Термодинамическая характеристика процессов сольватации ионов

Понятие сольватации. Свойства и структурные особенности жидких растворителей и растворов. Взаимодействия ионов и молекул растворителя. Влияние добавок примесей. Термодинамические характеристики растворенных веществ в "абсолютно чистых" растворителях.

Рубрика Химия
Вид лекция
Язык русский
Дата добавления 28.08.2010
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1

54

Термодинамическая характеристика процессов сольватации ионов

Научные основы теории химического взаимодействия между компонентами раствора были заложены Менделеевым |105]. Обычно это взаимодействие учитывают, вводя представления о сольватации (гидратации). Последние вошли в науку благодаря трудам Каблукова, Кистякосского, Фицпатрика, Чамнчана. История этого вопроса подробно изложена в работах [106].

Учение Менделеева о растворах как равновесных химических системах, образованных растворителем, растворенным веществом и продуктами их взаимодействия - основа современной теории растворов. Дальнейшее развитие учения о растворах позволило сформулировать такие важные обобщения, как представление о донорно-акцепторном механизме сольватации ионов, единой донорно-акцепторной природе межмолекулярных водородных и ион-молекулярных связей, кооперативном характере водородных связей. Сюда же относятся: обнаружение гидрофобных и сходных с ними (в неводных растворах) эффектов; установление отрицательной гидратации (сольватации) и других структурных эффектов, а также разработка методов определения разнообразных свойств растворов и оценка их взаимосвязи. Помимо этого созданы теории сольватации и диссоциации электролитов, определена роль растворителя и построена единая шкала кислотности, а также получены многие другие интересные результаты в различных разделах учения о растворах, некоторые из которых будут рассмотрены ниже.

Несмотря на определенные успехи в развитии теоретических представлений современная теория растворов разработана недостаточно. Теории, способной с единых позиций объяснить наблюдаемые явления и предсказать новые, не существует. Связано это, во-первых, с тем, что жидкие системы по сравнению с твердыми и газообразными занимают промежуточное положение и описание их значительно сложнее; отсюда: слабое развитие теории жидкого состояния (отсутствие моделей жидких растворителей и растворов, универсальных методов описания межчастичных взаимодействий и т. п.); недостаточность экспериментальных данных и их обобщений для неводных растворов в широкой области температур, давлений, концентраций по растворенному веществу, составу растворителя, их набору и т.д.; трудности использования современных методов исследования.

Во-вторых, следует иметь в виду общие проблемы состояния физической химии, обусловленные: специфичностью свойств растворителей и трудностью их очистки; методологией (понятия, определения); обработкой и интерпретацией полученных результатов в связи с трудностями количественной характеристики частиц в растворе; чистотой растворителя; использованием косвенных методов исследования, их различной специфичностью и чувствительностью.

При создании учения о растворах Менделеев видел свою главную задачу в изучении и установлении характера взаимодействия растворенного вещества и растворителя, т. е. в выявлении роли растворителя в процессах растворения веществ. Решение этого вопроса актуально и в наши дни.

1. СОЛЬВАТАЦИЯ ИОНОВ

Полученные в гл. II данные могут быть использованы для термодинамических характеристик одного из важнейших ионных процессов в растворах - сольватации (гидратации) ионов. Однако прежде чем перейти к термодинамической характеристике сольватации ионов рассмотрим состояние этой проблемы в целом.

Современные представления

Используемое в современной литературе понятие сольватация является чрезвычайно широким, поскольку разные исследователи вкладывают в него различный смысл. По этой причине необходимо дать четкое определение рассматриваемого явления.

Наиболее общее определение сольватации (гидратации) в бесконечно разбавленных растворах дано Мищенко [107]: «...под сольватацией следует понимать всю сумму изменений, вызываемых появлением ионов электролитов в растворах». Хотя эта формулировка и является одной из наиболее удачных, она нуждается в уточнении. Точное определение сольватации должно отражать, во-первых, суть процесса и прежде всего - начальные и конечные состояния вещества, во-вторых, - тип сольватации, связанный с природой сольватирующихся частиц; в-третьих, - учитывать взаимодействие всех частиц раствора: растворенное вещество - растворитель, растворитель - растворитель, растворенное вещество - растворенное вещество. В бесконечно разбавленных растворах последнее взаимодействие учитывается свойствами статистической решетки.

Вышесказанное позволило нам дать следующее определение сольватации ионов 11, 48 J: под ионной сольватацией следует понимать совокупность изменений, связанных с образованием ионного раствора определенной химической структуры и заданного состава из ионов в газообразном состоянии и жидкого растворителя.

В работах [12, 48] отмечены трудности, с которыми встречаются при описании явления сольватации. Приведенное определение строго фиксирует начальное и конечное состояние системы. В нем в общем виде сформулированы те изменения, которые возникают при сольватации ионов, но желательна конкретизация этих изменений.

Наиболее существенная особенность ион-ионной сольватации - это химическое связывание молекул растворителя ближнего окружения и их координация ионом. Например, при сольватации ионов тетраалкиламмония эти связи практически ионные для всех известных растворителей. При сольватации полизарядных ионов переходных элементов во многих растворителях (вода, аммиак) эти связи - ковалентные. Понятие сольватации в ближнем окружении и комплексообразования здесь неразделимы. Если учесть, что ближнее взаимодействие ион-растворитель сопровождается переходом электронов с орбиталей донора на орбитали акцептора, то станет ясным, что сольватация смыкается с окислением - восстановлением.

В процессе взаимодействия ион-растворитель происходит существенное изменение структуры растворителя. В ряде случаев может меняться и строение самого многоатомного иона. Под влиянием ионов поляризация (протонизация) связи Х-Н в молекуле растворителя возрастает вплоть до отщепления протона. Этот процесс есть не что иное, как кислотно-основное взаимодействие, конечной стадией которого является сольволиз (гидролиз).

