С

при 400 С

Тиофан

41

100

100

Тетрагидрофуран

0

25

55

Тиофен

0

15

39

Фуран

0

0

10

Пиррол

0

0

0

При одинаковом строении устойчивость относительно гидрирования возрастает в ряду соединений: сераорганические < кислородорганические < < азоторганические.

Кинетика гидроочистки

Кинетика гидроочистки реальных промышленных видов сырья весьма сложна. Сложность определятся различием в скоростях превращения различных классов сернистых соединений (иногда на порядок больше), а также изменением активности катализатора в ходе процесса. Кроме того, всегда, особенно в случае тяжёлых продуктов, приходится считаться с большой вероятностью диффузионных ограничений. Наконец, влияют явления торможения реакций сероводородом при гидрогенолизе индивидуальных соединений. Несмотря на все перечисленные трудности, было выведено достаточно много кинетических уравнений для расчёта скоростей гидроочистки.

В одной из работ было предложено уравнение первого порядка:

,

где и - парциальное давление сернистых соединений в гидрогенизате и в сырье, - константа скорости реакции, - условное время реагирования. Было показано, что до глубины обессеривания 95% и в случае узких фракций это уравнение удовлетворительно описывает скорость процесса. Однако для широких фракций оно не применимо, так как в этом случае скорость десульфуризации является суммой различных скоростей в уравнениях первого порядка для узких фракций. Константы скоростей десульфуризации, экстраполированные к нулевому парциальному давлению (бесконечное разбавление водородом), мало зависели от давления водорода, а соответствующие константы при парциальном давлении жидких продуктов 250 кПа - весьма существенно. Это интерпретировалось как явление более предпочтительной адсорбции жидких продуктов, вследствие чего при высоких парциальных давлениях последних поверхность катализатора становится труднодоступной для водорода и его давление начинает определять скорость реакции.

Позднее, вышеописанное уравнение было упрощено (не учитывалось влияние циркулирующего водорода):

,

где и - концентрация серы в сырье и продукте, - объёмная скорость подачи сырья, а - константа скорости реакции.

Наконец, была показана применимость уравнения первого порядка, как по сырью, так и по водороду, выведенного на основании изотермы Ленгмюра. Однако приложение его к скоростям гидрогенолиза индивидуальных соединений показало столь значительную разницу, что уравнение пришлось сильно усложнить. Поэтому для промышленного сырья, особенно для сырья широкого фракционного состава или высококипящего, подбирали любые эмпирические уравнения, лишь бы они давали лучшую сходимость, чем уравнения первого порядка.

Так, на основании результатов опытов обессеривания вакуумного остатка кувейтской нефти с 5,45% серы при 3,5 и 7,0 МПа было выведено следующее уравнение:

,

где - отношение содержания серы в продукте к содержанию её в сырье,

- константа скорости реакции; - объёмная скорость. При этом авторы не считают, что второй кинетический порядок - истинный, просто он является лучшим приближением суммы многих уравнений первого порядка для отдельных классов и групп сернистых соединений. Вывод о кажущемся втором порядке подтверждён и в других работах.

