Термодинамическая характеристика процессов сольватации ионов
Понятие сольватации. Свойства и структурные особенности жидких растворителей и растворов. Взаимодействия ионов и молекул растворителя. Влияние добавок примесей. Термодинамические характеристики растворенных веществ в "абсолютно чистых" растворителях.
Рубрика | Химия |
Вид | лекция |
Язык | русский |
Дата добавления | 28.08.2010 |
Размер файла | 1,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Многоатомные спирты, имеющие три гидроксильные группы, могут образовывать две внутримолекулярные водородные связи, но доля связанных за счет их гидроксильных групп в трехатомных спиртах меньше, чем у двухатомных [232].
Несмотря на важную роль внутримолекулярных водородных связей в многоатомных спиртах, их структура в жидком состоянии определяется в основном образованием межмолекулярных водородных связей (см. рис. IV.2). Наличие в многоатомных спиртах двух или более гидроксильных групп приводит к тому, что в жидком состоянии в них образуется статистически упорядоченная пространственная сетка водородных связей [28, 233, 234]. Плотность их в этиленгликоле и глицерине в полтора -- три раза больше, чем и одноатомных спиртах [48]. Авторы работы [233] указывают, что у этиленгликоля степень разветвленности водородных связей, больше чем у воды, однако энергия этих связей меньше.
Тепловое движение молекул, разрывая или искажая водородные связи, ведет к локальному ослаблению межмолекулярных сил, но подобие динамически подвижной пространственной молекулярной сетки сохраняется [48]. Согласно выводам [2341, сделанным на основании исследований диэлектрической проницаемости этиленгликоля в интервале 293-423 К, вблизи температуры плавления число водородных связей на молекулу составляет немного меньше четырех. При повышении температуры это число резко уменьшается и около 323,15 К становится равным двум, соответствуя переходу от пространственной к цепочной структуре.
На образование межмолекулярных водородных связей заметное влияние оказывают внутримолекулярные водородные связи. Так, в бутиленгликолях [235] за счет образования внутримолекулярных водородных связей снижается число донорных и акцепторных групп, принимающих участие в образовании межмолекулярных водородных связей. Вследствие чего их способность к образованию таких связей близка к таковой одноатомных спиртов. Молекулы глицерина обладают большим числом донорных и акцепторных групп, в результате чего способность к образованию межмолекулярной водородной связи у них выше.
Степень ассоциации многоатомных спиртов, их способность к образованию межмолекулярных водородных связей зависит, как видно из вышесказанного, от многих факторов. В работе [236] рассмотрены некоторые закономерности влияния строения молекул и температуры на ассоциацию в гликолях. Из них следует, что наименее ассоциированы гликоли с прямыми цепями; рост разветвленности углеводородной цепи увеличивает степень ассоциации; при высоких температурах в случае разветвленной цепи гликоли ассоциируются только за счет одной гидроксильной группы молекулы.
Отметим, что имеются указания на существенную роль межмолекулярных взаимодействий за счет сил Ван-дер-Ваальса [223] на ассоциацию в многоатомных спиртах.
За последнее время в литературе появляется все больше данных, полученных при помощи таких современных методов исследования, как: ИК-спектроскопия [237]; акустическая спектроскопия [238];определение спектров комбинационного рассеяния [239]; измерение диэлектрической релаксации [194], а также релаксации сдвиговой и объемной вязкости [240], определение спектров корреляции фотонов в жидком глицерине, с помощью аргонового лазера [241 ] и т. д., которые убедительно свидетельствуют о наличии высокоупорядоченной статистической сетки водородных связей в многоатомных спиртах. Вместе с тем эта сетка заметно отличается от той, которая характерна для жидкой воды: в ней отсутствуют тетраэдрическое окружение молекул ближайшими соседями, пустоты, в которых могут размещаться молекулы растворителя. Сближает эти сетки наличие в локальных молекулярных образованиях трехмерной сетки водородных связей.
Другие растворители. К числу изученных органических растворителей относятся: кетоны; карбоновые кислоты; эфиры; алифатические и ароматические углеводороды и их производные; амины, а также некоторые растворители с особыми свойствами. Из неорганических растворителей изучены: серная кислота, аммиак, перекись водорода, оксиды серы, хлороксиды серы и фосфора и многие др. Сведения об их структуре в жидком состоянии либо недостаточно полны, либо противоречивы. Имеющихся обобщений в этой области недостаточно [194, 242, 243]. Остановимся кратко на тех растворителях, которые изучены в плане обсуждаемых вопросов.
IV.3. Схемы строения молекул ацетона (I), диоксана (II), муравьиной (III) и уксусной (IV) кислот, ДМСО (V) и ДМФА (VI) (расстояние в нм).
Ацетон относится к алифатическим кетонам, в которых существенную роль играет диполь-дипольное взаимодействие. Атом кислорода карбонильной группы, обладая неподеленной парой электронов, проявляет протон-акцепторные свойства. Схема строения молекулы ацетона приведена на рис. IV.3; там же приведены значения межъядерных расстояний и углов [243]. В ацетоне из-за отсутствия активных протон-донорных групп [194] водородные связи между молекулами не образуются. Считается, что при 283,15 К в ацетоне полностью отсутствует межмолекулярная ассоциация [194, 244]. При более низких температурах она возможна за счет антипараллельной ориентации диполей [194].
Муравьиная и уксусная кислоты представляют собой растворители, в которых существенную роль играют межмолекулярные водородные связи. Особенности указанных кислот определяются строением их молекул (см. рис. IV.3); значения межъядерных расстоянии и углов для этих кислот взяты из работы [245]. На основании ИК-, ЯМР-спектров и дифракции электронов [246] показано, что в газообразном состоянии муравьиная кислота находится преимущественно в форме циклических димеров. Исследование ИК-спектров жидкой муравьиной кислоты не дало однозначного ответа о ее структуре [247]. Однако предполагается, что в жидком состоянии имеются линейные ассоциаты из молекул кислоты. Фактор ассоциации муравьиной кислоты равен 3,6 при 293,15 К. Она обладает как протон-донорными, так и протон-акцепторными свойствами.