Реальный процесс сольватация может сопровождаться ионной ассоциацией, поскольку в растворе мы имеем дело со стехиометрической смесью взаимодействующих, противоположно заряженных ионов. Ионная ассоциация является одной из стадий образования твердой фазы.

Таким образом, явление сольватации - это сложный по механизму процесс, который охватывает разнообразные типы химического взаимодействия. Вместе с тем крайние случаи этих взаимодействий, сопровождающиеся разрывом или образованием химических связей (сольволиз, ассоциация и диссоциация, протонирование), из понятия сольватации исключаются. Поэтому, если определить ионную сольватацию как совокупность изменений, связанных с образованием ионного раствора определенного состава из ионов в газообразном состоянии и жидкого растворителя, при которых не происходит разрыва химических связей в ионах растворяемого вещества и молекулах растворителя, а также образования ассоциатов и агрегатов, то из определения ионной сольватации автоматически исключаются многие сопутствующие ей процессы.

Определенный интерес представляют понятия об идеальной и реальной сольватации. В первом случае образуется раствор, обладающий свойством бесконечно разбавленного, в котором первоначальная структура основной массы растворителя не нарушена. В случае реальной сольватации по мере накопления в растворе первично-сольватированных ионов структура самого растворителя резко меняется. Изменение происходит вследствие взаимодействия первично-сольватированных ионов с молекулами растворителя дальнего окружения.

При этом возможно образование второй, третьей и т. д. координационных областей сольватации иона. Молекулы растворителя в областях сольватации, достаточно удаленные от иона, будут вероятно, иметь по отношению к иону в большей степени не координационный, а ориентационный порядок.

В связи с указанными соображениями нами с Березиным [108] дано следующее определение сольватации:

под сольватацией следует понимать всю сумму энергетических и структурных изменений, происходящих в системе в процессе перехода газообразных ионов [других атомно-молекулярных частиц) в жидкую фазу растворителя с образованием однородного раствора имеющего определенный химический состав и структуру.

Из процесса сольватации следует исключить те изменения, которые сопровождаются разрывом химических связей в растворяема частицах и молекулах растворителя, а также изменения, связанны' с образованием ассоциатов и агрегатов.

Энергетические изменения при сольватации в большей степени характеризуются энтальпийными характеристиками, а структурные - энтропийными характеристиками сольватации. Оба эти вида изменений характеризуют суммарные изменения энергии Гиббса в процессе сольватации и определяются химической структурой раствора (см. гл. V).

Другие определения сольватации [70] менее удовлетворительны, поскольку, с одной стороны, они слишком общи (включают многие сопутствующие сольватации явления), с другой, слишком узки, так как не учитывают всех характерных особенностей процесса.

Отметим, что наблюдаемая совокупность изменений при сольватации ионов связана как с переходом их из газообразного состояния в раствор, так и с различными видами взаимодействий в ионных растворах: ион-растворитель, растворитель-растворитель, ион- ион. Она проявляется в изменении состояния ионов в растворе, их подвижности, образования определенных ассоциатов из иона и молекул растворителя, изменения свойств растворителя в целом и отдельных его молекул, структуры растворителя и т. п. При этом большой интерес представляет разделение суммарных изменений на составляющие, связанные с отдельными видами взаимодействий, формами их проявления и т. д. С одной стороны, таким путем можно выявить роль отдельных изменений при сольватации ионов, с другой, - избежать включения в сольватацию сопутствующих ей процессов. Кроме того, решение данного вопроса имеет существенное значение для создания общей теории растворов.

Заметим также, что сольватация ионов рассматривается обычно как явление или процесс, мерой которых служит совокупность указанных выше изменений. Наиболее существенным здесь является взаимодействие сольватирующихся частиц с растворителем.

Проанализируем некоторые общие аспекты процесса сольватации.

Наряду с газообразными ионами, сольватироваться могут твердые, жидкие и газообразные вещества самой различной природы. Причем количественное соотношение между ними и растворителем может колебаться в широких пределах. Указанные обстоятельства приводят к отсутствию единого для всех случаев определения.

Сольватация твердых и газообразных веществ может протекать либо при недостатке растворителя, либо при достаточном его количестве для образования жидкого раствора. В первом случае под сольватацией следует понимать совокупность изменений, связанных с образованием сольватов определенного и неопределенного составов.

Во втором случае дело обстоит несколько сложнее. Сольватация твердых веществ осложняется сопутствующим ей процессом разрушения твердых веществ - вплоть до их структурных единиц атомов, молекул, ионов и т. п.). Если исключить процесс разрушения, то сольватируются лишь газообразные атомно-молекулярные частицы (для твердых веществ их структурные единицы). Здесь справедливо данное выше определение сольватации для заряженных ч незаряженных частиц.

Некоторые особенности имеет сольватация молекул. Следует различать молекулы неорганических и органических веществ. Для молекул неорганических веществ (например, HgCI2, HCN) в процессе сольватации характерны все те же явления, которые свойственны ионной сольватации, а именно: образование связей с молекулами растворителя за счет донорно-акцепторных взаимодействий, водородной связи и т. д. Сопутствующие явления (сольволиз, окисление - восстановление, протонирование, диссоциация и ассоциация) могут здесь наблюдаться с той лишь разницей, что, как правило, они выражены слабее. К важным исключениям относятся диссоциация, которая может быть очень сильной в случае таких молекул, как НСl, Hg2SO4 и др., ассоциация с образованием осадков и окисление-восстановление. В случае молекул возможна молекулярная ассоциация, которую в литературе иногда некорректно называют полимеризацией. Все эти сопутствующие явления из понятия сольватации должны быть исключены. В случае неорганических молекул образование 2, 3, ..., i-й координационных областей вследствие отсутствия сильных электростатических взаимодействий менее вероятно, чем при сольватации ионов. Изменение структуры самого растворителя также менее существенно.