Катализаторы гидроочистки

Ужесточающиеся требования к качеству нефтепродуктов, в первую очередь по снижению содержания в среднедистиллятных фракциях серы и ароматических углеводородов, заставляют искать более эффективные катализаторы гидроочистки. Катализаторы гидроочистки представляют собой сочетание окислов активных компонентов (никель, кобальт, молибден и др.) с носителем, в качестве которого чаще всего используют активную окись алюминия. Носитель в составе катализатора гидроочистки играет роль не только инертного разбавителя, но и участвует в формировании активных фаз, а также служит в качестве структурного промотора, создающего специфическую пористую структуру, оптимальную для переработки конкретного сырья. Для гидроочистки применяют катализаторы на основе оксидов металлов VII и VIII групп (никель, кобальт, молибден, вольфрам). В промышленности используют алюмокобальтмолибденовый (АКМ) и алюмоникельмолибденовый (АНМ) катализаторы. В алюмокобальтмолибденовый катализатор на силикатной основе для увеличения прочности вводят диоксид кремния (АНМС). Носителем служит оксид алюминия. Катализаторы выпускают в виде частиц неправильной цилиндрической формы. В настоящее время применяются катализаторы на цеолитной основе. Катализатор АКМ имеет высокую активность и селективность по целевой реакции обессеривания, достаточно активен в гидрировании непредельных соединений. Катализатор АНМ проявляет большую активность при гидрировании ароматических и азотистых соединений. При гидроочистке катализатор может работать без потери активности 18-30 месяцев. Активность катализатора максимальна при соотношении Co: Мо=2:1, общее содержание Со+Мо на окиси алюминия составляет 8-13% масс. Оксиды кобальта и молибдена при гидроочистке переходят в сульфидную форму, и их активность при этом повышается. Если в сырье мало серы, то катализатор перед использованием целесообразно осернить. Алюмокобальтмолибденовые катализаторы содержат 10-15% металлов при атомном соотношении Со: Ni: Мо от 1:2:6. Удельная поверхность катализаторов гидроочистки составляет 160-330 м2/г. Для определения активности катализатора сравнивают обессеривающую способность испытываемого катализатора с обессеривающей способностью эталонного образца. Испытания ведут на пилотной установке по специальной методике. Для этого рассчитывают индекс активности. Сам катализатор должен иметь индекс активности не ниже 95%. Если активность свежего катализатора не достигает максимальной величины, катализатор активизирует в течение нескольких часов водородом при выше 300оС. Со временем активность катализатора падает за счет отложений кокса на поверхности катализатора. Частичную регенерацию катализатора можно провести гидрированием коксовых отложений при циркуляции водорода и температурах 400-420 оС. Наиболее распространенные для гидроочистки в отечественной и зарубежной практике катализаторы приведены в таблице 2 [5].

Таблица 2. Катализаторы гидроочистки нефтяных фракций

Марка катализатора

Характеристика

Сырьё

Форма

Тип носителя

Активные компоненты

AKZO Nobel

KF-845

высокая обессеривающая и деазотирующая активность

от бензина до вакуумного газойля

четырёхли-стник

Al2O3

NiMo

KF-747

глубокое гидрообессеривание

от дизельного топлива до вакуумного газойля

Четырёхли-стник

Al2O3

CoMo

Criterion Catalyst

С-448

Для получения низкосернистого дизельного топлива

средний дистиллят, вакуумный газойль

сформованные экструдаты

Al2O3

CoMo

HDS-3

насыщение ароматических углеводородов

от бензина до вакуумного газойля

сформованные экструдаты

Al2O3

NiMo

«Всероссийский институт по переработке нефти»

ГS-168

обессеривающая активность

бензин, дизельная фракция

цилиндр

Al2O3+ SiO2

NiMo

ГДК-202

высокая обессеривающая активность

среднедистиллятные фракции

цилиндр

Al2O3+ цеолит

NiMo

Procatalyse

HR-306C

гидрообессеривание гидродеазотирова-ние

от бензина до вакуумного газойля

экструда-ты

Al2O3

-

Особый интерес представляют катализаторы фирм Criterion Catalyst, Procatalyse, AKZO Nobel, а также отечественные катализаторы [6].

В процессе гидроочистки на катализаторе откладывается кокс, в результате чего катализатор теряет активность. Для восстановления активности катализатор подвергают регенерации. В зависимости от состава катализатора применяют газо-воздушный или паровоздушный методы регенерации. Газо-воздушная регенерация осуществляется смесью инертного газа с воздухом при температуре до 550°С. При паровоздушной регенерации используют смесь воздуха и водяного пара, нагретую в печи до температуры выжига кокса. Для цеолитсодержащих катализаторов паровоздушный способ не используют.

Длительность газо-воздушной регенерации составляет 100-120 ч, для паровоздушной она меньше.

Характеристика сырья и продуктов гидроочистки

Глубина гидроочистки дистиллятов от серы и других соединений зависит от типа углеводородного сырья, температуры процесса, парциального давления водорода и его кратности циркуляции, объемной скорости подачи сырья и других факторов.