В газообразном состоянии уксусная кислота также находится главным образом в виде димеров [248]. В жидкой фазе уксусная кислота образует сложную смесь кольцевых димеров, мономеров и цепочечных ассоциатов, находящихся в динамическом равновесии [249].
1,4-Диоксан -- это представитель класса эфиров. Схема строения его молекулы приведена на рис. IV.3; там же даны межъядерные расстояния и углы [250]. В растворе и в парах 1,4-диоксан существует исключительно в виде крестовидной конформации. Исследования методом релеевского рассеяния света [251 ] привели к выводу, что в жидком диоксане имеются мономеры, димеры, тримеры. Соотношение между ними существенно зависит от температуры. Образование ассоциатов связано с возможностью образования между молекулами слабой водородной связи [2521.
За последние годы, наряду с типичными органическими, широкое распространение получили растворители с особыми свойствами. Среди них заметное место принадлежит так называемым «сверхрастворителям» -- диметилсульфоксиду (ДМСО) и диметилформамиду (ДМФА).
ДМСО отличается от ацетона тем, что карбонильный углерод заменен на серу. Это обстоятельство приводит к принципиальному изменению в пространственном расположении атомов и свойств указанных жидкостей. Если молекула ацетона имеет плоскую структуру, то ДМСО обладает пирамидальным строением [253] (см. рис. IV.3). В вершине пирамиды находится атом S, высота ее 0,0706 нм. Поскольку атом серы имеет наименьший вибрационный эллипсоид, то центр тяжести ляжет недалеко от него [253]. Однозначного мнения о характере связи S--О не существует. Методом ИК-спектроскопии найдено, что она имеет наполовину ионный и наполовину ковалентный характер [254]. Для молекул ДМСО по сравнению с ацетоном характерна более сильная донорная способность [255]. В молекуле ДМСО имеется два акцепторных центра -- атом кислорода с наивысшей электронной плотностью и экранированный атом серы [256]. Координация ДМСО окружающими молекулами осуществляется через кислород [257]. ДМСО относится к сильно ассоциированным жидкостям [258]; характер ассоциации может быть разным [259]. При этом наиболее вероятно образование циклических димеров. Термодинамические исследования [260] подтверждают представления о ДМСО, как об ассоциированной жидкости.
ДМФА является наиболее интересным представителем амидных растворителей. Особенности их определяются спецификой молекулярной структуры. Химические свойства амидов, несмотря на присутствие группы С==0, существенно отличаются от таковых альдегидов и кетонов, в которых эта группа характеризуется высокой химическом активностью. Длина связи С-N в амидах 0,134 им для ДМФА) заметно короче, чем ст-связь С - N (0,1376 нм для формальдегида, 0,147 нм для нитрометана) [261]. Длины связей С=О в амидах и альдегидах близки.
ТАБЛИЦА 3. Физико-химические характеристики жидких растворителей при стандартных условиях (Р = 1,01325 105 Па; Т=298,15 К)
Растворитель |
М, у. е. |
Ткип, К |
Тnл, К |
р, кг/м3 |
п |
De |
, Д |
||
Вода Н2О |
18,0160 |
373,15 |
273,15 |
997,07 |
1,3330 (293 К) |
78,25 |
1,86 |
0,801 (303 К) |
|
Метанол СН3ОН |
32,042 |
337,66 |
175,66 |
786,75 |
1,3286 (293 К) |
32,70 |
1,706 |
0,5445 |
|
Этанол С2Н5ОН |
46,069 |
351,39 |
158,6 |
785,22 |
1,3613 (293 К) |
32,70 |
1,706 |
1,078 |
|
Пропанол С3Н7ОН |
60,096 |
370,30 |
146,0 |
799,50 |
1,38556 (293 К) |
20,33 |
1,657 |
2,004 |
|
Пропанол-2 (СН3)2СНОН |
60,096 |
355,55 |
183,7 |
785,1 (293 К) |
1,3776 (293 К) |
18,3 |
1,65 |
2,43 (293 К) |
|
Бутанол С4Н90Н |
74,123 |
390,6 |
193,3 |
809,9 (293 К) |
1,3993 (293 К) |
17,7 |
1,66 |
-- |
|
Бутанол-2 (СН3)2СНСОН |
74,123 |
380,7 |
165,6 |
802,7 (293 К) |
1,3878 (293 К) |
17,24 |
-- |
-- |
|
Этиленгликоль НО(СН2)2ОН |
62,068 |
470,9 |
261,6 |
1106,6 |
1,4318 |
37,7 |
2,88 |
17,3 |
|
Диэтиленгликоль НОСН2СН2ОНСН2ОН |
106,120 |
691,2 |
265 |
1117,0 |
1,4472 |
30,8 |
-- |
30 |
|
Глицерин НОСН2СН2ОНСН2ОН |
92.094 |
563 |
291,2 |
1258 |
1,4744 |
42,4 |
2,56 |
94,5 |
|
1,2-Пропиленгликоль НОСН2СН2ОНСН3 |
76,095 |
461 |
223 |
1032,4 |
1,4313 |
29,02 |
2,25 |
45,66 |
|
1,3-Пропиленгликоль HOCH2CH2CH2OH |
76,095 |
487,1 |
241,1 |
1048,9 |
1,4396 |
35,0 |
2,50 |
-- |
|
1,4-Бутиленгликоль НОСН2(СН2)2СН2ОН |
90,124 |
503 |
293 |
1012,9 |
1,4420 |
30.7 |
2,55 |
75,6 |
|
Ацетон (СН3)2СО |
58,080 |
329,39 |
177,80 |
785,08 |
1,35609 |
20,7 |
-- |
0,2954 |
|
Муравьиная кислота НСООН |
46,025 |
373,9 |
281,40 |
1219,61 (293 К) |
1,37140 (293 К) |
56,1 |
-- |
1,966 |
|
Уксусная кислота СН3СООН |
60,052 |
291,2 |
289,90 |
1055,0 (288 К) |
1,3720 (293 К) |
6,19 |
-- |
||
1,4-Диоксан О(СН2)2(СН2)2О |
88,114 |
374,47 |
284,95 |
1033,75 (293 К) |
1,42241 (293 К) |
2,209 |
0,45 |
1,31 (293 К) |
|
ДМСО (СН3)2SО |
78,133 |
462 |
291,70 |
1095,75 |
1,4783 (273 К |
46,4 |
