Свойства оксисоединений
Классификация и номенклатура основных оксисоединений – спиртов и фенолов. Методы получения, физические и химические свойства одноатомных насыщенных спиртов, гликолей, алкантриолов, эритритов, пентитов, гекситов, фенолов, ди- и полиоксибензолов.
Рубрика | Химия |
Вид | лекция |
Язык | русский |
Дата добавления | 10.03.2010 |
Размер файла | 113,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
49
Под оксисоединениями понимают органические соединения содержащие в составе своей структурной формулы одну или несколько гидроксильных групп (OH). Таковыми являются все спирты и фенолы.
1. АЦИКЛИЧЕСКИЕ ОКСИСОЕДИНЕНИЯ
1.1 Спирты
Спиртами называются соединения общей формулой ROH, где R любая алкильная или замещённая алкильная группа. Эта группа может быть первичной, вторичной или третичной; она может быть как ациклической, так и циклической; она может содержать двойную связь, атом галогена или ароматическое кольцо, например:
CH3 OH
CH3CCH3 H2C=CHCH2OH
OH Аллиловый спирт Циклогексанол
Третбутиловый спирт
CH2OH CH2 CH2 CH2CHCH2
Cl OH OH OH OH
Бензиловый спирт Этиленхлоргидрин Глицерин
(хлорэтиловый спирт)
Все спирты содержат гидроксильную группу (OH), которая является функциональной и определяет свойства, характерные для данного класса соединений. Строение R влияет на скорость, с которой спирт вступает в некоторые реакции, и иногда на характер реакции.
1.1.1 Одноатомные насыщенные спирты
1.1.1.1 Классификация
Спирты классифицируют на первичные, вторичные и третичные в зависимости оттого, с каким атомом углерода (связана гидроксильная группа). Атом углерода считается первичным, вторичным третичным в зависимости от числа связанных с ним других атомов углерода.
H R R
RCOH RCOH RCOH
H H H
первичный вторичный третичный
1.1.1.2 Номенклатура
Для названия спиртов по номенклатуре IUPAC выбирают наиболее длинную цепь, содержащую гидроксильную группу. Нумерацию начинают с того конца цепи к которому ближе находится эта группа. Принадлежность соединения к классу спиртов обозначается окончанием «ол». Между основой названия и окончанием ставят цифру, обозначающую атом углерода у которой стоит OHгруппа. Если имеются алкильные заместители, то название спирта начинают с цыфр(ы), указывающих (указывающей) положение заместителя (заместителей) в цепи, далее идёт название заместителей как радикалов.
Простейшие спирты можно называть по карбинольной номенклатуре, беря за основу название первого представителя спиртов, CH3OH “карбинол”. Название начинают с перечисления радикалов, замещающих атомы водорода, стоящие у углеродного атома, в метиловом спирте CH3OH, например:
OH OH
CH3 CH2OH CH3 CH CH3 CH3 C CH2CH3
CH3
метилкарбинол диметилкарбинол диметилэтилкарбинол
Часто простейшие представители класса спиртов называют по рациональной (радикальной) номенклатуре, по названию углеводородного радикала (см. таблицу).
1.1.1.3 Изомерия
Изомерия спиртов аналогична изомерии галогенопроизводных. В случае спиртов кроме изменения строения углеродного скелета может изменяться положение OH группы.
Для соединения общей формулы C5H11OH=C5H12O существует семь изомеров:
OH OH
CH3CH2CH2CH2CH2OH CH3CHCH2CH2CH3 CH3CH2CHCH2CH3
пентанол1 пентанол2 пентанол3
CH3 CH3 OH CH3
CH3CCH2CH3 CH3CHCHCH3 CH3CHCH2CH2OH
OH
2метилбутанол2 3метилбутанол2 3метилбутанол1
CH3
H3CH2CHCH2OH
2метилбутанол1
1.1.1.4 Физические свойства
Спирты сильно отличаются по свойствам от углеводородов вследствие присутствия в их молекуле очень полярной гидроксильной группы. Спирты бесцветные вещества с плотностью меньше единицы.