Гидроочистке подвергают как прямогонные фракции (бензин, реактивное и дизельное топливо, вакуумные газойли), так и дистилляты вторичного происхождения (лёгкая фракция пиролизной смолы, бензины, лёгкие газойли коксования и каталитического крекинга).

В сырье, поступающем на установку гидроочистки, содержание влаги не должно превышать 0,02-0,03% (масс.). Повышенное содержание влаги влияет на прочность катализатора, усиливает интенсивность коррозии, нарушает нормальный режим стабилизационной колонны.

Сырье не должно содержать механических примесей, так как, попадая в реактор, они скапливаются на катализаторе, снижая тем самым эффективность его работы.

С утяжелением сырья степень его очистки в заданных условиях процесса снижается. С повышением средней молярной массы доля серы, содержащейся в устойчивых относительно гидрирования структурах, увеличивается. По мере утяжеления сырья всё большая его часть находится в условиях гидроочистки в жидкой фазе, что затрудняет транспортирование водорода к поверхности катализатора. При жидкофазной гидроочистке с утяжелением сырья скорость диффузии водорода через плёнку жидкости на катализаторе снижается, так как повышается вязкость и снижается растворимость водорода при данных условиях. Увеличение в сырье количества полициклических ароматических углеводородов, смол и асфальтенов, прочно адсорбирующихся на катализаторе и обладающих высокой устойчивостью относительно гидрирования, также снижает глубину очистки.

При одинаковом фракционном составе очистка от серы продуктов вторичного происхождения (коксования, каталитического крекинга) проходит значительно труднее. Это связано с тем, что подвергшиеся крекингу продукты содержат гетероатомы в структуре наиболее термически стабильных, трудно гидрирующихся соединений. Кроме того, продукты вторичного происхождения содержат большое количество ароматических и непредельных углеводородов, обладающих высокой адсорбируемостью на катализаторе и тормозящих в результате гидрирование гетероорганических соединений.

Типичным сырьем процесса гидроочистки дизельных топлив являются прямогонные дизельные фракции, выкипающие в пределах 180-330°С, 180-360°С и 240 - 360°С, из малосернистых, сернистых и высокосернистых нефтей.

Основными параметрами, характеризующими гидроочистку, являются:

- температура;

- давление;

- объемная скорость подачи сырья;

- кратность циркуляции водородсодержащего газа по отношению к

сырью;

- активность катализатора.

Температура.

Оптимальная температура гидроочистки зависит от качества сырья, от условий ведения процесса, активности катализатора и находится в пределах 340 - 400°С.

Нижний предел температуры очистки определяется в этом случае

возможностью конденсации тяжелых фракций сырья, появление жидкой фазы резко замедляет протекание целевых реакций.

При повышении температуры степень гидрообессеривания сырья возрастает, достигая максимума примерно при 420°С. При дальнейшем повышении температуры ускоряются реакции гидрокрекинга. Степень же гидрирования снижается: для сернистых соединений - незначительно, а для непредельных и ароматических углеводородов - довольно резко, т.к. при повышенной температуре происходят реакции гидрокрекинга, в результате которых увеличивается отложение кокса на катализаторе. Реакции экзотермичны, количество выделяемого тепла зависит от содержания серы и непредельных углеводородов в сырье.

Давление. С повышением общего давления в системе увеличивается степень обессеривания, уменьшается коксообразование и увеличивается срок службы катализатора. Процесс гидроочистки проводится при давлении 2,0 - 5,0 МПа. Вблизи верхнего предела давления рост степени обессеривания сырья при повышении давления незначителен.

При изучении факторов, влияющих на глубину гидроочистки, было определено, что гидрированию в основном способствует не повышение общего давления в системе, а то, что с повышением общего давления в системе гидроочистки растет парциальное давление водорода.

При повышении парциального давления водорода до 3,0 МПа степень гидрирования сернистых соединений увеличивается очень резко, а выше 30 МПа - очень незначительно.

