Quantity and biological properties of the bacterium Pantoea agglomerans isolated from diferent grape varieties in Odesa region

Analysis of the biological properties of Pantoea agglomerans from the internal environment of grapes and new formations of vineyards in the Odessa region. leave the endophytic environment of grape microbiota and tumors. Composition of Pantoea strains.

Рубрика Биология и естествознание
Вид статья
Язык английский
Дата добавления 20.08.2020
Размер файла 142,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Quantity and biological properties of the bacterium Pantoea agglomerans isolated from diferent grape varieties in Odesa region

T.V. Ivanytsia, I.V. Strashnova

Odesa National I. I. Mechnykov University,

Annotation

Aim. To isolate and investigate the biological properties of Pantoea agglomerans from the internal environment of grapes and tumors selectedfrom the vineyards of the Odessa region. Methods. Samples of the grapevines of Arkadia, Moldova and Odessa souvenirs varieties and tumors cut from the affected veins and were presterilized, chopped into fragments, filled into a distilled water flask and stirred in a shaker at 28 °C for 3 hours. It was made 10-times dilutions and cultured on the surface of Petrie's dishes with nutritients agar. Incubationon 28 °С, 24-48 hours. Conducted quantitative calculations, isolated pure cultures and examined their cultural, morphological, physiological and biochemical properties, determined the composition of cell lipids, and identified isolated strains. Antagonistic activity of P agglomerans was determined by well-diffusion method. Results. Quantities of bacteria in inner part of grape fluctuated approximately 5,63 ± 1,3X103CGU/ sm3- 2,96 ± 1,3X105CGU /sM3and depended from time of the year and variety of grape. Quantities of microorganisms in tumors was bigger than in non damaged vine in the same period. Weight percentage P agglomerans in vine fluctuatedfrom 5.7% till 68.2%, in tumors -- from 9.88% till 23.08%. Strains of P agglomerans isolated from endophytic medium of grape and tumor, characterized of similar morphological features. There were observed the ability to utilize carbohydrates, but in minnor. Pantoea strains did not consume sucrose from the tumors and 25.0% utilized raffinose in aerobic conditions, unlike strains from the intact vine. The fatty acid spectrum was represented by fatty acids containing 12 to 19 carbon atoms in the chain. Eighteen strains have been identified as P agglomerans-GC subgroup A by fatty acid composition. For the strains examined, the dominant profiles are C16: 0, C12: 0, C14: 0, C17: 0 cyclo w7c. The isolated strains of P. agglomerans did not show antagonistic activity to the collection strains of E. carotovora, A. tumefaciens and A. vitis. Conclusions. The quantitative composition of the microbiota endophytic medium of the vine and the tumors was different and depended on the source of isolation, weather conditions and grape variety. The strains of P. agglomerans isolated from the vine and tumors were characterized by the same biological characteristics, with the exception of the ability to dispose of individual carbohydrates. Fatty acid composition of the investigated strains of Pantoea was represented by fatty acids with 12 to 19 carbon atoms in the chain. Antagonistic activity in the collection strains of E. carotovora, A. tumefaciens and A. vitis was not detected.

Key words: Pantoea agglomerans, endophytic medium of grapevine and tumors, number, biological properties, growth of collection strains of phytopathogenic bacteria.