-- |
2,000 |
|
ДМФА (СН3)2NCOН |
173,094 |
451 |
237 |
944,5 |
1,4269 |
36,7 |
3,82 |
-- |
|
Тетраметиленсульфон (ТМС, сульфолан) (CH2)4SO2 |
120,170 |
558 |
301,60 |
1261,5 (303 К) |
1,48181 (303 К) |
43,3 (303 К) |
-- |
9,87 (303 К) |
|
Этиленкарбонат (ЭК) (СН2О)2СО |
88,066 |
511 |
309,6 |
1320,8 (313 К) |
1,4199 (313 К) |
89,61 (313 К) |
-- |
1,85 (313 К) |
|
Гексаметилфосфортриамид (ГМФТ, гексаметанол) [(CH3)2N]3PO |
179,204 |
508 |
280,4 |
1020,26 |
1,4570 |
29,6 |
- |
3,247 |
Введение в амидную группу формамида вместо атомов водорода двух метильных групп приводит к существенным изменениям свойств амидов. Молекулярное строение ДМФА приведено на рис. IV.3; там же даны межъядерные расстояния и углы [259, 261 ].
Рентгенографически [2621 и электронографически [261] найдено, что конфигурация молекулы ДМФА близка к плоской, причем метильные группы атома азота неэквивалентны: одна из них расположена к группе С--Н ближе, чем другая. Вследствие частичной двоесвязанности связи С--N барьер внутреннего вращения вокруг нее сравнительно велик. По данным ЯМР [263] энергетический барьер внутреннего вращения лежит в интервале от 29,3 до 108,9 кДж-моль-1.
Молекула ДМФА имеет три неподеленные пары электронов -- одна на атоме азота и две на атоме кислорода; поэтому для ДМФА характерны сильные электрондонорные свойства, причем донором электронов является карбонильный кислород.
Вопрос о существовании ассоциатов в жидком ДМФА до конца не выяснен, а имеющиеся данные противоречивы.
К рассматриваемой группе растворителей относятся также тетра-метиленсульфон (ТМС), этиленкарбонат (ЭК), пропиленкарбонат (ПК), гексаметилфосфортриамид (ГМФТ), нитрометан (НМ) и многие другие. Однако обсуждение их здесь нецелесообразно.
В заключение отметим, что указанные выше растворители характеризуются специфическим взаимодействием с растворенным веществом. Физико-химические свойства этих растворителей, приведенные в табл. IV.3, показывают, что они относятся к протонным и диполярным апротонным растворителям. Наиболее характерны для них -- наличие несвязывающих неподеленных пар электронов; именно поэтому они представляют особое значение для изучения сольватационных процессов. Протонные растворители содержат группы, способные отщеплять протоны (--ОН, >NH, --SH и др.), и являются донорами протона при образовании водородных связей. Диполярные апротонные растворители обладают высокой диэлектрической проницаемостью и большими дипольными моментами. Они хорошо сольватируют катионы l263] и поэтому растворяют неорганические соли. Существенное значение имеют и другие характеристики растворителей -- их донорно-акцепторная способность, полярность и др. [163, 255, 264].
Наряду с индивидуальными растворителями, большой интерес представляет исследование смешанных растворителей и растворов.
Строение и структура растворов
С учетом соображений, высказанных в начале главы, под структурой раствора (его химической организацией) мы понимаем статистическую упорядоченность сложной равновесной системы растворитель --растворенное вещество - продукты их взаимодействия в элементарном объеме при заданных условиях, характеризующуюся определенными ближним и дальним окружением относительно выбранных частиц раствора разной природы, типом внутри- и межчастичных взаимодействий, степенью их связанности.
Структуру раствора описывают, исходя из различных концепций |48]. В основе одной лежит идея о доминирующем влиянии структур компонентов раствора. В этом случае выделяется несколько областей, где структура раствора определяется либо структурой чистых компонентов, либо структурой их смеси. В основе другой лежат модельные представления о строении сольватированной частицы (иона) в растворе. Наиболее существенным здесь является признание сольватных образований в качестве первой структурной оставляющей в растворе. Оба из указанных подходов являются приближенными, поскольку система не рассматривается как единая, состоящая из взаимодействующих частиц растворенного вещества, растворителя и продуктов их взаимодействия. Вместе с тем использование их плодотворно и позволяет решать многие вопросы теории растворов. Первую концепцию целесообразно использовать для растворов неэлектролитов, вторую -- для растворов электролитов.
Строение и структура растворов, а также их свойства зависят в основном от природы растворителя и растворенного вещества, его концентрации, температуры, давления, добавок неэлектролита и некоторых других.
Указанный круг вопросов является чрезвычайно широким. В связи с чем мы остановимся только на тех, которые непосредственно связаны с темой данной книги. Обычно при изучении свойств растворов, в том числе строения и структуры, их подразделяют на две большие группы: растворы неэлектролитов и растворы электролитов.