Объемная скорость подачи сырья. Объемной скоростью подачи сырья называется отношение объема сырья при нормальных условиях (20°С и 0,1 МПа), поступающего в реактор за 1 час, к объему катализатора, находящегося в реакторе.

С увеличением объемной скорости уменьшается время пребывания сырья в реакторе и, наоборот, с уменьшением объемной скорости увеличивается время контакта паров сырья с катализатором и, следовательно, углубляется степень очистки. Однако с уменьшением объемной скорости снижается количество пропускаемого через реактор сырья, т.е. уменьшается производительность установки. Поэтому для каждого вида сырья определяется максимально допустимая объемная скорость, и процесс гидроочистки ведут именно при этой скорости подачи сырья.

При подборе объемной скорости учитывается не только фракционный и химический состав сырья, но и состояние катализатора, а также другие показатели процесса (температура, давление), влияющие на степень обессеривания.

2. Методическая часть

2.1 Методы анализа азотсодержащих соединений в нефтяных фракциях

1. Общие требования

1.1а. Общие указания по проведению анализа - по ГОСТ 27025-86.

1.1. Массу навески анализируемого реактива (m) в граммах вычисляют по формуле:

m=,

где М - молярная масса эквивалента анализируемого реактива, г/моль;

С - молярная концентрация применяемого титрованного раствора, моль/;

25 - приблизительный объём раствора, необходимый для титрования навески, ;

Х - норма массовой доли основного вещества, %.

Результат взвешивания пробы анализируемого реактива записывают в граммах с точностью до четвёртого десятичного знака.

Определение допускается проводить из меньшей навески с применением бюретки 6-2-5 или 7-2-10 по ГОСТ 29251-91.

1.2. Для приготовления применяемых растворов, если нет других указаний, пробы реактивов взвешивают или отбирают по объёму с погрешностью не более 1%.

1.3. (исключён, Изм. №1).

1.4. Для приготовления растворов реактивов, применяемых для анализа, используют реактивы квалификаций химически чистый и чистый для анализа, если в нормативно-технической документации на анализируемый реактив нет других указаний.

2. Метод титрования в неводной среде

2.1. Сущность метода

Сущность метода заключается в способности органических соединений, обладающих слабыми основными свойствами в водной среде, проявлять сильные основные свойства в среде органических растворителей.

Определение проводят визуально (в присутствии индикатора) или потенциометрически.

2.2. Реактивы, растворы и аппаратура

Вода дистиллированная по ГОСТ 6709-72.

Кислота уксусная по ГОСТ 61-75. х. ч. ледяная.

Ангидрид уксусный по ГОСТ 5815-77.

Спирт этиловый ректификованный технический по ГОСТ 18300-87, высший сорт.

Кислота хлорная, уксуснокислый раствор концентрации с (HClO4) = 0,1 моль/ (0,1 н.); готовя по ГОСТ 25794.3-83.

Кристаллический фиолетовый (индикатор), уксуснокислый раствор с массовой долей 0,5%.

Метиловый фиолетовый (индикатор), уксуснокислый раствор с массовой долей 0,2%.

Кальций хлоридобезвоженный, или ангидрон.

Иономер универсальный ЭВ-74 или другой прибор с пределом допускаемой основной погрешности

Электроды - стеклянный и хлорсеребряный (или насыщенный каломельный).

Мешалка магнитная.

Весы лабораторные 2-го класса точности по ГОСТ24104-88* с наибольшим пределом взвешивания 200 г.

Бюретка 1-2-50-0,1 по ГОСТ 29251-91.

Колба КН-1-100-14/23ТХС по ГОСТ 25336-82.

Стаканчик для взвешивания по ГОСТ 25336-82.

Стакан Н-1-50 или Н-1-100 ТХС по ГОСТ 25336-82.

Холодильник ХПТ-1-300-14/23 ХС по ГОСТ 25336-82.

Цилиндр 1-50 по ГОСТ 1770-74.