Реферат

Т. В. Іваниця, І. В. Страшнова

Одеський національний університет імені І. І. Мечникова,

ЧИСЕЛЬНІСТЬ І БІОЛОГІЧНІ ВЛАСТИВОСТІБАКТЕРІЙ PANTOEA AGGLOMERANS, ВИДІЛЕНИХЗ РІЗНИХ СОРТІВ ВИНОГРАДУ ОДЕСЬКОЇ ОБЛАСТІ

Мета. Ізолювати і дослідити біологічні властивості Pantoea agglomerans із внутрішнього середовища виноградної лози і пухлин виноградної лози, відібраних з виноградників Одеської області. Методи. Зразки виноградної лози сортів «Аркадія», «Молдова» і «Одеський сувенір» і пухлин, зрізаних з ураженої лози цих сортів, попередньо стерилізували фламбуванням, подрібнювали на фрагменти, вносили їх у колби з дистильованою водою і перемішували в шейк ері при 28 °С протягом 3 год. Робили серію 10-ти кратних послідовних розведень і висівали на поверхню чашок Петрі з поживним агаром. Інкубували при 28 °С протягом 24-48 год. Проводили кількісний облік, виділяли чисті культури і досліджували їх культуральні, морфологічні, фізіолого-біохімічні властивості, визначали склад клітинних ліпідів та проводили ідентифікацію виділених штамів. Антагоністичну активність P agglomerans визначали лунково-дифузійним методом. Результати. Чисельність бактерій у внутрішньому середовищі винограду коливалася у межах 5,63 ± 1,3*10 КУО/см3 -- 2,96 ± 1,3*10 КУО/см і залежала від пори року і сорту винограду. Кількість мікроорганізмів у пухлинах була більшою ніж в неушкодженій лозі у той же період. Масова частка P. agglomerans у лозі коливалася від 5,7% до 68,2%, у пухлинах -- від 9,88% до 23,08%. Штами P. agglomerans, виділені із ендофітного середовища винограду і пухлин, характеризувалися однаковими морфологічними, культуральними, тін- кторіальними, фізіологічними властивостями. Незначні відмінності спостерігалися у здатності до утилізації вуглеводів. Штами Pantoea із пухлин не споживали цукрозу і 25,0 % утилізували раффінозу в аеробних умовах, на відміну від штамів із неушкодженої лози. Жирнокислотний спектр був представлений жирними кислотами, що містять у ланцюзі від 12 до 19 атомів вуглецю. За жирнокислотним складом вісімнадцать штамів були ідентифіковані як P agglomerans-GC subgroup A. Для досліджуваних штамів домінантними в профілі є С16:0, С12:0, С14:0, С17:0 cyclow7c. Виділені штами P agglomerans не проявили антагоністичної активності щодо колекційних штамів E. carotovora, A. tumefaciens i A. vitis.

Висновки. Кількісний склад мікробіоти ендофітного середовища лози і пухлин був неоднаковим і залежав від джерела виділення, погодних умов і сорту винограду. Штами P. agglomerans, виділені із лози і пухлин, характеризувалися однаковими біологічними ознаками, за виключенням здатності до утилізації окремих вуглеводів. Жирнокислотний склад досліджених штамів Pantoea був представлений жирними кислотами з 12-19 атомів вуглецю у ланцюзі. Антагоністичної активності до колекційних штамів E. carotovora, A. tumefaciens i A. vitis не виявлено.

Ключові слова:Pantoea agglomerans, ендофітне середовище виноградної лози і пухлин, чисельність, біологічні властивості.