Если сольватация ионов и молекул неорганических веществ происходит в основном за счет координационных взаимодействий, образования водородной связи (специфическая сольватация), то для малополярных молекул (прежде всего органических) сольватация осуществляется за счет диполь-дипольных и дисперсионных взаимодействий (универсальная сольватация). В результате молекулы растворителя оказываются слабо связанными с сольватирующимися малополярными молекулами. В этом случае сольватация напоминает процесс конденсации, т. е. переход вещества из парообразного состояния в жидкое, в свою очередь конденсацию можно рассматривать как автосольватацию самих молекул растворителя. В случае сольватации молекул органических веществ происходит образование непрочных связей между молекулой и растворителем, вследствие чего явление лучше описывается понятием «кинетической» сольватации. Возникающие связи молекула-растворитель во многих случаях мало отличаются от тех, которые связывают молекулы растворителя друг с другом. Легко заметить, что и в этом случае при сольватации не происходит разрыва химических связей внутри сольватируемых молекул и в молекулах растворителя. Описание сольватации проводится с позиций времен пребывания молекулы растворителя вблизи сольватируемой частицы («времени жизни») сольвата и активационных параметров процесса обмена молекул растворителя местами.

Сольватацию жидкостей в обсуждаемом плане можно рассматривать только в области концентраций их, при которых отсутствует непосредственный контакт между молекулами этих жидкостей. Здесь ей сопутствует процесс разрушения жидкостей до их структурных единиц (молекул). Как и в предыдущем случае, сольватации подвергаются газообразные структурные единицы (молекулы) жидкости. При других концентрациях происходит взаимная сольватация жидкостей и растворителя, а также смена их роли в растворах. Причем при взаимной сольватации компонентов раствора выделение ее из процесса смешения практически невозможно.

Для данной работы наибольший интерес представляет ионная сольватация, поэтому остановимся на ней более подробно.

Совокупность изменении при сольватации ионов, связанных с взаимодействием ион растворитель и растворитель растворитель расчленяют обычно на две составляющие. Различие между ними обусловлено наличием пли отсутствием контакта между ионами и молекулами растворителя. Наиболее часто эти составляющие называют «ближней» и «дальней» [109], «первичной» и «вторичной» [110] сольватацией. Ближняя (первичная) сольватация представляет собой сольватацию ионов молекулами растворителя ближайшего окружения непосредственно контактирующих с ионом. Дальняя (вторичная) сольватация характеризует сольватацию ионов молекулами растворителя дальнего окружения непосредственно контактирующих только с молекулами растворителя. Для обозначения видов сольватации в литературе иногда используют и другую терминологию: химическая и физическая [111], первого и второго рода [112], гидрофобная и гидрофильная [113] сольватация и т. и. Имеются попытки выделения большего числа составляющих ионной сольватации 1'181, что имеет лишь специальный интерес.

В истолковании ионной сольватации имеются два достаточно общих подхода, названных нами термодинамической и кинетической сольватацией [4, 114]. Один из них основан на преимущественном учете взаимодействий ион растворитель и связан с представлениями о термодинамической устойчивости ассоциата ион-молекулы растворителя, мерой которой являйся общая энергия взаимодействия между ними. Для характеристики термодинамической сольватации широко используют числа координации, термодинамические (равновесные) свойства: изменения энтальпии, энтропии, теплоемкости, энергии Гиббса и т. д. При оценке термодинамической сольватации в целом решающее значение имеет ближняя (первичная) сольватация, которая определяет структуру образующихся сольватов и вносит наибольший вклад в энергетику сольватации.

Другой подход учитывает преимущественно взаимодействия растворитель-растворитель b связан с представлениями о кинетической устойчивости ассоциата ион-молекулы растворителя. Для водных растворов данный подход был предложен Самойловым [109]. Кинетическая устойчивость определяется энергией активации процесса обмена молекул растворителя вблизи иона на молекулы растворителя в объеме или изменением под действием ионов потенциальных барьеров, разделяющих соседние положения равновесия молекул растворителя. О кинетической устойчивости можно судить по скоростям их обмена и времени связывания с ионами. С этой точки зрения, обмен зависит не от полной энергии взаимодействия, а от изменения ее на очень малых расстояниях вблизи иона; эти изменения составляют примерно 4 кДжмоль-1. Следует подчеркнуть, что в данном случае сольватация рассматривается не как связывание ионами того или иного числа молекул растворителя, а как влияние ионов на трансляционное движение ближайших молекул растворителя.

СВОЙСТВА И СТРУКТУРНЫЕ ОСОБЕННОСТИ ЖИДКИХ РАСТВОРИТЕЛЕЙ И РАСТВОРОВ

К настоящему времени получено много сведений о свойствах растворителей и растворов. Число их практически неограниченно и быстро растет как за счет синтеза новых индивидуальных растворителей, так и использования разнообразных многокомпонентных растворителей и растворов. Отбор их для практического применения требует физико-химической «паспортизации» растворителей и растворов. Вследствие многообразия последних обеспечить это становится все труднее и труднее.

Несмотря на указанные трудности, вопросы физико-химической характеристики растворителей и растворов в широком диапазоне внешних условий требуют решения. Одним из главных направлений остается экспериментальное прецизионное изучение свойств. При этом необходимо сосредоточить усилия на исследовании «ключевых» веществ в определенных рядах и классах растворителей с целью установления достаточно общих закономерностей, связывающих микро- и макросвойства веществ. Использование таких зависимостей, а также взаимосвязи различных макросвойств растворителей и растворов между собой и внешними параметрами приведет к значительному расширению массива физико-химических данных. Такой подход является наиболее рациональным.

При изучении жидких растворителей и растворов важную роль занимают вопросы теории жидкого состояния.