Растворы неэлектролитов. Из растворов неэлектролитов в первую очередь нас интересуют те из них, которые относятся к числу смешанных растворителей. В этом случае, неэлектролит в свободном состоянии представляет собой жидкий растворитель. Наиболее изученными из смешанных растворителей оказались водные растворы органических веществ и, прежде всего, водные растворы одно- и многоатомных спиртов.
Обсуждению свойств водных растворов одноатомных спиртов посвящены обзоры [4, 48, 242, 265, 266]. Литературные данные показывают, что структура спиртоводных растворов существенно зависит от концентрации спирта, его природы, добавок неэлектролита и электролита, температуры и некоторых других факторов.
Концентрационные зависимости свойств водных растворов одноатомных спиртов позволяют выделить в них, по крайней мере, три области структур: воды, смешанные водно-спиртовые и спирта. В области высоких концентраций воды и спирта преобладают соответственно: структура воды с включенными в нее молекулами спирта и структура спирта с включенными в нее молекулами воды. В области средних концентраций водных растворов одноатомных спиртов происходит, по-видимому, непрерывный переход структуры, характерной для воды, к структуре спирта, которые находятся между собой в динамическом равновесии.
По данным Кертюма [267], молекулы воды легко внедряются в структуру спирта, а это сохраняет неизменность последней в довольно широком диапазоне концентраций. В данной области на диаграммах состав -- свойство наблюдаются, как правило, плавные зависимости [4, 48, 265-268]. Водородные связи между молекулами спирта здесь не нарушены, что обусловлено большой энергией водородной связи для спиртов и выравниванием их числа на одну молекулу воды и спирта.
Наличие трех областей связывают с эффектом внедрения молекул спирта в пустоты структуры воды, разрушением тетраэдрической структуры последней и образованием смешанных ассоциатов.
Попадание молекул спирта в пустоты локальных молекулярных образований или между ними вызывают либо стабилизацию локальных образований, либо их перестройку в направлении упрочнения структуры воды. Это явление сопровождается уменьшением коэффициента самодиффузии, диэлектрической релаксации молекул воды, появлением экстремумов на диаграммах состав -- свойство (тепловые эффекты смешения, растворимость и др.) [48]. Особенно легко внедряются молекулы метанола, которые, будучи небольшими по размеру, попадая в пустоты локальных молекулярных образований, по-видимому, сохраняют пространственное расположение их молекул. Более крупные молекулы (этанол и др.) приводят к перестройке пространственного расположения молекул локальных образований и к их стабилизации в новом окружении. Причем гидрофильные группы спиртов могут замещать молекулы воды в локальных образованиях. Гидрофобный алкильный радикал может стабилизировать структуру воды не только за счет уменьшения трансляционного движения молекул воды, но и за счет вандерваальсового взаимодействия [269].
Вместе с тем увеличение размеров алкильного радикала сопровождается более существенными перестройками локальных молекулярных образований (разрушение существующих и образование новых), что отражает увеличение разрушающего воздействия молекул спирта на структуру воды при переходе от метанола к этанолу, пропанолу и бутанолу.
В водных растворах одноатомных спиртов их молекулы, находящиеся в составе локальных молекулярных образований могут быть связаны с молекулами воды или спирта водородной связью или гидрофобизованы [205]. Гидрофобизация связана не только с трудностями образования направленных связей, но и с различной их геометрической ориентацией в пространстве (линейные водородные связи у спиртов по сравнению с тетраэдрическими у воды).
Очень важный результат работ [205, 270 ] -- установление двух механизмов попадания добавок неэлектролитов в пустоты структуры воды: внедрения и внедрения-замещения. Первый может быть назван гидрофобным, второй -- гидрофильным. Существенным являются также представления о максимальной стабилизации структуры воды добавками неэлектролита [271].
Область составов растворов, в которой в основном сохраняется структура воды, устанавливается экспериментальными методами. Вместе с тем можно с уверенностью полагать, что структура воды сохраняется, по крайней мере, до концентрации спирта, отвечающей максимальной стабилизации структуры воды [272].
Следует отметить, что попытки объяснения экстремальных свойств на кривых зависимостей состав -- свойство образованием химических соединений определенного состава не увенчались успехом, поскольку положение экстремума (относительно оси концентраций) зависит не только от природы добавляемого неэлектролита, но и от его концентрации, температуры, введения третьего компонента и т. п. Тем не менее, удалось выделить и изучить ряд гидратов одноатомных спиртов [272]. В водных растворах одноатомных спиртов мы имеем дело с химическими соединениями переменного состава. Адекватным для них является описание на основе структурных представлений.
В области средних концентраций, где реализуются спиртоводные структуры, трехмерная структура жидкой воды переходит в одно- и двумерную структуру спирта.
Область составов водных растворов одноатомных спиртов, в которой в основном сохраняется структура спирта достаточно большая [48, 266]. Это, вероятно, связано с малыми размерами молекулы воды и способностью их образовывать водородные связи. Отметим, что водородная связь вода-спирт прочнее по сравнению с водородной связью вода-вода или спирт-спирт [48, 273].
Границы раздела составов водных растворов одноатомных спиртов с различными структурами существенно зависят от природы спиртов, температуры, добавок электролита и т. д. В простейшем случае увеличение размеров молекул спирта и повышение температуры приводит к ограничению областей существования чистых структур (воды и спирта). Однако это воздействие может осложняться сменой механизмов внедрения и внедрения -- замещения, а также структурными перестройками при попадании молекул спирта в локальные молекулярные образования раствора заданного состава [48]. Следует отметить, что действие температуры наиболее эффективно в области малых добавок спиртов и при ее понижении.
Влияние добавок электролитов к водным растворам одноатомных спиртов является довольно сложным и будет обсуждено специально. Зависимость структуры в водных растворах одноатомных спиртов от различных факторов аналогична таковой для индивидуальных растворителей.
