Структура и адгезионные свойства отверждённых эпоксидных смол

Характеристика эпоксидных смол: структура и свойства. Эпоксидные смолы в отверждённом состоянии. Процесс адгезии, экспериментальные методы определения адгезионной порочности. Адгезия эпоксидных смол к металлам и стеклу. Растровая электронная микроскопия.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 25.10.2010
Размер файла 7,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Наиболее универсальное значение имеют регистрация вторичных электронов и регистрация отраженных (или «рассеянных обратно») электронов. Те и другие электроны улавливаются коллектором, установленным возле образца, преобразуются в электрический сигнал, который усиливается и затем направляется к электрон но-лучевой трубке, где он модулирует яркость электронного луча, строящего изображения на экране этой трубки.

5.2 Устройство и работа растрового электронного микроскопа

Растровый электронный микроскоп (РЭМ), как и традиционный микроскоп, имеет линзовую систему, но функция этой системы состоит в том, чтобы получить пучок электронов предельно малого сечения (зонд), обеспечивающий достаточно большую интенсивность ответного сигнала от участка объекта, на который попадает этот пучок.

Электронный пучок формируется в электронной пушке (рис.21). Между катодом и анодом создаётся высокое напряжение (100-200 кВ) и электроны начинают вырываться с разогретой поверхности катода. Под действием высокого напряжения электроны разгоняются и проходят через анодную сетку. Далее пучок электронов проходит через систему электронных линз. Электронные линзы представляют собой индукционные катушки которые фокусируют и отклоняют поток электронов (зонд).

Рис. 21. - Принципиальная схема электронной пушки

После взаимодействия потока электронов с образцом возникаю вторичные (ВЭ) и упруго отражённые электроны (ОЭ), Оже-электроны, рентгеновское излучение. Для РЭМ представляют интерес ВЭ и ОЭ, они регистрируются коллектором электронов (рис. 22). От того же генератора развертки луча (или генератора сканирования, смотри рис.23) работает катодно-лучевая (телевизионная) трубка, яркость электронного луча этой трубки модулируется сигналом от коллектора электронов, подаваемого через усилитель видеосигнала[8].

Рис. 22. Устройство для регистрации вторичных и отраженных электронов:

1--сетка; 2--сцинтиллятор; 3-- светопровод ; 4-- фотокатод или фотоэлектронный умножитель; 5--изолятор; 6 -- металлический стакан;

А--пучок падающих (первичных) электронов; Б -- поверхность объекта; В -- коллектор

Разного рода сигналы представляют информацию об особенностях соответствующего участка объекта. Размер этого участка (по порядку величины) определяется сечением зонда, который в существующих конструкциях растровых электронных микроскопов может достигать 10--100 Е.

Рис. 23. Принципиальная схема растрового электронного микроскопа (а) и схема системы объектива с малым отверстием нижнего полюсного наконечника (б)

Чтобы получить информацию о микроструктуре достаточно большой области, которая представляла бы характерную структуру объекта, ответственную за интересующие нас макроскопические физические или механические свойства, зонд заставляют обегать (сканировать) заданную площадь объекта по заданной программе (движется луч по строчкам, образующим квадрат, круг и т. д.)[8].

Масштаб изображения на экране катодно-лучевой трубки определяется отношением размера сканирования на поверхности объекта и размера изображения (растра) на экране. Уменьшение размера участка сканирования при водит к росту увеличения изображения. Предельные увеличения в современных конструкциях РЭМ достигают 150000--200000. Разрешающая способность зависит от вида используемого сигнала и вида объекта. Наименьшие значения разрешаемого расстояния 70--100 Е при использовании эффекта эмиссии вторичных электронов. При любом виде используемого для выявления микроструктуры сигнала характерным является чрезвычайно большая глубина резкости вследствие очень малой апертуры (практически, параллельности) электронного зон да. Глубина резкого изображения объекта оказываем всегда не меньшей, чем размер изображаемого участка в плоскости. Если линейный размер экрана около 100 мм, то при увеличении 10000 изображаемое поле объекта 10 мкм, примерно такой же будет и глубина резкого изображения объекта (1 мкм)[1]. Устройство электронно-оптической части и камеры объекта РЭМ типа «Стереоскан» показаны на рис. 23 б.