2.3. Проверка анализа

2.3.1. Для растворения навески анализируемого реактива применяют ледяную уксусную кислоту. Допускается применять уксусный ангидрид, смесь ледяной уксусной кислоты и уксусного ангидрида, ацетон, хлороформ, четырёххлористый углерод, диоксан, бензол и другие растворители и смеси. Применяемый растворитель должен быть указан в нормативно-технической документации на анализируемый реактив.

Не допускается применять смеси уксусного ангидрида с гидроксилсодержащими растворителями.

Все применяемые растворители должны быть максимально обезвожены.

При анализе легко ацетилирующихся первичных и вторичных аминов не допускается присутствие уксусного ангидрида, поэтому применяемая для растворения навески препарата уксусная кислота должна быть проверена на содержание примеси уксусного ангидрида по ГОСТ 25794.3-83. Массовая доля уксусного ангидрида должна быть не более 0,001%. При массовой доле его в уксусной кислоте от 0.002 до 0.03% такая кислота может быть использована после специальной обработки.

В качестве титрованного раствора применяют уксуснокислый раствор хлорной кислоты концентрации 0,1 моль/, коэффициент поправки которого определяют по ГОСТ 25794.3-83.

Допускается применять раствор хлорной кислоты в метилэтилкетоне или диоксане концентрации 0,1 моль/. Диоксан должен быть предварительно проверен на соответствие ГОСТ 10455-80 по массовой доле перекисных соединений.

Если определяют коэффициент поправки и применяют раствор при разных температурах, то вводят температурную поправку. Для этого объём раствора хлорной кислоты, израсходованный на титрование анализируемого раствора в кубических сантиметрах умножают на (1-?t*0.001), если титрование проводят при более высокой температуре, или на (1+?t*0.001), если титруют при более низкой температуре, чем т, при которой определяют коэффициент поправки; ?t-разность температур в градусах Цельсия.

При титровании очень слабых оснований вспомогательный электрод заполняют раствором электролита в органическом растворителе (метиловый спирт, уксусный ангидрид и т.д.).

При титровании бюретка, наполненная титрованным раствором хлорной кислоты, должна быть закрыта поглотительной трубкой, наполненной ангидроном или хлористым кальцием.

При необходимости навеску анализируемого реактива растворяют при нагревании на водяной бане с использованием обратного холодильника, снабжённого хлоркальциевой трубкой для предохранения от попадания влаги. После растворения навески раствор охлаждают.

Содержание галогеноводородных солей органических оснований определяют после предварительной обработки навески анализируемого реактива уксуснокислым раствором ацетата окисной ртути с массовой долей 2-5%.

Содержание третичных аминов в присутствии первичных или вторичных определяют после ацетилирования смеси уксусным ангидридом.

Вся посуда, применяемая для анализа, должна быть максимально обезвожена: колбы с притёртыми пробками и стаканчики для взвешивания высушивают в термостате; бюретки тщательно моют, затем ополаскивают каким-либо летучим органическим растворителем (этиловым спиртом, ацетоном, этиловым эфиром) и высушивают в токе сухого воздуха.

2.3.2. Визуальное титрование

Навеску анализируемого реактива помещают в колбу, растворяют в 25-50 уксусной кислоты (или другого растворителя), прибавляют 1-2 капли раствора кристаллического фиолетового или метилового фиолетового и тируют раствором хлорной кислоты до перехода окраски раствора в чисто-зелёную (цвет раствора при титровании должен меняться от фиолетового к синему, от синего к зелёному). Концом титрования считают переход от сине-зелёного к чисто-зелёному.

Одновременно в тех же условиях проводят контрольный опыт с такими же количествами реактивов.

2.4. Обработка результатов

Массовую долю основного вещества в анализируемом реактиве (Х) в процентах вычисляют по формуле

Х= ,

где V - объём уксуснокислого раствора хлорной кислоты концентрации точно 0.1 моль/, израсходованный на титрование анализируемого раствора, ;

V1 - объём уксуснокислого раствора хлорной кислоты концентрации точно 0,1 моль/, израсходованный на титрование в контрольном опыте, ;

m1 - масса анализируемого реактива, соответствующая 1 уксуснокислого раствора хлорной кислоты концентрации точно 0,1 моль/, г;

m - масса навески препарата, г.