Таблица
Формула |
Номенклатура |
Т.пл.,C |
Т.кип.,C |
Растворимость г/100 г H2O |
||
IUPAC |
радикальная |
|||||
CH3OH |
Метанол |
Метиловый |
97 |
65 |
||
CH3CH2OH |
Этанол |
Этиловый |
115 |
78 |
||
CH3CH2CH2OH |
Пропанол1 |
нПропиловый |
126 |
97 |
||
CH3CH(OH)CH3 |
Пропанол2 |
Изопропиловый |
86 |
83 |
||
CH3(CH2)2CH2OH |
Бутанол1 |
нБутиловый |
90 |
118 |
7,9 |
|
(CH3)2CHCH2OH |
2метилпропанол1 |
Изобутиловый |
108 |
108 |
10,2 |
|
CH3CH(OH)CH2CH3 |
Бутанол2 |
вторБутиловый |
114 |
26 |
12,5 |
|
(CH3)3COH |
2метилпропанол2 |
третБутиловый |
26 |
100 |
||
CH3 (CH2)3CH2OH |
Пентанол1 |
нАмиловый |
79 |
83 |
2,3 |
|
CH3 (CH2)4CH2OH |
Гексанол1 |
нГексиловый |
52 |
138 |
0,6 |
|
CH3(CH2)5CH2OH |
Гептанол1 |
нГептиловый |
34 |
157 |
0,2 |
|
CH3(CH2)6CH2OH |
Октанол1 |
нОктиловый |
15 |
176 |
0,05 |
|
CH3 (CH2)12CH2OH |
Тетрадеканол1 |
нТетрадециловый |
38 |
195 |
- |
Такое отличие в физических свойствах между спиртами и многими другими классами органических соединений объясняется наличием в молекулах спиртов гидроксильной группы. В гидроксильной группе атом кислорода, проявляя электроакцепторные свойства, «стягивает на себя» электронную плотность от связанного с ним атома водорода, и у последнего образуется дефицит электронной плотности. В результате между атомом водорода гидроксильной группы и свободной электронной парой кислорода OHгруппы другой молекулы спирта возникает водородная связь, за счёт которой происходит ассоциация молекул спиртов:
R R R R
HO HO HO HO
Повышение температур кипения спиртов по сравнению с температурой кипения некоторых других классов органических соединений объясняется необходимостью введения дополнительной энергии на разрыв водородных связей перед переводом из жидкого в парообразное состояние. Энергия электростатической водородной связи около 5 ккал/моль (20,93*103 Дж/моль).[Для большинства ковалентных связей эта величина составляет 50100 ккал/моль (209,34*103 418,68*103 Дж/моль)]. Образование водородных связей между молекулами спиртов и воды причина хорошей растворимости первых представителей ряда спиртов в воде:
R
R H O H
HO HO H O
R
С увеличением массы углеводородного радикала в молекуле спирта уменьшается растворимость спиртов в воде и увеличиваются их температуры кипения (температуры кипения уменьшаются пи наличии разветвлений). Температуры кипения спиртов значительно выше, чем температуры кипения соответствующих углеводородов (это объясняется ассоциацией молекул спиртов водородными связями).
1.1.1.5 Методы получения
Гидролиз моногалогенопроизводных
В лабораторных условиях, для получения спиртов часто используют реакцию гидролиза галогенопроизводных водными растворами щелочей. Щёлочь используют для ускорения реакции и для связывания выделяющегося при гидролизе галогеноводорода, подавляя обратимость процесса:
RX + HOH - ROH + HX
Где X:Cl, Br, I; например:
CH3Br + HOH NaOH CH3OH + NaBr + H2O
бромметан метанол
Реакция может протекать по механизмам SN2 или SN1 в зависимости от строения исходного галогенпроизводного. Реакционная способность различных соответствующих галогенпроизводных в реакциях гидролиза уменьшается в ряду:
RI > RBr > RCl >> RF
Наиболее легко гидролизуется галоген у третичного атома углерода, труднее у вторичного и наиболее трудно у первичного.
Если у атома углерода, соседнего с атомом несущим галоген, имеется хотя бы один атом водорода, то при взаимодействии с водными растворами щелочей на ряду с гидролизом может протекать реакция дегидрогалогенирования (отщепления галогеноводорода):
OH
CH3CHCH3
NaOH пропанол2
CH3CHCH3
Cl H2O CH3 CH=CH2
2хлорпропан пропен
Гидратация этиленовых углеводородов
Присоединение воды к двойной связи этиленовых углеводородов с образованием спиртов можно осуществить в присутствии серной кислоты. К несимметричным олефинам вода присоединяется в соответствии с правилом Марковникова:
HOH
RCH=CH2 + H+ > RCHCH3 > RCHCH3 > RCHCH3 + H3O
OH
Спирты можно получить прямой перегонкой олефинов при 300-350C в присутствии оксида алюминия:
300350 C OH
H3CH=CH2 + H2O CH3CHCH3
пропен Al2O3 пропанол2
Гидроборирование окисление этиленовых углеводородов.
Это современный способ получения спиртов из олефинов. В результате присоединения диборана (BH3)2 к этиленовым углеводородам и последующего окисления образующихся триалкилборанов щелочным раствором пероксида водорода образуются спирты, в которых формально фрагменты воды присоединены к исходному олефину против правила Марковникова.
H2O2
6RCH=CH2 + (BH3)2 2(RCH2CH2)3B > 6 RCH2CH2OH + 2B(OH)3
алкены диборан алкилбораны OH спирты борная кта
Эта реакция гидроборирования очень проста и удобна, выходы очень высоки, и её можно использовать для синтеза для синтеза соединений, которые трудно получить из алкенов какимлибо другим способом.