Общие представления и методы исследования структуры

Особенность жидкого состояния состоит в том, что оно является промежуточным между газообразным и твердым состояниями. Жидкость, в отличие от газа, -- совокупность сильно взаимодействующих частиц. От кристалла ее отличает нерегулярность структуры, а энергия межмолекулярных взаимодействий в жидкости соизмерима с энергией тепловых колебаний. Поэтому молекулы в жидком состоянии могут перемещаться, вращаться и колебаться. Внутреннее строение жидкостей выяснено только в самых общих чертах. Оно более сложно, чем строение газов и кристаллов. Сохраняя отдельные черты указанных состояний, жидкости обладают своими характерными особенностями и, прежде всего, текучестью. Подобно кристаллам, жидкости сохраняют свой объем, имеют свободную поверхность, обладают определенной прочностью на разрыв и т. д. С другой стороны, жидкость, как и газ, не имеет собственной формы. Жидкость принимает форму сосуда, в котором она находится. Сжимаемость жидкости мала, плотность ее близка к плотности твердого тела, но более заметно меняется с температурой. Несмотря на то, что описание жидкого состояния оказалось значительно сложнее, чем описание твердого и газообразного состояний, делались попытки использования последних для описания жидкого состояния.

Первые шаги на пути создания теории жидкого состояния основывались на представлениях о возможности непрерывного перехода от газа к жидкости. Основополагающие идеи такого подхода были заложены в работах Эндрюса, Ван-дер-Ваальса и Больцмана [188]. При этом имелась в виду близость жидкого состояния с газовым в форме плотных флюидных состояний, а не аналогия жидкости с разреженным газом. Однако в дальнейшем область применения модели слабовзаимодействующего газа неправомерно расширили, чти привело к представлениям о бесструктурности, неупорядоченности жидкости, и отличие ее от газа сводили только к разной плотности.

Однако рентгенографические исследования Стюарта, Данилова с сотр. [189] и их последователей убедительно доказали существование локальной упорядоченности молекул жидкости. Жидкость стали рассматривать как разупорядоченное твердое тело, в котором продолжает существовать ближний порядок, в то время как дальний, характерный для твердого состояния, нарушен тепловым движением. Указанный подход наиболее полно был развит Френкелем 11151. В рамках этих представлений многие экспериментальные факты получили простое объяснение. Они стимулировали исследование кинетических явлений в различных областях физической химии растворов. Однако и этот подход не является строгим. Представления о квазикристалличности жидкости не вытекает из данных эксперимента, а сам термин включает в себя широкий круг понятий (размытую тепловым движением регулярность в расположении атомно-молекулярных частиц, микрокристаллическую гетерогенную структуру, кластеры, рои и т. п.). Квазикристалличность такое же неприемлемое понятие, как и бесструктурность. Одним из первых борьбу с этими представлениями начал Бернал, который пришел к выводу, что ближний порядок в жидкости существенно отличается от того, каким его можно было бы представить по аналогии с кристаллическим состоянием [190].

Таким образом, не следует буквально понимать близость жидкого и кристаллического состояний. Жидкость, как плотная нерегулярная структура, более своеобразна, чем допускается квазикристаллическими представлениями. Она имеет многочисленные и подвижные локальные молекулярные образования (ассоциаты). Ближний порядок в жидкости существенно отличается от такового в кристалле. В ней более благоприятны условия для обмена энергией и молекулярных перестроек. Эти и другие выводы для простых жидкостей подробно рассмотрены в обзоре [191].

Исходя из особенностей жидкого состояния, рассмотрим понятие о структуре жидкости; выделим при этом два аспекта: геометрический и силовой. Первый из них описывает взаимное расположение частиц в растворе и характеризуется числами координации, значениями координатных углов, задающих взаимную ориентацию, и т.п. Второй из них связан с потенциальной энергией межчастичного взаимодействия и отражает энергетическyю неравновесность различных построений.

Структуру жидкости следует рассматривать как единую систему имеющую смысл начиная с некоторого элементарного объема, содержащего минимальное, предельное количество вещества (число частиц 1013 и более, где распределение их подчиняется законам статистики). Дальнейшее увеличение числа частиц при сохранении постоянства внешних условий общей структуры не меняет.

Исходя из вышесказанного, можно дать следующее определение структуры жидкости:

под структурой жидкости (ее химической организацией) понимают статистическую упорядоченность взаимодействующей х атомно-молекулярных частиц в элементарном объеме при заданных условиях, характеризующуюся определенными ближним и дальним окружением относительно выбранной частицы, природой мел частичных взаимодействий и степенью их связанности.

Для изучения структуры растворителей служат как теоретические, так и экспериментальные методы исследования. В первом случае используют два подхода -- «формально строгий» и «модельный».

Формально строгий метод основывается на принципах статистической механики и приводит к строгим выражениям для молекулярных функций распределения, а через них -- к уравнениям для расчета термодинамических свойств. В выражении для молекулярных функций распределения входит потенциал взаимодействия частиц, о котором мало что известно даже в случае парных взаимодействий для простых систем. Поэтому использование этого подхода требует применения того или иного модельного потенциала (строгость становится формальной).

Модельный подход основан на определенном выборе той или иной физической модели жидкости, при помощи которой получают выражение для статистической суммы, а через нее уравнения для расчета термодинамических свойств. Модельный подход также ограничен. Во-первых, согласие результатов каких-либо свойств с экспериментом не доказывает правильности выбранной модели. Такое же хорошее согласие может быть достигнуто с помощью другой модели (даже противоположной первой). Во-вторых, параметры модели оцениваются по экспериментальным данным, в связи с чем даже хорошее совпадение результатов расчета с экспериментальными данными не служит критерием истинности модели. В-третьих, в принципе нельзя построить модель структуры жидкости, адекватной ее реальной структуре.

В 70-е гг. наметился отход от моделей и все большее значение приобретают методы молекулярно-динамического моделирования. Наибольшее значение здесь имеют методы: машинного эксперимента--Монте-Карло (МК) [192] и молекулярной динамики (МД) [193]. Метод МК используют, как правило, для расчета равновесных свойств вещества, метод МД применим также для определения транспортных свойств.