Растворы электролитов. Строение, структура и свойства растворов электролитов в воде, неводных и смешанных растворителях во многом зависит от взаимодействия ионов с молекулами растворителя раствора, т. е. от сольватации. Процесс сольватации можно представить уравнением
Реальная форма иона в растворе может быть представлена как одна из тех, которые соответствуют указанным границам раздела.
Соотношение между числами молекул растворителя и вида сольватации в зависимости от границ раздела представлены в табл. IV.4.
Исследования водных растворов рентгенографическими, оптическими, электрохимическими, термодинамическими и другими методами показывают, что гидратация ионов сопровождается нарушениями упорядоченности структуры воды. Многочисленными экспериментальными данными установлено, что ионы в этом случае по своему действию на молекулы воды в растворе распадаются на две группы. К первой группе относятся, как правило, крупные однозарядные одно- и многоатомные ионы (K+, Cs+, Br-, I-, ReO4-, IO4- и др.), для которых эффекты разупорядочения структуры воды являются преобладающими. Ко второй группе относятся многозарядные и небольшие однозарядные одно- и многоатомные ионы (Al3+, Mg2+, Li+, РO43-, SO42- и др.), для которых преобладающими являются эффекты упорядочения структуры воды. Некоторые ионы оказываются очень близкими к границе раздела между этими группами.
Поведение ионов первой группы является необычным и они характеризуются отрицательной гидратацией [4, 48, 109].
На основании исследования рассеяния рентгеновских лучей, инфракрасных спектров, спектров комбинационного рассеяния и некоторых других [110] были установлены два правила: «ионы действуют так же, как температура» и «ионы действуют так же, как давление». Причем ионы первой группы вызывают такие же нарушения упорядоченной структуры воды, что и повышение температуры, ионы второй группы вызывают обратный эффект [4, 48]. При образовании структуры раствора существенны индивидуальные особенности ионов [48, 287].
Структуру раствора описывают, используя различные представления. Одно из них базируется на модельных представлениях о строении сольватированного иона в растворе по уравнению (IV.2). Другое -- на основе представлений о доминирующем значении структур компонентов раствора. Указанные подходы не являются взаимоисключающими, а дополняют друг друга.
Первые порции электролита оказывают наибольшее воздействие на структуру растворителя -- вокруг ионов формируется структура раствора, определяемая строением сольватированного иона и структурой растворителя. Добавление электролита приводит к последовательному исчезновению структуры чистого растворителя, дальней и частично ближней сольватации. Исчезновение структуры чистого. растворителя происходит при концентрациях электролита, отвечающих границе дальней сольватации (ГДС) или границе раздела III-III (см. табл. IV.4).
Таким образом, ГДС отвечает такой концентрации электролита в растворе, при которой все молекулы растворителя входят в состав сольвата (образуют его ближнее и дальнее окружение). Это понятие было введено нами со Зверевым [48, 288] при объяснении результатов термохимических исследований в области разбавленных растворов.
Дальнейшее добавление электролита способствует постепенному исчезновению молекул растворителя в области дальней сольватации. Они участвуют в формировании сольватного окружения вновь появляющихся в растворе ионов. Этот процесс протекает до границы полной сольватации (ГПС). При достижении ее все молекулы растворителя находятся в ближайшем окружении ионов. Это состояние характеризуется границей раздела II-II (см. табл. IV.4).
Следовательно, ГПС соответствует такой концентрации электролита, когда ионы имеют только ближнее окружение. Представления о ГПС были развиты Мищенко и Сухотиным [70, 289]. Концентрация электролита, отвечающая ГПС, определяется суммой координационных чисел катионов и анионов. Для каждого иона в этом случае в формуле (IV.2) т = n, а молекулы растворителя Rp+t в области дальней сольватации и свободный растворитель Rk отсутствуют. Последующее увеличение концентрации электролита из-за конкуренции ионов за растворитель приводит к тому, что все молекулы растворителя координируются вокруг катионов (в этом случае их сольватация энергетически более выгодна, чем сольватация анионов).
Граница неполной сольватации (ГНС) отвечает границам раздела I-I для анионов и II-II для катионов (см. табл. IV.4). Другими словами ГНС отвечает такой концентрации электролита, при которой один из ионов (катион) имеет ближнее окружение из молекул растворителя, а другой (анион) его не имеет при отсутствии молекул дальнего окружения и свободного растворителя [7]. Дополнительное увеличение концентраций электролита приводит либо к выпадению кристаллосольватов, либо к исчезновению области ближней сольватации для катиона. Следует отметить, что при концентрациях электролита от ГДС до ГПС и особенно ближе к последней, структура растворителя в области ближней сольватации может существенно меняться. Физическая возможность этого связана с тем, что структура растворителя в области ближней сольватации в разбавленных растворах определяется конкурирующим воздействием на эти молекулы растворителя иона и молекул растворителя дальнего окружения. В области концентраций, близких к ГПС, определяющим является воздействие иона, а это приводит к зависимости координационного числа от концентрации электролита. Отметим, что в реальных системах, т. е. для стехиометрической смеси ионов, из-за влияния ионов на структуру растворителя в области сольватации противоположно заряженного иона, различия их свойств, влияние концентрации электролита на структуру раствора усложняется. Указанные концентрационные границы могут быть размыты [46, с. 52]. Кроме того, возможно введение других границ, аналогичных ГДС и ГПС.
Строение растворов, и, в частности, его структура, существенно зависит от температуры. Не случайно, что Бернал и Фаулер [116] ввели представление о «структурной температуре», равной той, до которой необходимо нагреть растворитель, чтобы достигнуть такого нарушения структуры, какое наблюдается в данном растворе. Ионы с положительной гидратацией понижают структурную температуру воды, а с отрицательной увеличивают.