Диборан димер гипотетического BH3 (борана), который в рассматриваемых реакциях реагирует как BH3.
H H H H
H:B B B
H H H H
боран диборан
Гидроборирование включает присоединение BH3 по двойной связи, водород направляется к одному из атомов углерода двойной связи, а бор к другому. Алкилбораны могут затем подвергаться окислению, при котором бор заменяется на OHгруппу.
H2O2 OH
C=C + HB > CC CC
Алкен H B H OH
HB = HBH2, HBR2
Таким образом, двухстадийная реакция гидроборирования окисления в действительности представляет присоединение элементов воды HOH по двойной углерод углеродной связи.
CH3 (BH3)3 H2O2, OH CH3
CH3 C CH3 =CH2 CH3 CCH2CH2OH
CH3 CH3
3,3диметилбутен1 3,3диметилбутанол1
(первичный)
Реакция гидроборирования протекает против правила Марковникова. Что интересно, в реакциях гидроборирования не происходит перегруппировок (очевидно, потому, что в это случае не образуются карбониевые ионы), и, следовательно, метод может быть использован без осложнений, которые часто сопровождают другие реакции присоединения.
Благодаря этому реакция гидроборирования окисления приобретает большое синтетическое значение: она позволяет получать из алкенов спирты, которые недоступны другими методами; эти спирты служат исходными для синтеза многих соединений других классов.
Синтезы спиртов с помощью металорганических соединений (синтезы Гриньяра).
Спирты получают взаимодействием реактивов Гриньяра RMgX (где R: алкил; X: Cl, Br, I) или литий органических соединений Rli с альдегидами или кетонами. Образующиеся при этом алкоголяты при при обработке водой или разбавленными кислотами превращаются в соответствующие спирты. В зависимости от строения исходного карбонильного соединения можно получить первичный, вторичный или третичный спирт:
O +
RMgX + HC RCH2OMgX
H H2O
RCH2OH
O + H+ первичный спирт
RLi + HC RCH2OLi
H
Фрмальдегид
O R
RMgX + R'C CHOMg+X
H R' H2O R
CHOH
O H+ R'
RLi + R'C CHOLi+ вторичный спирт
H
Альдегиды (R' H)
R' R
RMgX + C=O R' COMg+X
R” R” H2O R
R' COH
R' R H+ R”
RLi + C=O R' COLi+ третичный спирт
R” R”
Кетоны
Примеры синтезов:
O
CH3CH2MgBr + HC CH3CH2CH2OH
этилмагнийбромид H пропанол1
метаналь (первичный спирт)
OH
O
CH3CH2MgI + CH3C CH3CH2CHCH3
этилмагнийиодид H бутанол2
этаналь (вторичный спирт)
O OH
CH3MgCl + CH3CCH3 CH3CCH3
CH3
Метилмагний пропанон 2метилпропанол2
хлорид (третичный спирт)
Связь углерод магний в реактиве Гриньяра сильно полярна, причём углерод является отрицательным относительно электроположительного магния. Поэтому не удивительно, что в результате присоединения к карбонильному соединению органическая группа образует связь с углеродом, а магний с кислородом. Продукт представляет собой магниевую соль слабо кислого спирта и легко превращается в спирт при прибавлении более сильной кислоты воды.
C+=O
H2O
COMgX C OH + Mg(OH)X
R: MgX
+ R R H+
спирт
Mg2+ + X + H2O
Поскольку образовавшийся в процессе реакции Mg(OH)X представляет собой желатинообразное вещество, с которым трудно работать, поэтому вместо воды обычно используют разбавленную минеральную кислоту (HCl, H2SO4), так что образуются растворимые в воде соли магния.
В аналогичном синтезе для получения первичных спиртов, содержащих на два атома углерода больше, чем исходный реактив Гриньяра, используют окись этилена.
H2C CH2 + RMgX RCH2CH2HMgX RCH2CH2OH
H2O первичный спирт
O + 2 атома углерода
Окись этилена
Органическая группа опять связывается с углеродом, а магний с кислородом, но при этом разрушается углерод кислородная связь в сильно напряжённом трёхчленном кольце.
Промышленные способы получения спиртов
Метиловый спирт в промышленности получают из оксида углерода и водорода в присутствии катализаторов. В разных условиях можно получить как чистый метиловый спирт
350400 C , 21,27 Мпа
СО + 2Н2 СН3ОН
катализатор
так и смесь его первичных гомологов, начиная с этилового спирта (синтол).
Метанол в больших масштабах получают гидрированием СО водородом примерно при 400°С и давлении 200 кгс/см2 над катализатором, представляющим собой смесь окиси хрома и окиси цинка.