При детальном изучении структуры вещества метод МД имеет преимущества перед методом МК. Это связано с тем, что получаемые во времени конфигурации частиц ближе к реальным, чем реализуемые путем случайного перемещения частиц. В методе МК машина просчитывает набор равновесных конфигураций системы, вероятность перехода между которыми задается больцмановским фактором exp (--U/kT), и позволяет выбрать из них наиболее оптимальную. Начальная конфигурация выбирается произвольно. В методе МД машина путем численного интегрирования уравнений движения при выбранном потенциале взаимодействия для заданного числа частиц определяет траекторию их движения.

Оба метода ограничены из-за необходимости использования потенциала взаимодействия, точный вид которого неизвестен. Имеются трудности при расчете систем с большим числом частиц. В настоящее время при расчете методами МК и МД используют системы с числом частиц от сотен до нескольких тысяч, что примерно на десять порядков ниже допустимого (число частиц в элементарном объеме) и приводит к игнорированию энтропийного фактора. Машинные методы интересны для выяснения деталей энергетики ближнего и дальнего окружения частиц в таких системах (кластерах). Распространение получаемых выводов на реальные системы без специальных оговорок неправомерно. Вместе с тем машинный эксперимент должен и дальше играть роль промежуточного звена между теорией и реальным экспериментом.

Рассмотрим возможности некоторых наиболее важных экспериментальных методов исследования. Рентгенографические относятся к наиболее прямым методам. Они основаны на определении интенсивности рассеяния рентгеновских лучей и вычисления на ее основе так называемых функций радиального распределения (ФРР), которые в свою очередь позволяют найти межъядерные расстояния, углы между ними и др. Следует отметить, что обработка рентгенограмм для жидкостей дает надежные сведения о среднем числе соседей в первых координационных сферах (ближнем окружении) и о положении этих сфер (слоев), но выяснение более тонких деталей структуры наталкивается на неоднозначность метода, так как ФРР трансформирует пространственное распределение атомно-молекулярных частиц в сглаженную одномерную функцию. Это принципиально ограничивает возможности применения метода для расшифровки структуры ближнего порядка в жидкости. Двум существенно различающимся конфигурациям могут соответствовать практически мало отличающиеся ФРР.

Радиофизические методы позволяют исследовать структуру многоатомных растворителей. На основе высокочастотных измерений диэлектрической постоянной и диэлектрических потерь удалось получить количественную информацию о характере теплового движения частиц в некоторых многоатомных растворителях и растворах. Среди этих работ следует отметить исследования структуры полярных жидкостей и растворов на базе измерения температурных зависимостей статической диэлектрической постоянной. Основные результаты их обобщены Шахпароновым [194]. Недостаток этих методов -- применимость их только к полярным жидкостям и возможность различной интерпретации результатов.

Информация о структуре растворителей и растворов, а также картина теплового движения в них может быть получена при помощи оптических методов исследования (релеевское рассеяние, спектры комбинационного рассеяния, спектры поглощения в ультрафиолетовой, видимой и инфракрасной областях и др.). В этом направлении выполнены работы, позволяющие судить об образовании межмолекулярных водородных связей, гидратируемости ионов, их координации, ассоциации н т. п. Оптические методы исследования относятся к числу наиболее надежных, хотя зачастую они при расшифровке не дают однозначных выводов.

Ценные сведения о структуре растворителей и растворов дает метод исследования изотопных эффектов в жидких растворах, основанный на изучении влияния масс ядер и энергии атомных и молекулярных колебаний на энергию межмолекулярного взаимодействия в растворах. Он позволяет изучать гидратацию ионов в водных растворах [100, 195].

Одним из методов исследования структуры многих растворителей и растворов является ультразвуковой метод [196]. Однако в данном случае отсутствует строгая теория, связывающая скорость распространения ультразвука в жидкостях с составом и строением их молекул.

Перспективен для исследования структуры растворителей и растворов метод магнитного резонанса [197]. Особенно хорошо разработана методика протонного магнитного резонанса, который в первую очередь применяют при исследовании состояния воды в водных растворах. За последнее время появилось много работ, посвященных исследованию этим методом структуры неводных и смешанных растворителей, а также их электролитных растворов. Для изучения структуры растворителей успешно применяют метод спинового эха. Он отличается от обычного способа наблюдения сигналов ЯМР тем, что радиочастотное электромагнитное поле воздействует на образец не непрерывно, а импульсами. Достоинством этого метода является то, что он позволяет относительно легко измерить абсолютное значение времен релаксации и изучать самодиффузию в воде и других жидкостях. Результаты изучения структуры растворителей методом магнитного резонанса хорошо согласуются с результатами других методов исследования. Однако они не относятся в обсуждаемом плане к числу прямых.

Большой интерес представляют термодинамические методы. Особенностью их является то, что они позволяют достаточно четко проследить за структурными изменениями растворителей при изменении внешних факторов (температуры, давления), природы добавок, состава и т. п. На основе термодинамических данных могут быть охарактеризованы некоторые особенности структуры жидких растворителей -- координация частиц, взаимное расположение молекул растворителя ближнего окружения и др. Однако конкретную модель структуры жидкости только на основе термодинамического подхода построить невозможно. Применение структурных представлений в этом случае требует точки отсчета - выбора модели структуры и заданных условиях. Затем, используя термодинамический метод, позволяющий проследить за структурными изменениями, можно делать конкретные выводы о строении растворителей при других условиях.

Из рассмотренного материала следует, что ни один из существующих методов исследования не дает полной информации о структуре растворителей и растворов. Достаточно определенно этот вопрос может быть решен лишь в разумном сочетании результатов различных методов исследования. Наряду с ограниченностью самих методов, большим недостатком их является произвол в интерпретации полученных данных. Здесь, как нигде, справедливы слова Менделеева, что «...лишь с изучением многих свойств растворов можно будет сделать уверенное суждение об их химическом строении». В связи со сказанным важное значение имеет разработка модельных представлений о структуре растворителей и растворов.