В свою очередь, как было показано нами с сотр. [4; 46, с. 64; 48, 100], изменение температуры влияет на отнесение ионов к ионам с положительной или отрицательной сольватацией (гидратацией). Причем при определенной температуре («предельная температура») упрочняющее и разрушающее действие ионов на структуру растворителя становится одинаковым. Таким образом, изменением температуры можно влиять на строение растворов, а результаты его использовать для практических целей.
На структуру водных растворов электролитов определенное влияние оказывает и давление. Для них Копелиовичем [290] по аналогии со структурной температурой воды вводится понятие о «структурном давлении» ионного раствора. Структурное давление определяется внешним давлением; при этих давлениях величины потенциальных барьеров, разделяющих соседние положения равновесия молекул воды в чистой воде и ближайших к ионам, одинаковы и, соответственно, одинаковы частоты трансляционных скачков. По своему действию ионы с положительной гидратацией повышают структурное давление раствора, а с отрицательной - понижают. При таком подходе изменение структурного давления раствора действует в направлении, обратном структурной температуре. Рост внешнего давления также приводит к разрушению структуры воды [291] и, следовательно, к уменьшению разрушающего действия ионов.
В работе [292] показано, что при определенных давлениях наблюдается изменение гидратируемости ионов. Структура водных растворов электролитов в значительной степени зависит от добавок неэлектролита. Среди структурных характеристик электролитных растворов особое место занимает координация в области ближней и дальней сольватации ионов. Для выяснения этого вопроса в последние годы эффективно используют самые разнообразные методы исследования, например: рентгенографию [293]; ИК-спектроскопию [294]; ЯМР-спектроскопию [295]; гравиметрию [296]; физико-химический анализ с использованием модельных представлений [297 1 и многие другие. При этом для катионов с конфигурацией атомов благородных газов установлена независимость координационных чисел от природы растворителя, температуры и концентрации раствора. Эти результаты подтверждают идею о доминирующем вкладе координационно-ковалентных взаимодействий при координации ионов в области ближней сольватации.
Предполагается, что пространственная конфигурация ближнего окружения ионов М+ близка к структуре правильного полиэдра - тетраэдра, октаэдра или куба для ионов с координационными числами 4, 6 и 8. Однако результаты работы [296] показывают, например, что при координационном числе катиона, равном 6, для иона К+ в водных растворах КNО3, КС1, KI координация его ближнего окружения вытянутая ромбическая, низкая и вытянутая квадратная бипирамидальная. Характер асимметрии конфигурации ближнего окружения здесь зависит от природы аниона. Подобные отклонения характерны и для многозарядных ионов. Возможность изменения модели ближнего окружения с концентрацией, температурой для водных и неводных растворов показана в работе [293].
Для анионов координационные числа в различных растворителях равны 7-9. Можно считать, что в водных растворах четыре молекулы растворителя взаимодействуют с анионом по типу Н-связей и образуют конфигурацию тетраэдра. Остальные молекулы растворителя располагаются на гранях тетраэдра и удерживаются Н-связями с молекулами воды, образующими тетраэдр. Образование Н-связи галоген-иона с молекулами ацетона и ацетонитрила показано методом ИК-спектроскопии в работе [298]. Различный характер сольватации катионов и анионов в области ближнего окружения в смесях вода- метанол обнаружен на основе данных о зависимости энтропии ионов в растворе от состава смешанного растворителя.
Различными методами определены координационные числа ионов в отдельных областях дальней сольватации [296, 299]. Для I-I-электролитов эти числа в первой области дальней сольватации не превышают 30. Для различных областей дальней сольватации ионов М (III) фиксируются числа 30, 60, 90.
На сольватацию ионов существенное влияние оказывает характер межмолекулярных взаимодействий. В случае диполярных апротонных молекул даже сильные возмущения за счет ион-молекулярных взаимодействий локализуются только в ближнем окружении, в то время как в случае гидроксилсодержащих соединений они распространяются на дальнее окружение по цепочке межмолекулярных водородных связей [300]. Следствием этого является то, что числа дальней сольватации в метаноле и муравьиной кислоте (цепочечная ассоциация) больше, чем в этаноле и бутаноле, уксусной кислоте (наличие кольцевых димеров) [182, с. 43].
При исследовании строения и структуры растворов электролитов важное значение имеют меж- и многочастичные взаимодействия ионов и молекул растворителя. Однако строгое описание их либо затруднительно, либо невозможно.
Растворитель при сольватации атомно-молекулярных частиц выполняет двойственную функцию - химического реагента (молекулы растворителя ближнего и частично дальнего окружения) и среды (молекулы растворителя дальнего окружения). Ближняя сольватация частиц теснейшим образом связана с комплексообразованием, хотя эти понятия полностью не перекрываются. Сходство их проявляется в наличии определенной координации, близкой природе межчастичных взаимодействий. Различие - в степени взаимодействия, роли сольватации комплекса и ассоциата, влиянии противоионов, молекул дальнего окружения, добавок, внешних факторов.
При выяснении роли растворителя в сольватационных процессах весьма плодотворными оказываются термодинамические подходы. Наиболее общим методом является сравнительная характеристика реакции, протекающей соответственно в растворе и газовой фазе (в двух разных растворителях, один из которых принят за стандартный). Разница в количественных характеристиках жидко- и газофазной реакций (жидкофазной в разных растворителях), так называемый сольватационный эффект, характеризует различие между ними. Например, разница тепловых эффектов жидко- и газофазной реакций (сольватоэнтальпийный эффект) равна алгебраической сумме тепловых эффектов сольватации исходных реагентов и продуктов реакции ( Нсольв). Аналогичным путем можно определить сольватотермодинамические, сольватокинетические, сольватооптические и другие эффекты [1].
К числу термодинамических подходов оценки роли растворителя путем сопоставления относится использование таких параметров, как донорно-акцепторные числа, полярности растворителя и т. п. [163, первая ссылка; 264, Ю. Гуриков; 301].