За результат анализа принимают среднее арифметическое двух параллельных определений, допускаемые расхождения между которыми не должны превышать 0,3%.

Пределы допускаемого значения абсолютной суммарной погрешности результата анализа ±0,4% при доверительной вероятности Р = 0,95.

3. Метод диазотирования

3.1 Сущность метода

Сущность метода заключается в превращении аминов в диазосоединения при действии азотистокислого натрия в присутствии минеральной кислоты. Определение проводят визуально или потенциометрически. При визуальном титровании используют индикатор - йодкрахмальную бумагу.

3.2 Реактивы, растворы и аппаратура

Бумага йодкрахмальная; готовят по ГОСТ 4517-87.

Вода дистиллированная по ГОСТ 6709-72.

Калий бромистый по ГОСТ 4160-74.

Кислота соляная по ГОСТ 3118-77.

Крахмал растворимый по ГОСТ 10163-76.

Натрий азотистокислый по ГОСТ 4197-74, растворы концентрации с (NaNO2) = 0,1 моль/ (0,1 н.) и с (NaNO2) = 0,5 моль/ (0,5 н.); готовят по ГОСТ 25794.3-83.

Кислота серная по ГОСТ 4204-77.

Порошок цинковый марки ПЦ-2 по ГОСТ 12601-76.

Иономер универсальный ЭВ-74 или другой прибор с пределом допускаемой основной погрешности ±0,05 рН.

Электрод гладкий платиновый; хранят в дистиллированной воде и перед каждым титрованием выдерживают в окислительном пламени газовой горелки в течении 1 мин, затем промывают концентрированной серной кислотой и ополаскивают водой.

Электрод хлорсеребряный (или насыщенный каломельный).

Мешалка магнитная.

Весы лабораторные 2-ого класса точности по ГОСТ 24104-88 с наибольшим пределом взвешивания 200 г.

Бюретка 1-2-50-0,1 по ГОСТ 29251-91.

Воронка В-36-80 ХС по ГОСТ 25336-82.

Колба Кн-2-250-34 ТХС по ГОСТ 25336-82.

Стакан В-1-600 ТХС по ГОСТ 25336-82.

Цилиндры 1-50 и 1-500 по ГОСТ 1770-74.

3.3 Подготовка к анализу

В качестве растворителя навески аминов используют раствор соляной кислоты. Допускается применять раствор серной кислоты и уксусную кислоту. Применяемый растворитель, его объём и концентрация должны быть указаны в нормативно-технической документации на анализируемый реактив.

Навески первичных аминов, содержащих сульфогруппу, растворяют в воде в присутствии щелочных реагентов (гидроокись натрия, углекислый натрий, кислый углекислый натрий, аммиак), затем разбавляют водой до нужного объёма и подкисляют соляной кислотой, приливая кислоту тонкой струёй при интенсивном перемешивании раствора.

В зависимости от устойчивости образующихся в процессе реакции диазосоединений определение может быть проведено при комнатной температуре, при охлаждении или при нагревании, в присутствии катализатора - бромистого калия или без него, что должно быть указанно в нормативно-технической документации на анализируемый реактив.

В качестве титрованного раствора применяют раствор азотистокислого натрия концентрации 0,1 или 0,5 моль/.

При определении основного вещества нитро- и нитрозосоединений их перед диазотированием восстанавливают до аминов цинковым порошком в солянокислом или уксуснокислом растворе (см. п. 3.4.2).

3.4 Проведение анализа

Диазотирование без восстановления

Визуальное титрование

Навеску анализируемого реактива помещают в стакан и растворяют в растворителе. Затем приливают 300-400 воды, 20-30 соляной кислоты, прибавляют 2 г. бромистого калия (при анализе медленно диазотирующихся аминов) и, соблюдая выбранный температурный режим, титруют раствором азотистого натрия, прибавляя сразу (в течение 5-6 мин) около 90% всего раствора азотистокислого натрия, необходимого для титрования.