В производстве синтола в качестве катализатора применяют железо и кобальт и процесс ведут при давлении в несколько десятков атмосфер и повышенной температуре.
Общим методом синтеза спиртов с небольшим молекулярным весом (этиловый, изопропиловый, вторбутиловый, третбутиловый) является гидратация олефинов в присутствии серной кислоты. В зависимости от строения олефина образуются вторичные и третичные спирты (из первичных спиртов таким путём можно получить только этиловый, R = H):
H2O
R-CH=CH2 + H2SO4 R-CH-CH3 RCHCH3 + H2SO4
| |
OSO3H OH
R R
| H+ |
C=CH2 + H2O C-CH3
| / |
R' R 'OH
Реакция начинается с атаки ионом водорода того углеродного атома, который связан с бульшим числом водородных атомов и является поэтому более электроотрицательным, чем соседний углерод (правило Марковникова). После этого к соседнему углероду присоединяется вода с выбросом Н+.
Важный способ получения этилового спирта, известный с древнейших времён, заключается в ферментативном гидролизе некоторых углеводов, содержащихся в различных природных источниках (фрукты, картофель, кукуруза, пшеница и др.), например:
С6Н12О6 >2С2Н5ОН + 2СО2
глюкоза
1.1.1.6 Химические свойства спиртов
Ряд химических свойств спиртов является общим для всех спиртов; имеются также и реакции, по-разному протекающие для первичных, вторичных и третичных спиртов.
1). Реакции с разрывом OH связи
Образование алкоголятов металлов. Алифатические спирты слабые кислоты. Кислотность спиртов в зависимости от строения убывает в ряду: первичные > вторичные > третичные. При действии на спирты щелочных металлов, в частности натрия, происходит, хотя и менее бурно, взаимодействие, подобное реакции натрия с водой:
2ROH + 2Na > 2RONa + H2
Такого типа металлические производные спиртов носят общее название алкоголяты (отдельные представители: метилат натрия СН3ОNa, этилат натрия С2Н5ОNa). Их называют также алкоксидами (метоксид натрия, этоксид и т.д.). С увеличением молекулярной массы спирта реакционная способность их при взаимодействии с натрием уменьшается.
Известны алкоголяты и других металлов, кроме щелочных, но они образуются косвенными путями. Так, щелочноземельные металлы непосредственно со спиртами не реагируют. Но алкоголяты щелочноземельных металлов, а также Mg, Zn, Cd, Al и других металлов, образующих реакционноспособные металлорганические соединения, можно получить действием спирта на такие металлорганические соединения. Например:
2CH3OH + Zn (CH3)2 > (CH3O)2Zn + 2CH4
Алкоголяты спиртов широко применяют в органическом синтезе. Так как вода более сильная кислота, чем спирты, то в присутствии воды алкоголяты разлагаются с выделением исходных спиртов:
CH3ONa +H2O > CH3OH + NaOH
метилат натрия метанол
Поэтому алкоголяты невозможно получить при действии гидроксидов металлов на спирты:
ROH + NaOH - RONa + H2O
С другой стороны, спирты проявляют слабоосновные свойства, образуя с сильными кислотами более или менее устойчивые соли:
H Br
ROH + HBr - RO+H
оксониевые соли
Образование сложных эфиров спиртов (реакция этерификации). При действии кислородных минеральных и органических кислот на спирты происходит реакция, которую можно представить следующими примерами:
HO RO
ROH + SO2 - SO2 + H2O
HO HO
HO RO
2ROH + SO2 - SO2 + 2H2O
HO RO
O O ** OH HO+H
¦ H+ ¦ R'OH H2O
RCOH RC+OH ** RCOH RCOH RC+OH
Карбоновая
Кта R'O+H R'O R'O
O
¦
RCOR'
Сложные эфиры
Такого рода взаимодействие спирта с кислотами называется реакцией этерификации, а полученные вещества - сложными эфирами данного спирта и данной кислоты. Реакция этерификации спиртов сильными минеральными кислотами (такими как H2SO4) протекает быстро и не требует использования катализаторов. С карбоновыми кислотами скорость реакции этерификации значительно увеличивается в присутствии катализаторов. В качестве последних обычно используют минеральные кислоты в небольших количествах.
Внешне уравнение этой реакции подобно уравнению нейтрализации щёлочи кислотой:
NaOH + HNO3 = NaNO3 + H2O
Однако глубоким различием этих реакций является то, что нейтрализация - ионная, неизмеримо быстро протекающая реакция, которая сводится, в сущности, к взаимодействию ионов:
Н+ + ОН- > Н2О
Реакция этерификации идёт иным путём. Спирт в большинстве случаев реагирует, отдавая не гидроксил (как щёлочь при нейтрализации), а водород гидроксильной группы; кислоты (органические и некоторые, но не все, минеральные) отдают свой гидроксил. Этот механизм был установлен при помощи спирта, меченного изотопом кислорода 18О. Как оказалось, при взаимодействии такого спирта с кислотами RCOOH выделяется обычная вода, а не Н218О.