Достаточно общий подход [4, 48], основанный на модельных представлениях о механизме сольватации, рассмотрен последующих разделах.
В заключение отметим, что большим достоинством термодинамических методов является выявление роли растворителя с учетом как энергетического, так и энтропийного факторов.
3. ВЛИЯНИЕ ДОБАВОК ПРИМЕСЕЙ
Вплоть до последнего времени влияние добавок примесей на термодинамическую характеристику реакций в растворах не привлекло должного внимания исследователей. Тем не менее в качестве растворителей используются не «абсолютно чистые» жидкости, а их растворы с добавками примесей (азот, кислород, вода и др.). При использовании неводных растворителей роль этих добавок возрастает как за счет увеличения растворимости газов по сравнению с водой, так и за счет трудностей их очистки от различных примесей.
Впервые необходимость оценки наличия в растворителе примесного содержания азота, кислорода, воды была показана нами с сотр. в сообщении на III Международной конференции по термодинамике и калориметрии (Баден, Австрия, 1973), где предложено экстраполировать H0pc электролитов на растворитель, не содержащий примесной воды. Позднее в нашей лаборатории были получены термодинамические характеристики в дегазированных растворителях, а именно: тепловые эффекты растворения солей [331, 341, 342]; э. д. с. и термо-э. д. с. [341-3431; растворимости [343]; коэффициенты активности [343] и др. Принципиальный вывод, следующий из этих исследований - зависимость термодинамических характеристик растворов и ионных процессов от содержания примесных добавок.
Имеющиеся данные по влиянию растворенных постоянных газов воздуха (азот, кислород) на тепловые эффекты растворения электролитов [321, 331, 341-342 ] показывают, что в зависимости от природы электролитов, растворителя и внешних условий эти эффекты могут быть для дегазированных растворителей более или менее экзотермичными по сравнению с недегазированными. Однако делать количественные выводы преждевременно из-за отсутствия достаточного числа экспериментальных данных по Hmpc. Следует, однако, иметь в виду, что различия в тепловых эффектах растворения в этом случае заметно превышает погрешности их определения.
Данные по растворимости хлорида натрия водных растворах одноатомных спиртов при различных температурах [343] показывает, что дегазация приводит к снижению растворимости (рис. VI.5). Можно считать, что растворенные газы воздуха изменяют в растворителе систему водородных связей, способствуя повышению растворимости электролита при прочих равных условиях.
На рис. VI.5, б приведены также коэффициенты активности хлорида натрия в водных растворах этанола во всей области составов [343]. Из него следует, что дегазация приводит к уменьшению коэффициента активности для всех изученных систем. Различие в коэффициентах активности для дегазированных и недегазированных растворов увеличивается с ростом концентрации органического компонента.
Термодинамические характеристики растворения хлорида натрия в водных растворах этанола для дегазированного и недегазированного растворителя приведены на рисунке VI.6. Концентрационные зависимости их изменения показывают заметное влияние растворенных газов воздуха (азот, кислород).
Различия в значениях Gmpc для растворов, содержащих и не содержащих этих газов, увеличивается с ростом концентрации спирта. Сопоставление и анализ данных рис. VI.6 приводит к выводу, что наличие примесных добавок постоянных газов воздуха способствует процессу растворения соли, что согласуется с отмеченным ранее (рис. V.5). Повышение температуры действует в том же направлении.
Весьма существенным является влияние на термодинамические характеристики примесной воды. В работах [321, 341 ] отмечено, что присутствие воды может заметно исказить получаемые микрокалориметрическим методом экспериментальные результаты по Hmpc и, соответственно, рассчитанные из них стандартные величины. В этих случаях необходим анализ возможных ошибок за счет микропримесей в неводных растворителях.
Данные тензиметрических измерений, указывающие на существенную роль добавок воды на активность растворителя [344], приведены на рис. VI.7. Из него видно, что в растворе NaI в метаноле активность растворителя линейно уменьшается с понижением температуры. Введение в эту систему воды в количестве 0,1% приводит к резкому росту активности растворителя в области температур ниже 273 К; аналогична картина при содержании воды 1,2%.
Следует отметить, что полученные результаты свидетельствуют о том, что в настоящее время мы не имеем термодинамических характеристик растворенных веществ в «абсолютно чистых» растворителях. Справочные данные относятся к растворам с микропримесями. Отнесение их к растворам без микропримеси возможно либо на основе экспериментальных данных для систем с переменным ее содержанием и последующей экстраполяцией на нулевое значение, либо составлением и использованием таблиц соответствующих поправок, учитывающих различия между состояниями растворителя. Этот вопрос является принципиальным и требует разрешения.
В заключение еще раз обратим внимание на то, что при термодинамическом анализе ионных реакций в растворах нельзя связывать изменение термодинамических функций при их протекании только с реагирующими веществами, фигурирующими в уравнениях химических реакций. Необходимо обязательно выяснить роль среды, поскольку изменение термодинамических свойств растворителя при протекании ионных реакций в растворах очень часто являются движущей силой процесса.
ЛИТЕРАТУРА
I. Крестов Г.А., Березин Б.Д. Основные понятия современной химии. Л.: Химия, 1983. 97 с.
2. Кондратьев В.Н. Структура атомов и молекул. М.: Физ-матгиз, 1959. 524 с.
3. Gregory N.W. -- J. Chem. Educ., 1956, v. 33, p. 144.
4. Крестов Г.А.--Автореф. докт. дисс. М.: МХТИ им. Д.И. Менделеева, 1966. 52 с.
5. Крестов Г.А. -- Радиохимия, 1963, т. 5, №2, с. 258.
6. Дей М.К., Селбин Дж. Теоретическая неорганическая химия. М.: Химия, 1976. 567 с.