Реферат

Т. В.Иваница, И. В. Страшнова

Одесский национальный университет имени И. И. Мечникова,

ЧИСЛЕННОСТЬ И БИОЛОГИЧЕСКИЕ СВОЙСТВАБАКТЕРИЙ PANTOEA AGGLOMERANS,ВЫДЕЛЕННЫХ ИЗ РАЗНЫХ СОРТОВ ВИНОГРАДАОДЕССКОЙ ОБЛАСТИ

Цель. Изолировать и исследовать биологические свойства Pantoea agglomerans из внутренней среды винограда и опухолей, отобранных из виноградников Одесской области. Методы. Образцы виноградной лозы сортов «Аркадия», «Молдова» и «Одесский сувенир» и опухолей, срезанных с пораженной лозы этих сортов, предварительно стерилизовали, измельчали на фрагменты, вносили в колбы с дистиллированной водой и перемешивали в шейкере при 28 °С в течение 3 ч. Делали серию 10-ти кратных последовательных разведений и высевали на поверхность чашек Петри с питательной агаром. Инкубировали при 28 °С в течение 24-48 часов. Проводили количественный учет, выделяли чистые культуры и исследовали их культуральные, морфологические, физиолого-биохимические свойства, определяли состав клеточных липидов и проводили идентификацию выделенных штаммов. Антагонистическую активность P agglomerans определяли луночно-диффузным методом. Результаты. Численность бактерий во внутренней среде винограда колебалась в пределах 5,63 ± 1,3Х103 КОЕ/см3 -- 2,96 ± 1,3Х105 КОЕ/см3 и зависела от времени года и сорта винограда. Количество микроорганизмов в опухолях была больше чем в неповрежденной лозе в тот же период. Массовая доля P agglomerans в лозе колебалась от 5,7% до 68,2%, в опухолях - от 9,88% до 23,08%. Штаммы P agglomerans, выделенные из эндофитной среды винограда и опухолей, характеризовались одинаковыми морфологическими, культуральными, тинкториальными, физиологическими свойствами. Незначительные различия наблюдались в способности к утилизации углеводов. Штаммы Pantoea из опухолей не разлагали сахарозу и 25,0 % утилизировали раффинозу в аэробных условиях, в отличие от штаммов с неповрежденной лозы. Жирнокислотный спектр был представлен жирными кислотами, содержащими в цепи от 12 до 19 атомов углерода. По жирнокислотному составу восемнадцать штаммов были идентифицированы как P. agglomerans-GC subgroup A. Для исследуемых штаммов доминантными в профиле являются С16:0, С12:0, С14:0, С17:0 cyclo w7c. Выделенные штаммы P. agglomerans не проявили антагонистической активности вотношении коллекционных штаммов E. carotovora, A. tumefaciens и A. vitis. Выводы. Количественный состав микробиоты эндофитной среды лозы и опухолей был неодинаковым и зависел от источника выделения, погодных условий и сорта винограда. Штаммы P agglomerans, выделенные из лозы и опухолей, характеризовались одинаковыми биологическими признаками, за исключением способности к утилизации отдельных углеводов. Жирнокислотный состав исследованных штаммов Pantoea был представлен жирными кислотами с 12-19 атомами углерода в цепи. Антагонистической активности к коллекционных штаммов E. carotovora, A. tumefaciens и A. vitis не обнаружено.

Ключевые слова: Pantoea agglomerans, эндофитная среда виноградной лозы и опухолей, численность, биологические свойства.

Pantoea agglomerans (Beijerinck 1888) comb. Nov [12] Earlier Enterobacteragglomerans (Beijerinck 1888) Ewing and Fife (1972), Erwinia herbicola (Lцhnis 1911) Dye 1964, or Erwinia milletiae (Kawakami and Yoshida 1920) Magrou 1937, are gram-negative bacteria belonging to the Enterobacteriaceae family.

P. agglomerans, mainly, an epiphytic plant pathogen that develops on the surface of plants, or an endophyte that resides within plants [3, 19].

The widespread distribution of these bacteria in nature (they also occur in plant and animal products, in the body of animals, in water, soil, dust and air, and sometimes in humans) and their biological role in the different objects of existence are the subject of discussion and ambiguous relation to them. On the one hand, they can cause disorders in humans [18], can cause diseases of crops [8, 9], and on the other hand, they produce substances that are effective in the treatment of cancer and other diseases of humans and animals, inhibit the development of various plant pathogens, promote the growth of plants and is a potentially effective biological fertilizer and biomediator [7, 10].

Since P agglomerans characterizes the versatility of biology, ecology, and the role of the environment, scientific interest in them does not subsist. In view of this, the purpose of the work was to isolate and investigate the biological properties of Pantoea agglomerans from the endophytic medium of grapes and tumors selected from the vineyards of the Odessa region.

Materials and methods

In this work samples (stems) from the grapes "Arcadia", "Moldova" and "Odessa souvenir" were used, as well as tumors, and cut from the affected vine grapes of these varieties.

The preparation of all samples was unified and consisted of the following stages. Samples of the grapevine and the tumors were preliminarily soaked under running water, washed with sterile distilled water, and sterilized the surface, treating 96 °C with alcohol and flaming.

After this, maintaining sterile conditions, the selected samples were chopped into fragments approximately 0.5 cm in size, 10 g of which were transferred to conical flasks of 250 cm3 and placed on 50 cm3 of sterile distilled water for each sample. Experimental samples were mixed in a shaker (from New Brunswick at 250 RPM) at 28 °C for 3 h. After that, a series of 10 consecutive dilutions was made. Petri dishes with nutrient agar (Merck, Germany) were cultured on the surface of

0. 1 cm3 of appropriate dilutions. The seeds were incubated at 28 °C for 24-48 hours.