5.3 Применение растровой электронной микроскопии в исследованиях адгезионных соединений

Растровая электронная микроскопия нашла применение при исследовании адгезионных соединений. С помощью РЭМ изучают характер разрушения адгезионных систем (адгезионный, когезионный или смешанный), поверхности субстратов, швы клеевых соединений, прорастание трещин в материалах. Вся эта информация необходима при анализе адгезионных соединений.

Ниже приведены электронно-микроскопические снимки, полученные растровым электронным микроскопом:

Рис. 21. Разрушение адгезионных соединений эпоксидное связующее -- высокопрочное органическое волокно ВНИИВЛОН:

а -- конец волокна, выдернутого из соединения; б -- отверстие в смоле после выдергивания волокна

Рис.22. Вид моноволокна после отслоения от резины

Рис.23. Поперечный срез клеевого соединения древисины

Рис. 24. Поперечные срезы волокон: а- вискозное, б- высокопрочное вискозное, в- капрон


Подобные документы

  • Технологический процесс изготовления эпоксидной смолы, ее взаимодействие с различными отвердителями. Характеристика различных эпоксидных компаундов. Пенопласты из эпоксидных смол. Технология герметизации погружного насоса эпоксидным компаундом.

    курсовая работа [1,2 M], добавлен 14.06.2011

  • История развития производства и потребления эпоксидных связующих. Получение смол путем полимеризации и отверждения. Применение эпоксидных смол в качестве эпоксидного клея, для ремонта бетона, железобетонных конструкций, фундаментов и для их усиления.

    презентация [497,1 K], добавлен 15.09.2012

  • Физико-механические свойства гетинакса. Фенолоформальдегидные и крезолоформальдегидные связующие для производства данного вида слоистого пластика. Применение эпоксидных и меламиноформальдегидных смол в качестве связующих. Виды применяемых наполнителей.

    реферат [334,1 K], добавлен 18.12.2012

  • Выбор компонентов разрабатываемых композиций с пониженной горючестью. Кинетика отверждения модифицированных композиций. Физико-механические свойства модифицированных эпоксидных композиций. Влияние замедлителей горения на горение эпоксидных композиций.

    статья [60,2 K], добавлен 05.04.2009

  • Краткая история получения мочевино-формальдегидных смол. Исходное сырьё для производства, механизм образования, технология производства и применение мочевино-формальдегидных смол. Сущность, химические свойства и функциональность мочевины и формальдегида.

    реферат [1,2 M], добавлен 13.12.2010

  • Разработка составов, технологии и свойств эпоксидных композиций пониженной горючести, в том числе с использованием техногенных отходов различных производств. Взаимосвязь свойств замедлителей горения с процессами структурообразования эпоксидных полимеров.

    автореферат [38,8 K], добавлен 29.03.2009

  • Получение стабильной водорастворимой мочевиноформальдегидной смолы, которая может применяться в качестве основы антипиренных древесных пропиток. Закономерности синтеза мочевиноформальдегидных смол. Условия реакции конденсации для получения клеящих МФС.

    дипломная работа [296,4 K], добавлен 16.03.2014

  • Полиэтилентерефталат, его свойства и особенности. Химическое строение и процесс получения полиэтилентерефталата и полиэфирных смол. Способы производства полиэтилентерефталата в промышленности. Сурьма из курбиновых остатков производства полиэфиров.

    курсовая работа [246,8 K], добавлен 11.10.2010

  • Ионообменные смолы и их применение в цветной металлургии. Их структура и синтез. Приготовление растворов K2Cr2O7 и определение их концентрации. Подготовка смолы АВ-16гс к работе. Динамическая характеристика ионита марки "АВ16-гс" по бихромат-ионам.

    реферат [61,4 K], добавлен 21.12.2009

  • Исследование эволюции физико-химических характеристик ионообменных смол и изготовленных из них мембран в процессах переработки амфолит-содержащих модельных растворов и виноматериалов. Электропроводность ионитов, её связь с другими свойствами ионитов.

    дипломная работа [4,6 M], добавлен 18.07.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.