7. Крестов Г.А. Теоретические основы неорганической химии. М.: Высшая школа, 1982. 295 с.
8. Гольдшмидт В.--В сб.: Основные идеи геохимии. Т. 1. М.: Гостехтеориздат, 1933, с. 75.
9. Paulina L. The Nature of the Chemical Bonds. London, 1960. 450 с.
10. Яцимирский К.Б. Термохимия комплексных соединений. М.: Изд-во АН СССР, 1951. 251 с.
11. Крестов Г.А. -- Радиохимия, 1962, т. 4, №6, с. 690.
12. Крестов Г.А. Термохимия соединений редкоземельных и актиноидных элементов. М.: Атомиздат, 1972. 263 с.
13. Waber J.Т., Cromer D.Т. -- J. Chem. Phys., 1965, v. 42, № 12, р. 4116.
14. Лебедев В.И. Ионно-атомные радиусы и их значение для геохимии и химии. Л.: Изд-во ЛГУ, 1969. 156 с.
15. Годовиков А.А. Периодическая система Д.И. Менделеева и силовые характеристики элементов. Новосибирск: Наука, 1981. 94с.
16. Ladd М.F.С. -- Theoret. Chem, Acta, 1968, v. 12, р. 333.
17. Brags W. L. Philos. Mag. J. Sci., 1926, v. 11, p. 258.
18. Бацанов С.С. -- Ж. структ. хим., 1963, т. 4, № 1, с. 176
19. Капустинский А.Ф., Дракин С.Я., Якушевский Б. А1.--ЖФХ, 1953, т. 27, №3, с. 433.
20. Latimer W., Pitzer К., Slansky C.--J. Chem. Phys., 1939, v. 7, №2, p. 108.
21. Бацанов С.С. -- Ж. структ. хим., 1962, т. 3, № 6, с. 616. 22. Краснов К.С. -- Там же, 1963, т. 4, № 7, с. 886.
23. Крестов Г.А., Крестова Н.В.-- В кн.: Сто лет периодического закона химических элементов. М.: Наука, 1969, с. 349
24. Крестов Г.А. -- Изв. вузов. Химия и хим. технол., 1966, т. 9, №4, с. 558
25. Крестов Г.А. -- ЖФХ, 1967, т. 41, № 6, с. 1272. 26. Щукарев С.А.-- ЖОХ, 1977, т. 42, №2, с. 246.
27. Яцимирский К.Б., Яцимирский В.К. Химическая связь. Киев: Вища школа, 1975. 303 с.
28. Краснов К.С. Молекулы и химическая связь. М,: Высшая школа, 1977. 280 с. 29. Капустинский А.Ф. --ЖФХ, 1934, т. 5, № 1, с. 73. 30. Крестова Н.В., Крестов Г.А. -- Изв. вузов. Химия и хим. технол., 1968, т. II, № 12, с. 1329.
Подобные документы
Главные методы компьютерного моделирования. Термодинамические функции растворения и сольватации. Спектроскопические исследования водно-органических растворителей. Методы IKBI и QLQC. Связь между составом бинарной смеси растворов и параметром полярности.
курсовая работа [2,8 M], добавлен 16.06.2014Структура и свойства свободной воды, влияние ионов на ее состояние. Образование гидратных оболочек ионов при различных концентрациях. Изменение потенциальных барьеров молекул воды. Возникновение и природа потенциалов самопроизвольной поляризации.
презентация [2,2 M], добавлен 28.10.2013Объём водорода при нормальных условиях. Молярный объем любого газа. Понятие и характеристика хрома и образование хромовой и дихромовой кислоты. Стандартные термодинамические характеристики участков реакции. Гидролиз по катиону, применение ионов железа.
контрольная работа [25,1 K], добавлен 05.04.2011Характеристика, классификация и химические основы тест-систем. Средства и приёмы анализа различных объектов окружающей среды с использованием тест-систем. Определение ионов кобальта колориметрическим методом из растворов, концентрации ионов меди.
дипломная работа [304,6 K], добавлен 30.05.2007Определение ионов Ва2+ с диметилсульфоназо-ДАЛ, с арсеназо III. Определение содержания ионов бария косвенным фотометрическим методом. Определение сульфатов кинетическим турбидиметрическим методом. Расчёт содержания ионов бария и сульфат-ионов в растворе.
контрольная работа [21,4 K], добавлен 01.06.2015Обзор растворов, твердых, жидких или газообразных однородных систем, состоящих из двух или более компонентов. Описания оборудования для эбуллиоскопического и криоскопического определения молекулярных весов. Анализ давления насыщенного пара растворителя.
реферат [251,8 K], добавлен 19.12.2011Титриметрические методы, основанные на реакциях образования растворимых комплексных соединений или комплексометрия. Методы с получением растворимых хелатов - хелатометрия. Определение ионов-комплексообразователей и ионов или молекул, служащих лигандами.
реферат [31,0 K], добавлен 23.01.2009Понятие ионитов, ионообменников, ионообменных сорбентов, их свойства и практическое значение. Отличительные особенности и преимущества использования волокнистых ионитов, методы их синтеза. Возможность и механизм сорбции ионов на волокнистых ионитах.
курсовая работа [70,9 K], добавлен 05.09.2013Свойства полимера и выбор мономера. Молекулярная масса — важнейшая характеристика полимера, проблемы, возникающие при его растворении. Вязкость, фазовое разделение растворов полимеров. Влияние растворителей и поверхностно-активных веществ на растворы.
контрольная работа [259,9 K], добавлен 13.09.2009Исследование зависимости выхода по току от потенциала для бромид-ионов, их концентраций в растворах при совместном присутствии. Анализ методики электрохимического окисления иодид-ионов при градуировке. Описания реактивов, растворов и средств измерения.
дипломная работа [213,7 K], добавлен 25.06.2011