It was calculated a quantitative of microorganisms that grew up, isolated pure cultures and investigated biological properties: cultural, morphological, physiological and biochemical.

For the analysis of cell lipids composition, samples were prepared with bacterial cultures which were pre-incubated at Tryptic soy agar (Merck, Germany) at a temperature of 28 ± 1 °C for 24 hours.

Three full loops of biomass were placed in the reaction vial and a concentrated NaOH solution was added. This samples was thoroughly mixed and placed on a water bath and maintained at 95-100 °C for 5 minutes. After that, the mixing was repeated and left in a water bath at 95-100 °C for 25 minutes to completely destroy the bacterial cells and purify the lipids. To the cooled suspension, a solution of acidified methanol was added and held in a water bath at 80 °C for 10 minutes to obtain the fatty acid methyl esters, which were then extracted with hexane. The extract was neutralized with 0.3 M alkaline solution and analyzed by gas chromatography [1].

The chromatographic separation of methyl esters of LC was performed on a gas chromatograph Agilent 7890 (Agilent Technologies, USA) with a capillary column ULTRA 2 and a semi-ionization detector. Samples of 2 pi were injected into the evaporator in a split mode with a coefficient of 40:1, temperature of evaporator 250 °C. The separation was carried out in the programming mode of temperature - the initial temperature 170 °C with a gradient of 5 °С / min to 270 °С. The fatty acids content was expressed as a percentage of the total sum of peak areas.

MIDI Sherlock 4.5 software and the RSTBA6 version 6.21 fatty acid profile of the aerobic microorganisms were used to identify the strains examined for their fatty acid profile. The antagonistic activity of the strains of P agglomerans to the collection strains of Erwinia carotovora, Agrobacterium tumefaciens and Agrobacterium vitis, as well as intrinsic antagonism were determined by the hole diffusion method, measuring the growth test inhibition zones of the test strains after 24 hours of cultivation at 28 °C [2].

Statistical processing of the results of the study was carried out using the MS Excel computer program with the definition of Student's ^-criterion. The difference was statistically significant at P < 0.05.

Results and discussion

The internal environment of the vine grape contains a significant number of bacteria that influence on the lasting of physiological processes in plants, promote the protection of plants against pathogens, but some, under certain conditions, can cause disease or influence on the infectious process. These bacteria include

P.agglomerans, which can be used as an indicator of yeast and mold (mold) fungal biocontrol, pathogenic bacteria, but it can itself be an opportunistic pathogen. Experimental studies were carried out in April-October 2017. Depending on the month of the research and the grape variety, the number of microorganisms of the internal environment of the grapes varied within the limits of 5.63 ± 1.3 ms103 CFU / cm3 - 2.96 ± 1.3 ms105 CFU / cm3.

The smallest number of microbiota was detected in April, the largest in September 2017, due to weather seasonal and climatic conditions.

In September and October, defects in the form of tumors were detected on grape barrels of all varieties, in the internal environment the total number of microbiota was higher in September (Fig. 1).

The obtained results indicate the sensitivity of these bacteria to weather conditions. The frequency of isolation of P agglomerans was bigger in September 2017 (for sufficiently dry weather and moderate summer temperature, 28-30 °С), the smallest - in October of this year (when in the beginning of the month there was a significant decrease in temperature, 12-15 °C).

In addition to P. agglomerans, other microorganisms were isolated from the endophytic medium of grapes, most of which were representatives of the genera Agrobacterium and Erwinia.

Fig. 1. Frequency of detection of bacteria P agglomerans in a grape, 2017 year (data presented in percentages)

biological pantoea agglomerans grape

P. agglomerans were also isolated from the internal environment of the tumors. The percantage of them among the other microbiota was higher in October and amounted to slightly more than 20.0%, in September this figure was two times smaller (Figure 2).

Fig. 2. Frequency of detection of bacteria P. agglomerans in a grape's tumor in 2017 year

Comparing the obtained data shown in Fig. 1 and 2, it should be noted that in September in the endophytic environment of the intact grapevine all varieties were dominated by P. agglomerans, whereas in tumors their proportion was much smaller. In October, in the grapevine, the proportion of P. agglomerans decreased significantly, while in tumors, on the contrary, it increased. The taxonomic composition of the bacteria isolated from the tumors was more varied than in the grapevine. Among the isolates, bacteria of the genus Agrobacterium, Erwinia, Xanthomonas, Achromobacter, Serratia predominated.