Образование сложных эфиров при действии на спирты хлорангидридов неорганических и органических кислот. Взаимодействие хлорангидридов с первичными спиртами:
ROH + ClN=O > RO-N=O + HCl
3ROH + PCl3 > (RO)3P + 3HCl
O O
¦ ¦
ROH + Cl-C-CH3 > RO-C-CH3 + HCl
O O
¦ ¦
ROH + Cl-C-Cl > RO-C-CCl + HCl
2). Реакции с разрывом СO связи
Образование галогенидов.
При действии неорганических галогенангидридов на третичные и вторичные спирты происходит в основном обмен гидроксила на галоген:
3(CH3)3COH + PBr3 > 3(CH3)3CBr + P(OH)3
Обмен гидроксила на галоген происходит и при действии PBr3 и PI3 на первичные спирты:
3C2H5OH + PBr3 > 3C2H5Br + P(OH)3
При действии галогенводородных кислот на спирты также образуются алкилгалогениды.
Реакция может протекать либо по механизму SN2, либо по SN1. Например:
Br
RCH2OH + H+ > RCH2 O+O > RCH2Br + H2O SN2
H для первичных спиртов
R R H2O R Br R
R'COH + H+ > R'CO+H R'C+ > R'CBr SN1
R” R” R” R”
H для вторичных и третичных спиртов
Для успешной замены гидроксильной группы на хлор используют реактив Лукаса (соляная кислота + ZnCl2 ). Реакционная способность спиртов в этих реакциях изменяется в ряду: третичные>вторичные>первичные.
3). Реакции с участием группы OH и атома водорода, стоящего у соседнего атома углерода.
Дегидратация спиртов в олефины. Все спирты (кроме метилового) при пропускании их паров над нагретой до ~375°С окисью алюминия отщепляют воду и образуют олефин:
Al2O3
СН3-СН2ОН СН2=СН2 + Н2О
Особенно легко элиминируется вода из третичных спиртов.
Дегидрогенизация. Образование разных продуктов в реакциях дегидрогенизации и окисления является важнейшим свойством, позволяющим отличить первичные, вторичные и третичные спирты.
При пропускании паров первичного или вторичного, но не третичного спирта над металлической медью при повышенной температуре происходит выделение двух атомов водорода, и спирт превращается в альдегид:
Cu
RCH2OH R?C?H + H2
200300 C ¦
O
Вторичные спирты дают в этих условиях кетоны:
R
\ Cu
CHOH R'?C?R + H2
/ 200300 C ¦
R' O
Окисление. Для окисления спиртов обычно используют сильные окислители: KMnO4, K2Cr2O7 и H2SO4. При окислении первичных спиртов образуются альдегиды, которые далее могут окисляться до карбоновых кислот:
RCH2OH + [O] > R-C-H + H2O
¦
O
R
\
CHOH + [O] > R'?C?R + H2O
/ ¦
R' O
Вторичные спирты при окислении превращаются в кетоны:
OH O
[O] ¦
CH3CHCH3 > CH3CCH3
пропанол2 пропанон2
Третичные спирты значительно труднее окисляются, чем первичные и вторичные, причём с разрывом связей CC(OH):
(а) O O CH3
¦ ¦
HCOH + CH3CH2CCHCH3
Муравьиная кта 2метилпентанон3
CH3 O O CH3
[O] (б) ¦ ¦
CH3CH2 COH CH3 COH + CH3CCHCH3
Уксусная кта 2метилбутанон3
CH3CHCH3
2,3диметилпентанон3 O O
(в) ¦ ¦
CH3CCH3 + CH3CH2CCH3
Ацетон бутанон2
1.1.2 Двухатомные спирты, или гликоли (алкандиолы)
Двугидроксильные производные алканов (открыты Вюрцем) носят название гликолей или алкандиолов. Гидроксилы в алкандиолах находятся либо при соседних, либо более удалённых друг от друга углеродных атомах. 1,2-Гликоли имеют сладкий вкус, откуда и происходит название класса. Низшие гликоли - смешивающиеся с водой вязкие жидкости большей плотности, чем одноатомные спирты. Кипят при высокой температуре. Гликоли с короткой углеродной цепью, и прежде всего этиленгликоль, не растворяются в углеводородах и эфире, но смешиваются с водой и спиртами; как растворители они ближе стоят к воде и метанолу, чем к обычным органическим растворителям.
1.1.2.1 Способы получения
В принципе гликоли могут быть получены всеми синтетическими способами получения спиртов.