Конец титрования определяют по йодкрахмальной бумаге, для этого после прибавления раствора азотистокислого натрия наносят тонкой стеклянной палочкой каплю титруемого раствора на полоску йодкрахмальной бумаги. Если в центре капли сразу же не появится фиолетовое пятно, то продолжают прибавлять раствор азотистокислого натрия по каплям и снова проверяют реакцию с йодкрахмальной бумагой. Титрование продолжают до тех пор, пока капля, нанесённая на йодкрахмальную бумагу, не даст сразу же фиолетовую окраску. После этого раствор оставляют в покое на 5 минут и снова проверяют реакцию с йодкрахмальной бумагой. Вторичное появление фиолетового пятна указывает конец реакции. При отсутствии при вторичной пробе добавляют ещё раствор азотистокислого натрия и снова проверяют реакцию с йодкрахмальной бумагой.


Подобные документы

  • Основные химические превращения в процессах гидроочистки. Теоретические и инженерные основы гидроочистки гача. Характеристика исходного сырья, материалов, реагентов, катализаторов и гидрогенизата. Технологическая схема процесса гидроочистки гача.

    дипломная работа [2,5 M], добавлен 11.05.2012

  • Назначение процесса гидроочистки. Целевые и побочные продукты процесса. Факторы процесса, их влияние на качество. Механизм и химизм реакций, катализаторы гидроочистки. Технологический расчет реакторного блока установки гидроочистки дизельного топлива.

    курсовая работа [393,6 K], добавлен 18.10.2015

  • Современные методы исследования наноструктурированных катализаторов. Электронная микроскопия, рентгеновская спектроскопия и дифракция. Строение активных центров Со(Ni)MoS2 катализатора. Анализ генезиса катализаторов гидроочистки, их сульфидирование.

    контрольная работа [4,7 M], добавлен 01.03.2015

  • Сырье процесса, его состав, структура. Вспомогательные вещества и катализаторы, их экологическая оценка. Целевые продукты, побочные продукты, отходы (свойства, состав, структура), их экологическая опасность. Технологическая схема установки гидроочистки.

    курсовая работа [1,2 M], добавлен 31.05.2014

  • Современные технологии гидроочистки (гидрокрекинг и др.) дизельного топлива и использование противоизносных, цетаноповышающих, депрессорно-диспергирующих, антидымных, антиокислительных, моющих и других присадок. Химизм и механизм гидроочистки ДТ.

    курсовая работа [362,5 K], добавлен 30.03.2008

  • Характеристики сырья, химизм процесса гидроочистки. Характеристики получаемых продуктов, их выход при нефтепереработке. Технологическая схема установки, аппаратов и оборудования. Материальный баланс установки. Расчет основных аппаратов установки.

    курсовая работа [843,0 K], добавлен 12.04.2015

  • Гетероатомные соединения, содержание их в нефти и распределение по фракциям. Химические свойства нефтяных кислот. Способность сернистых соединений к гидродесульфированию. Азотистые соединения нефтей. Прибор для пиролитического лампового определения серы.

    курсовая работа [452,1 K], добавлен 06.10.2011

  • Использование магнийорганических соединений и химия элементоорганических соединений. Получение соединений различных классов: спиртов, альдегидов, кетонов, эфиров. История открытия, строение, получение, реакции и применение магнийорганических соединений.

    курсовая работа [34,4 K], добавлен 12.12.2009

  • Основные операции при работе в лаборатории органической химии. Важнейшие физические константы. Методы установления строения органических соединений. Основы строения, свойства и идентификация органических соединений. Синтезы органических соединений.

    методичка [2,1 M], добавлен 24.06.2015

  • Современные катализаторы, используемые в процессах нефтепереработки, критерии оценки их эффективности и особенности использования. Методологические основы процесса каталитического крекинга. Определение непредельных углеводородов в нефтяных фракциях.

    курсовая работа [508,1 K], добавлен 20.04.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.