Свойства, строение молекул и структура растворителей

В литературе отсутствует единая классификация растворителей, но обычно их рассматривают по классам химических соединений. Однако такой подход не позволяет понять сходства и различия растворителей разных классов. Поэтому их классифицируют на основе тех или иных физических и химических свойств. Известны классификации по физическим константам, кислотно-основным свойствам, по способности к комплексообразованию, образованию водородной связи, донорно-акцепторной способности и др. [108, вторая ссылка;198].

Для исследования сольватации особое значение имеют растворители, характеризующиеся специфическим взаимодействием с растворенным веществом. Рассмотрим наиболее важные из них более подробно.

Вода. Вода -- одно из наиболее важных веществ, которое благодаря своеобразию физических и химических свойств, определяет характер физического и биологического мира [199]. Своеобразие многих из этих свойств связано с особенностями строения молекул воды и ее структурой. Основные сведения о свойствах воды можно найти в монографиях, например [200. 201].

Интересно рассмотреть строение самой молекулы воды, распределение в ней электронной плотности, поскольку именно эти свойства определяют энергетику гидратации ионов. Спектроскопическими исследованиями воды в парообразном состоянии найдено, что молекулы воды нелинейны. Ядра атомов молекулы воды образуют равнобедренный треугольник с двумя протонами в основании и кислородом в вершине. Причем угол связи Н -О- Н для низшего колебательного уровня равен 105° 03', а межъядерные расстояния ОН и Н--Н равны 0,09568 и 0,154 нм [200, 201]. Правильное истолкование свойств воды возможно только на основе изучения строения электронного облака ее молекулы. Молекулы воды в этом плане описывают при помощи электростатических моделей и моделей, основанных на теории молекулярных орбиталей, распределения электронной плотности, использования точных волновых функций и расчетов физических свойств [143, W. Wood ]. Наиболее реальна из них четырехполюсная модель Бьеррума [12, 202], согласно которой электрические заряды молекулы воды расположены в вершинах тетраэдра. Два отрицательных полюса созданы избытком электронной плотности в местах расположения неподеленных пар электронов, а два положительных -- ее недостатком в местах расположения протонов. При этом строение электронного облака молекулы воды не зависит от ее изотопного состава.

Описанная модель согласуется с моделями, полученными на основе теории молекулярных орбиталей, распределения электронной плотности и др. Тетраэдрическая направленность в размещении электрических зарядов связана с распределением электронной плотности на четырех гибридных sp 3-opбитaляx. В подобной тетраэдрической конфигурации угол Н--О--Н должен бьпь равен 109°. Уменьшение этого угла примерно на 40 обусловлено различием в отталкивании электронных пар на связывающих и несвязывающих орбиталях. sp3-Гибpидизaция изменяет также пространственное расположение тех пар электронов кислорода, которые не принимают непосредственного участия в образовании химической связи в молекуле воды. Они располагаются на противоположной стороне атома кислорода таким образом, что в целом заряды расположены в вершинах тетраэдра.

Жидкая вода характеризуется значительными силами межмолекулярного взаимодействия за счет водородных связей, приводящим к ассоциации и особой структуре.

Отправным моментом в изучении структуры воды явилось установление тетраэдрического окружения ее молекулы [116]. Исследования ФРР электронной плотности [200, 203 ] подтвердили этот вывод.

Представления о тетраэдрическом окружении молекул воды приводят к выводу о высокой ажурности ее строения и наличия в ней пустот. Размеры пустот равны или превышают размеры молекул воды. Это позволило Самойлову [204] выдвинуть идею о заполнении пустот тетраэдрических локальных молекулярных образований молекулами воды. Физическая возможность самого заполнения связана с представлениями Фрэнка и Квиста [205] о «гидрофобизации» молекул воды в пустотах таких образований (ассоциатов) вследствие трудностей образования в них направленных связей за счет высокой симметрии поля.

Следует отметить, что для понимания структуры жидкой воды важное значение имеют представления Попла [206] об изгибе водородных связей. Большой интерес представляют также идеи Фрэнка [207] о кооперативном характере возникновения и разрушения системы водородных связей в воде.

Из сказанного следует, что в жидкой воде мы имеем дело с молекулами, находящимися в различных состояниях: в составе локальных молекулярных образований, их пустотах и с нарушенными водородными связями. Выбор той или иной комбинации состояния молекул создает определенные модельные представления о ее структуре. Для создания правильного геометрического образа структуры требуется выделение ее характерных признаков из множества мгновенных состояний, возникающих за счет теплового движения.

К настоящему времени предложены самые разнообразные модели структуры, начиная с простейших ассоциатов, льдоподобных моделей и кончая чрезвычайно сложными, сходными со структурой полипептидов и полинуклеотидов -- бесконечно и беспорядочно разветвленный гель с быстро возникающими и исчезающими водородными связями. Обзор их можно найти в работах [12, 48, 200-202, 208].

Однако имеющиеся модели жидкой воды - это лишь известное приближение к действительности. В принципе нельзя построить модель структуры жидкости, адекватной ее реальной структуре. Многочисленные конкретные модели структуры воды имеют лишь ограниченное значение и здесь не обсуждаются.

Для создания геометрического образа структуры необходимо найти способ выделения характерных признаков из множества мгновенных конфигураций, возникающих в процессе теплового движения. Подход Ван-дер-Ваальса предполагает, что при отсутствии или наличии слабых межмолекулярных взаимодействий молекула испытывает жесткие упругие столкновения с молекулами своего окружения. Между столкновениями молекула движется свободно и характеризуется длиной свободного пробега. При наличии взаимодействия существенны мягкие столкновения, которые приводят к извилистости пути движения молекулы между двумя последовательными жесткими столкновениями.