Гидролиз дигалогенпроизводных:
ClCH2-CH2Cl + 2H2O > HOCH2-CH2OH + 2HCl
или
ClCH2-CH2OH + H2O > HOCH2-CH2OH + HCl
Восстановление сложных эфиров двухосновных кислот:
O O
¦ ¦
C2H5O-C-(CH2)n-C-OC2H5 + 8Na+6C2H5OH >
>HOCH2-(CH2)n-CH2OH +8C2H5ONa
3CH2=CH2 + 4H2O + 2KMnO4 > 3HOCH2-CH2OH + 2KOH + 2MnO2
Получение гликолей через хлоргидрины. Действием хлора и воды на олефин можно получить хлоргидрин, например ClCH2-CH2OH. Хлоргидрин может быть превращён гидролизом непосредственно в гликоль.
Пинаконы получают восстановлением (неполным) кетонов электрохимически или действием магния в присутствии йода:
СH3 H3C CH3 H3C CH3
| | 2H2O | |
2 C=O + 2Mg + I2 > CH3-C-C-CH3 > CH3-C-C-CH3
| | | |
CH3 IMgO OMgI HO OH
Бутандиол-1,4 (важный продукт, являющийся промежуточным продуктом при получении бутадиена и далее синтетического каучука) получают в промышленности гидрированием бутин-2-диола-1,4 (НОН2С-С?С-СН2ОН).
В промышленности этиленгликоль синтезируют из окида этилена, который получают окислением этилена:
250 C H2O
2CH2=CH2 +O2 Ag CH2CH2 H+ HOCH2CH2OH
\ /
O
окись
1.1.2.2 Химические свойства гликолей
Так же как и одноатомные спирты, гликоли могут иметь первичные, вторичные и третичные гидроксилы. Этиленгликоль - двупервичный спирт, пропиленгликоль - первично-вторичный, пинакон - двутретичный. Всё сказанное о свойствах первичных, вторичных и третичных спиртов приложимо и к соответствующим гликолям.
1. Гликоли легко образуют хлорангидриды и бромгидрины при действии HCl или HBr, но второй гидроксил замещается на галоген труднее (лучше действием PCl5 или SOCl2).
2. При действии кислот гликоли дают два ряда сложных эфиров:
O O O
¦ ¦ ¦
HOCH2-CH2-O-C-R R-C-O-CH2-CH2-O-C-R
3. При окислении первичных гликолей образуются альдегиды. Так, окислением этиленгликоля получают глиоксаль:
[O] [O]
HOCH2-CH2OH > HOCH2-C=O > O=C-C=O
¦ ¦
H H H
4. Дегидратация гликолей (кислотами или хлористым цинком) приводит к образованию альдегидов (или кетонов). Считают, что механизм этой дегидратации состоит в том, что сначала путём отрыва одной гидроксильной группы протоном образуется карбониевый катион, а затем атом водорода вместе со своей парой электронов (в виде гидрид-иона) перемещается к карбониевому углероду (гидридное перемещение):
H
+ ¦
CH2-CH2 > CH2-CH > CH3-CH + H+
¦ ¦ ¦ ¦
H+ OH OH O O
¦
H
При дегидратации пинаконов мигрирует не водород, а метильная группа и происходит пинаколиновая перегруппировка, сопровождающаяся изменением углеродного скелета:
СН3 СН3 СН3 СН3 СН3
¦ ¦ ¦ ¦
СН3-C С-СН3 > С+-С-СН3 > СН3-С - С-СН3 + Н+
¦ ¦ ¦ ¦
ОН ОН СН3 О СН3 О
Н+ ¦ пинаколин
пинакон Н
5. Альдегиды в кислой среде ацетилируют 1,2-гликоли, образуя циклические ацетали (в кислой, но не щелочной среде в результате гидролиза ацеталя регенерируются исходные вещества):
СН2-О
СН2-ОН Н+
¦ + О=С-СН3 С-СН3
СН2-ОН ¦ Н+, Н2О
Н СН2-О
ацеталь
1,3-Гликоли способны реагировать подобным образом, давая шестичленные циклические ацетали.
Для осуществления реакций ацетилирования необходима возможность приведения обоих гидроксилов в одну плоскость, т.е. возможность свободного вращения вокруг углерод-углеродной связи:
НО-С
¦
С-ОН
Это условие соблюдается у гликолей с открытой цепью, но не всегда у циклических.
1.1.3 Многоатомные спирты
1.1.3.1 Трёхатомные спирты - алкантриолы
Единственным важным представителем алкантриолов является глицерин (пропантриол-1,2,3). Это очень вязкая бесцветная сладкая жидкость; т. пл. 17°С, т. кип. 290°С.
Глицерин был получен гидролизом жиров, которые являются сложными эфирами глицерина и высших гомологов уксусной кислоты (и их олефиновых изологов). При гидролизе жиров перегретым паром глицерин остаётся в водном растворе, который отделяют от слоя расплавленных жирных кислот; после отгонки воды из этого раствора может быть выделен глицерин.