Compare obtained results and data with literary sources [10, 18], it was supposed that bacteria P. agglomerans could be as representative in both sides, of normal microbiota of grapes and one of the potential pathogens involved in the formation of tumors.

Biological properties have shown that isolated and selected samples were coinciding with the characteristics of bacteria P. agglomerans. All strains of P agglomerans were able to grow on nutrient agar; forming in 24 hours at 28 °C rounded, smooth, regular, carved, shiny, translucent colonies; capable for pigmentation of bright yellow color; with sizes of 0.5-3 mm.

A microscopic study has shown that isolated bacteria are gram-negative, the rod-shaped, with rounded ends. The cell sizes are defined within the range of 0.5 - 1.0 X 1 - 3 p,m. Bacteria are capable to movement.Also, the optimal growth temperature was observed in the range of 25-30 °С, and it is typical for these bacteria.

All strains are oxidase-negative and catalase-positive. The ability to utilize carbohydrates was different in strains isolated from intact grapevine and from tumors (Table 1).

All tested strains were utilized only with the release of maltose, mannose, mannitol, xylose, rhamnose in aerobic and anaerobic conditions, and lactose only in anaerobic conditions. Pantoea strains isolated from tumors did not consume sucrose and 25.0% utilized raffinose in aerobic conditions, unlike strains from intact grapevines.

For the Pantoea agglomerans strains the presence of isomers of fatty acids with a carbon chain length of 12 to 19 carbon atoms were shown. Among the saturated isomers, hexadecanoic acid (C16:0) was dominant with a total content of 29.1 to 30.83% of the total sum of peak areas. The content of tetradecanoic acid (C14:0) ranged from 4.78 to 5.72%, dodecan (C12:0) - from 3.04 to 4.57%, octadecanoic acid - from 0.24 to 0.37%. The content of saturated isomers with an odd number of carbon atoms: tridecan (C13:0), heptadecan (C17:0) was within the range of no more than 0.14 and 0.34%, respectively. For all studied strains, a high content of cycloheptadecanoic acid (cyclo-C17:0) was characterized from 3.74 to 7.55% of the total sum of peak areas. For strains 1a and 4, the presence of pentadecanoic fatty acid (C15:0) in the amount less than 0.1% is shown. For these strains, the presence of both 13-methyl-pentadecane (iso) and 12-methyl-pentadecane (anteiso) isomers was characteristed. The presence of cyclo-nonadecanoic acid (cyclo-C19:0) in trace amounts for most strains has been shown.

For the fatty acid composition of all investigated strains of Pantoea agglomerans, the dominance of a mixture of isomers of hexadecenic acid (C16:1) was characteristic, the content of which ranged from 30.33 to 36.92%. The presence of isomers with unsaturated bonds in the 9, 10, and 11 positions of the carbon chain is shown. Dominant were 9-hexadecenic (9-C16:1) and 10-hexadecenic (10-C16:1) isomers. Among the unsaturated isomers for all investigated strains, 11-octadecenoic fatty acid (11-C18:1) was characterized by a content of 10.43 to 14.0%. 13-Oktadecenic acid was detected in trace amounts in strains 1a, 3, 9, 15, 22x, 24, 25, 27.

Table 1 Biochemical activity of Pantoea strains isolated from grape and tumors

Carbons

Strains, isolated from

Vinegrape

Tumors

Maltose

Aerobic conditions

+

+

Anaerobic conditions

+

+

Mannose

Aerobic conditions

+

+

Anaerobic conditions

+

+

Mannitol

Aerobic conditions

+

+

Anaerobic conditions

+

+

Xylose

Aerobic conditions

+

+

Anaerobic conditions

+

+

Rhamnose

Aerobic conditions

+

+

Anaerobic conditions

+

+

Glucose

Aerobic conditions

+

+

Anaerobic conditions

+

+

Lactose

Aerobic conditions

-

-

Anaerobic conditions

+

+

Sucrose

Aerobic conditions

+

-

Anaerobic conditions

+

+

Raffinose

Aerobic conditions

-

[-]

Anaerobic conditions

+

+

Note: "+" - positive characteristic; «-» - negative characteristic; "[-]" - positive characteristic in 25.0% strain.