В основе подхода Френкеля лежит другой механизм теплового движения. Предполагается, что молекула колеблется около временного положения равновесия, а затем скачком перемещается в другое положение (см. раздел III.1). При этом величина скачков близка к среднему расстоянию между соседними молекулами. Здесь важны период колебаний и среднее время пребывания около временного положения равновесия.

Для построения геометрического образа структуры используются оба из указанных подходов.

В масштабе времени [200, 209 ] различают:

мгновенную, или I-структуру --

измер кол

колебательно-усредненную, или V-структуру -

кол измер пост

диффузионно-усредненную, или D-структуру

измер пост

IV.I. Модели молекул метанола (а), этанола (б), пропанола (в) и изопропанола (г).

Для промежутков времени порядка 10 -10 с воде присуща V-структура. По сути дела V-структура -- это сугубо локальная характеристика жидкости, отражающая усредненную картину расположения молекул в ближайшем окружении вокруг произвольно выбранной молекулы за период времени, включающей приблизительно тысячу молекулярных осцилляций вблизи временного положения равновесия. Для жидкой воды понятие V-структуры играет фундаментальную роль, поскольку вода, как никакая другая жидкость, должна характеризоваться широким спектром V-структур.

Усреднение по всем локальным структурам дает картину строения жидкости, называемую диффузионно-усредненной, или D-структурой. Такое усреднение может быть выполнено во времени. В этом случае следует рассматривать D-структуру в ближайшем окружении данной молекулы в течение промежутков времени (10-8 сек), за которое совершается большое число вращательных переориентации и трансляционных перемещений молекул. С другой стороны, можно рассматривать D-структуру как результат усреднения локальных V-структур по всему пространству, занимаемому жидкостью.

С позиций статистической механики оба метода эквивалентны, однако, два этих подхода несколько различаются возможностями машинного моделирования жидких систем. D-Структура может быть описана с помощью ФРР. Экспериментальными методами, позволяющими получить необходимую информацию о ФРР, являются рентгенография и нейтронография. К теоретическим относятся метод интегральных уравнений и метод машинного моделирования. Следует отметить большое преимущество экспериментальных способов нахождения ФРР, так как они не требуют знания потенциала взаимодействия молекул, о котором для воды известно все еще мало. Из ФРР воды следует, что структура воды является приблизительно тетраэдрической и весьма ажурной -- среднее число ближайших соседей составляет 4,4, что отличается от соответствующего значения для льда. Вид ФРР воды сохраняет все основные особенности до весьма высоких температур (выше 373 К), что говорит о сохранении основных особенностей структуры воды и при повышенных температурах.

Метод МК для воды использован в работах [210, 211], а расчеты по МД систематически проводят Стилинджер и Рамано [212]. Основные выводы о строении воды, полученные разными авторами на основе расчетов совпадают. Макроскопическая D-структура воды является результатом наложений большого числа локальных V-структур, а V-структура в воде представляет собой приблизительно тетраэдрические сетки водородных связей, топология которых не совпадает ни с одной из предложенных моделей. Но данным эксперимента [243] и теоретических расчетов можно сделать вывод, что наиболее близким к действительности является представление о структуре воды, как о статистически упорядоченной трехмерной сетке водородных связей.

Вышесказанное позволяет под структурой жидкой воды понимать статистическую упорядоченность ее взаимодействующих молекул в элементарном объеме при заданных условиях, которая проявляется в образовании сетки водородных связей и имеет ряд характерных особенностей (тетраэдричность расположения ближайших соседей, наличие пустот с частичным заполнением молекулами воды; разная степень связанности ее молекул, кооперативный характер водородной связи и др.).

Одноатомные спирты. Строение молекул одноатомных спиртов -- широко распространенных растворителей - изучалось в работах [36, 214]. Основные характеристики их приведены в табл. IV.1.

Модели, приведенные на рис. IV.1, позволяют заключить, что молекулы рассматриваемых спиртов можно рассматривать как тетраэдры, в центре которых расположены атомы углерода, а в вершинах -- атомы водорода, углеводородные радикалы и гидроксильные группы. Физической основой такого окружения атома углерода является тетраэдрическое расположение его гибридных sp3-орбиталей, принимающих участие в образовании химических связей.

Спектроскопические исследования [215] показали, что одноатомные спирты, начиная с этанола, могут образовывать поворотные изомеры, так называемые транс- и гош-изомеры. В первом случае для нормальных спиртов гидроксильная группа находится в одной плоскости с углеродным скелетом, во втором -- она повернута к нему на 120°.

ТАБЛИЦА 1. Межъядерные расстояния и валентные углы в молекулах некоторых одноатомных спиртов

Фрагменты молекулы

Спирты

метанол

этанол

пропанол

пропанол-2

Межъядерные расстояния, нм

O-Н

0,0937

0,0956

0,0937

C-H

0,109.3

0,1090

0,1096

0,1090

C-O

0,1434

0,148

0,1434

0,1400

C2-C1

--

OJ54

0,1526

0,1550

С32

--

--

0,1526

0,1550

Валентные углы

COH

105° 56'

109° 56'

105°

ССО

--

109°32'

--

106° 6'

ССС

--

--

109°28'

112° 24'

(метил)

HCH

109030'

--

109° 16'

метилен

(метил)

108° 19'

CCH

--

--.

--

110° 36'

метилен

(мeтил)

110°36'

В молекуле спиртов атом кислорода обладает двумя неподеленными парами электронов, что обусловливает значительную полярность их молекул. Распределение зарядов в рассматриваемых спиртах обсуждено в работе [216].

IV.2. Основные элементы структуры одно- (a) и многоатомных (б) спиртов:

I -- линейный ассоциат; II -- циклический димер; III, V -- циклические тримеры; IV, VI-- циклические тетрамеры.