Некоторое количество глицерина образуется при брожении сахаров.
В настоящее время осуществлён промышленный синтез глицерина из пропилена, выделяемого из газов крекинга нефти. Этот синтез является доказательством строения глицерина как пропантриола.
Сначала путём хлорирования пропилена при высокой температуре (500°С) получают хлористый аллил, сохраняющий двойную связь (реакция Львова):
СН2=СН-СН3 + Сl2 > CH2=CH-CH2Cl + HCl
Затем присоединением хлора и воды хлористый аллил превращают в 1,3-дихлорпропанол-2
Cl OH Cl
¦ ¦ ¦
CH2=CH-CH2Cl + Cl2 + H2O > CH2-CH-CH2 + HCl
гидролиз которого даёт глицерин:
Cl OH Cl ОН ОН ОН
¦ ¦ ¦ ¦ ¦
CH2-CH-CH2 + 2Н2О > CH2-CH-CH2 + 2HСl
1,3-дихлорпропанол-2 пропантриол-1,2,3
(глицерин)
Глицерин даёт с кислотами три ряда сложных эфиров: моно-, ди- и триэфиры. Для первых и вторых возможны изомеры: продукты этерификации по первичным и вторичным группам. При действии HCl на глицерин получается смесь двух монохлоргидринов глицерина, содержащая больше б-монохлоргидрина СН2ОН-СНОН-СН2Cl и меньше в-изомера СH2OH-CHCl-CH2OH. При обработке щёлочью оба изомера дают один и тот же глицидный спирт
Н2С-СН-СН2ОН
\ /
О
При обработке глицерина хлористым водородом в более жёстких условиях образуются два дихлоргидрина
СН2Cl-СНОН-СН2Cl СH2OH-CHCl-CH2Cl
при обработке щёлочью дающие эпихлоргидрин глицерина
Н2С-СН-СН2Сl
\ /
О
Являясь одновременно первичным и вторичным спиртом, глицерин, нашедший многообразное применение в органическом синтезе, при окислении образует смесь соответствующего альдегида и кетона:
СН2ОН-СНОН-С=О
|
Н
СH2OH-CНОН-CH2OH Глицериновый альдегид
СH2OH-CО-CH2OH
диоксиацетон
Диоксиацетон может быть получен хлорированием ацетона в 1,3-дихлорацетон СH2Cl-CО-CH2Cl и гидролизом последнего. Эта реакция также подтверждает строение глицерина.
1.1.3.2 Четырёхатомные, пятиатомные и шестиатомные спирты (эритриты, пентиты и гекситы)
Эритрит (бутантетраол-1,2,3,4) встречается в свободном виде и в виде сложных эфиров в водорослях и некоторых плесенях. Синтетический четырёхатомный спирт эритрит был получен из бутадиена СH2=СH-CН=CH2 следующим путём:
O O
¦ ¦
CН=CH2 +Br2 CH-CH2Br 2AgO CCH3 CH-CH2-OCCH3 +Br2
¦ ¦ ¦
CН=CH2 CH-CH2Br CH-CH2-OCCH3
¦
O
O O O O
¦ ¦ ¦ ¦
CHBr-CH2-OCCH3 2AgOCCH3 CH3CO-CH-CH2-OCCH3 +4H2O
¦ ¦
CHBr-CH2-OCCH3 CH3CO-CH-CH2-OCCH3
¦ ¦ ¦
O O O
2CH2-CH-CH-CH2
¦ ¦ ¦ ¦
OH OH OH OH
Стереоизомерные эритриты - твёрдые, отлично растворимые в воде, сладкие на вкус вещества.
Пентаэритрит (тетраоксинеопентан) С(СН2ОН)4 в природе не встречается. Это твёрдое высокоплавкое (т. пл. 262°С) вещество. Получается синтетически взаимодействием формальдегида с водным раствором ацетальдегида в щелочной среде:
Ca(OH)2
СН3-С=О + 4НСН=О + Н2О C(CH2OH)4 + H-C-OH
¦ ¦
H пентаэритрит O
муравьиная кислота
Пентиты и гекситы
CH2-CH-CH- СН-CH2 CH2-CH-CH- СН-СН-CH2
¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦
OH OH OH OH ОН OH OH OH OH ОН ОН
пентит гексит
Твёрдые, растворимые в воде вещества, сладкие на вкус. Для каждого из спиртов известно много стереоизомеров. Некоторые пентиты и гекситы встречаются в природе, например пентит адонит (в Adonis vernalis), стереоизомерные гекситы - маннит, дульцит, сорбит, идит. Все они имеют нормальный углеродный скелет и могут быть получены восстановлением соответствующих сахаров, которые являются их моноальдегидами.