Рентгеноструктурные исследования жидких одноатомных спиртов впервые были выполнены Стюартом и Морроу 1217 ]. На основании этих данных Захариазен [218] рассчитал кривые радиального распределения электронной плотности для метанола и нонанола, а также предложил модель, согласно которой молекулы спирта за счет водородных связей ассоциированы в цепочки с неплоскостным расположением атомов (рис. IV.2). К аналогичным результатам пришли Остер и Кирквуд [219]. Расчет по кривым радиального распределения привел к следующим значениям координационных чисел в структуре спиртов: 2 -- метанол и этанол; 3, 2 -- пентанол; 3, 5 -- гептанол и 5, 3 -- дециловый спирт [220]. Об этом свидетельствуют и результаты других работ.

В работах [215, Л.Н. Иманов; 221 1 установлено, что кроме цепочечных ассоциатов, одноатомные спирты могут образовывать циклические ассоциаты: циклические тримеры и тетрамеры для метанола и димеры для других спиртов (рис. IV.2).

Степень ассоциации, состав и форма ассоциатов зависят от различных факторов. Степень ассоциации спиртов снижается с увеличением молекулярной массы спиртов, т. е. для них характерен так называемый эффект утяжеления 14, 48]. Физическая сущность его связана с ослаблением водородной связи как за счет стерического фактора, так и за счет тепловых колебании частиц. В том же направлении, что и эффект утяжеления, действуют повышение температуры и добавки некоторых неполярных веществ. Действие эффекта утяжеления проявляется также в том, что с ростом молекулярной массы спиртов структура их становится все более плотной. Об этом свидетельствует уменьшение коэффициента термического расширения одноптомных спиртов при переходе от метанола к бутанолу [222]. На степень ассоциации спиртов непосредственное влияние оказывает изомерия спиртов (разветвленность углеводородного радикала). Так, для изомерных спиртов она несколько меньше, чем для нормальных [221, В. Singh]. С увеличением числа молекул спирта в ассоциате увеличивается вероятность перехода линейных ассоциатов в циклические.

При рассмотрении структуры жидких одноатомных спиртов необходимо учитывать взаимодействие между неполярными углеводородными радикалами за счет вандерваальсовых сил. Как показано в работе [223], энергия такого взаимодействия близка к энергии водородной связи между молекулами спиртов или превышает ее.

В работе [224] сделана попытка создания машинной модели жидких метанола и этанола. Расчеты показывают, что молекулы спиртов ассоциированы в изогнутые разветвленные цепи и внутримолекулярное вращение не оказывает существенного влияния на структуру.

Иной подход к структуре одноатомных спиртов предложен в работах Тарасова с сотр. [225], в которых ее рассматривают как трехмерную статистическую упорядоченность. В локальных молекулярных образованиях молекулы спиртов связаны жесткими водородными связями. .Молекулы спиртов разных образований связаны вандерваальсовыми силами. Однако и в этом случае мы имеем дело с цепными и слоистыми структурами, обуславливающими структуру спиртов по сравнению со структурой воды.

Одноатомные спирты и вода существенно различаются по энергии водородной связи. По данным Полинга [9], энергия водородной связи для воды составляет 18,8, а для метанола и этанола 25,9 кДж-моль-1. Если учесть, что в воде на одну молекулу приходится две водородные связи, а в спиртах только одна, то станет совершенно очевидным большая прочность структуры воды.

Отличительная черта одноатомных спиртов -- более плотноупакованная структура их по сравнению с водой.

Многоатомные спирты. Строение молекул многоатомных спиртов по сравнению с одноатомными изучено хуже. Данные для этиленгликоля и глицерина приведены в табл. IV.2 [2261.

Молекулы многоатомных спиртов (гликолей) могут образовывать поворотные изомеры, причем наиболее вероятна гош-форма [227]. Однако при повышении температуры для этиленгликоля равновесие между изомерами смещается в сторону образования трансформы [228]. Особенности строения их молекул определяют специфику структуры многоатомных спиртов в жидком состоянии.

Молекулам многоатомных спиртов из-за наличия двух и более гидроксильных групп свойственно образование двух типов водородных связей: внутри- и межмолекулярной. Внутримолекулярные водородные связи изучены в работах [227--231]. На основе рассчитанных энергий водородной связи в работе [229] делается вывод, что в ряду изомерных бутиленгликолей прочность ее уменьшается в ряду: 1,4- >1,3- >1,2- и 2,3-бутиленгликоль, в то время как расстояние О...Н в этой же последовательности увеличивается. Авторы считают, что энергия образования внутримолекулярной водородной связи в этих соединениях сильно зависит от геометрического фактора. В 1,4-изомере -- семичленное кольцо, в 1,3-изомере -- шестичленное, в 1,2- и 2,3-изомерах -- пятичленные кольца. Увеличение расстояния между гидроксильными группами с увеличением длины углеводородной цепи уменьшает вероятность образования внутримолекулярной водородной связи [229].

ТАБЛИЦА 2. Межъядерные расстояния и валентные углы в молекулах некоторых многоатомных спиртов

Фрагменты молекулы

Cпирты

Фрагменты молекулы

Спирты

Этиленгликоль

Глицерин

Этиленгликоль

Глицерин

Межъядерные расстояния, нм

Валентные углы

О--Н

0,097

0,096

СОН

-

107--109°

С--Н

0,108

0.1083

ССО

109°30'

109° 18'

С--О

0,143

0,143

СОС

--

109° 18'

С--С

0,154

0,152

В работе [230] из ИК-спектров многоатомных спиртов [НО -- (СН2)n -- ОН, где п ==2-6] и с использованием литературных данных делается вывод, что образование внутримолекулярной водородной связи наиболее выгодно для 1,4-бутиленгликоля. Найдено также [230, 231], что у этиленгликоля при 298,15 К за счет образования водородной связи между соседними гидроксильными группами происходит выигрыш в изменении энтропии. Вследствие этого этиленгликоль содержит наибольшее число циклических структур.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.