1.2 Непредельные спирты
1.2.1 Одноатомные ненасыщенные спирты
Олефины не могут нести гидроксил при углероде во втором валентном состоянии.
Структуры
\
С=С -
/ ¦
ОН
неустойчивы и изомеризуются в
\
С-С-
/¦ ¦
Н О
(правило Эльтекова-Эрленмейера). Лишь в некоторых случаях такая изомеризация в заметной степени обратима и мы имеем дело с таутомерным равновесием:
\ \
С=С- С-С-
/ ¦ /¦ ¦
ОН Н О
Для структур, в которых не несущий гидроксила непредельный атом не связан с электронооттягивающими группами
(- С-, NO2 и др.),
¦
О
правило Эльтекова-Эрленмейера имеет полную силу. Поэтому виниловый спирт и его гомологи не существуют, а при попытках их получить - перегруппировываются в ацетальдегид (и соответственно его гомологи) или в кетоны:
СН2=СН > СН3- С-Н
¦ ¦
ОН О
Причина перегруппировки - проявление того же (мезомерного) эффекта, что и в хлористом виниле, но в этом случае подходящего до конца - до полной передачи электронных пар - и являющегося таким образом +Т-эффектом:
Н Н Н
¦ ** _ ¦ ¦
СН2=С- О-Н > СН2-С=О Н+ > СН3- С=О
**
Эффект этот протонизирует водород гидроксила и создаёт у второго ненасыщенного атома углерода с его д зарядом удобное место атаки для иона водорода. В результате происходит изомеризация - переход протона к углероду.
Однако алкоголяты, а также простые и сложные эфиры винилового спирта не только существуют, но в последних двух случаях даже используются в промышленном масштабе в качестве мономеров. Разумеется, их приходится получать не прямым путём. При действии металлического лития или натрия в растворе в жидком аммиаке на ртутное производное ацетальдегида получаются алкоголяты винилового спирта (И.Ф. Луценко):
Подобные документы
Соединения енолов и фенолов. Происхождение слова алкоголь. Классификация спиртов по числу гидроксильных групп, характеру углеводородного радикала. Их изомерия, химические свойства, способы получения. Примеры применения этилового и метилового спиртов.
презентация [803,3 K], добавлен 27.12.2015Понятие и номенклатура фенолов, их основные физические и химические свойства, характерные реакции. Способы получения фенолов и сферы их практического применения. Токсические свойства фенола и характер его негативного воздействия на организм человека.
курсовая работа [292,0 K], добавлен 16.03.2011Общие черты в строении молекул одноатомных и многоатомных спиртов. Свойства этилового спирта. Действие алкоголя на организм человека. Установление соответствия между исходными веществами и продуктами реакции. Химические свойства многоатомных спиртов.
презентация [378,3 K], добавлен 20.11.2014Определение спиртов, общая формула, классификация, номенклатура, изомерия, физические свойства. Способы получения спиртов, их химические свойства и применение. Получение этилового спирта путем каталитической гидратации этилена и брожения глюкозы.
презентация [5,3 M], добавлен 16.03.2011Виды спиртов, их применение, физические свойства (кипение и растворимость в воде). Ассоциаты спиртов и их строение. Способы получения спиртов: гидрогенизация окиси углерода, ферментация, брожение, гидратация алкенов, оксимеркурирование-демеркурирование.
реферат [116,8 K], добавлен 04.02.2009Электронное строение и физико-химические свойства спиртов. Химические свойства спиртов. Область применения. Пространственное и электронное строение, длины связей и валентные углы. Взаимодействие спиртов с щелочными металлами. Дегидратация спиртов.
курсовая работа [221,6 K], добавлен 02.11.2008Типы спиртов в зависимости от строения радикалов, связанных с атомом кислорода. Радикально-функциональная номенклатура спиртов, их структурная изомерия и свойства. Синтез простых эфиров, реакция Вильямсона. Дегидратация спиртов, получение алкенов.
презентация [870,1 K], добавлен 02.08.2015Органические соединения, содержащие атом гидроксила. Способы получения фенолов, их кислотные свойства. Реакции электрофильного замещения в ароматическом кольце, конденсация фенолов с альдегидами и кетонами, алкилирование, ацилирование по Фриделю-Крафтсу.
курсовая работа [200,3 K], добавлен 14.05.2012Понятие фенолов, их номенклатура и изомерия. Способы получения фенола, его физические и химические свойства. Образование солей (фенолятов), реакции гидрирования, сульфирования и электрофильного замещения. Определение нафтолов, их свойства и получение.
лекция [169,5 K], добавлен 27.11.2010Класс органических соединений - спиртов, их распространение в природе, промышленное значение и исключительные химические свойства. Одноатомные и многоатомные спирты. Свойства изомерных спиртов. Получение этилового спирта. Особенности реакций спиртов.
доклад [349,8 K], добавлен 21.06.2012