For all investigated strains, the presence of hydroxylated fatty acids was characteristed. Thus, the content of 3-hydroxy-tetradecanoic acid (3-OH-C14: 0) ranged from 6.22 to 9.98% of the total sum of peak areas. The content of 2-hydroxy- dodecanoic acid was observed at a level less than 0.1% for strains 1a, 4, 15, 22x, 24, 25 and 27. For strains 35, 36, 41 and 41a, the presence of a small amount of 3-hydroxy-pentadecane acids (3-OH-C15:0) - less than 0,2% was shown.

For strains 35, 36, 41 and 41a, a small amount of 3-hydroxy-pentadecanoic acid (3-OH-C15:0) is shown to be less than 0.2%. For strains 35 and 41a, the presence of 2-hydroxy-pentadecanoic acid (2-OH-C15:0) in the amount of 0.33 and 0.4%, (Table 2), respectively, is shown.

The genus Pantoea was first described by Gavini [12] with the sole representatives of the species Pantoea agglomerans. To date, this genus has 22 validated and described species, among which Pantoea allii, Pantoea brenneri,

Pantoea calida, Pantoea coffeiphila, Pantoea conspicua, Pantoea intestinalis, Pantoea rodasii, Pantoea rwandensis, Pantoea theicola, Pantoea alhagi, recently posted.

Representatives of the genus Pantoea belong to the Enterobacteriacea family. One of the chemotaxonomic markers of this group is the presence of hydroxy acids in the structure of the lipopolysaccharides. The lipopolysaccharides are the main component of the external membrane of the cellular wall of gram-negative bacteria, which plays a key role in interaction of the cell with surrounding objects. Thus, in the purified lipopolysaccharides of the strain Pantoea agglomerans 7969 3-hydroxytradecanoic acid, dodecanova, tetradecanova, hexadecan and

2- hydroxytetradecanova were detected.

The total fatty acid composition of the typical Pantoea agglomerans LMG 1286T cells includes typical dodecanic, tetradecanoic, hexadecanoic, cycloheptadecanoic fatty acids in the amount of 3.8; 6; 27.1; 13.2% of the total sum of peak areas [16]. A characteristic feature is the high content of hexadecenoic and octadecenoic fatty acids - 24.2 and 11.6%, respectively. The content of

3- hydroxytradecanoic acid is 6%. Brady et al. characterized three new species of the Pantoea family that cause bacterial blight and dieback of eucalyptus in Colombia - Pantoea rodasii, Rwanda - Pantoea rwandensis and South Africa - Pantoea wallisii [5,4,6]. All isolates were characterized by a typical set of fatty acids of representatives of Pantoea. Strains Pantoea rodasii, Pantoea rwandensis had a close spectrum (Table 2). Pantoea wallisii had differs from the two previous slightly higher content of octadecenoic fatty acid - 18.8%, and decrease in the proportion of hexadecenoic 16.3% and tetradecanoic acid 3.5%.

Fatty acid composition of the representatives of the genus Pantoea has a typical set of fatty acids. It is characterized by high content of unsaturated isomers - hexa- and octadecenoic acids, saturated dodecanoic, tetradecanoic, hexadecanoic, cycloheptadecanoic fatty acids. The presence of hydroxylated isomers at least 3-hydroxydodecanoic is compulsory.

In the investigated isolates, the presence of all characteristic isomers with contents close to those described in the literature of isolates is shown (Table 3).

High similarity indices obtained when identifying investigated isolates using the automated identification system of MIDI Sherlock microorganisms allow us to conclude that they belong to the Pantoea family.

Also considering that the cause of some infectious diseases of the grapes is the bacteria of the genera Erwinia and Agrobacterium, and it was they who dominated in the internal environment of the vines and tumors, the ability of the isolated P agglomerans strains to suppress the growth of the collection strains ofE. carotovora (12 strains), A. tumefaciens (2 strains) and A. vitis (1 strain) was investigated. It was found that none of the investigated collection strains of phytopathogenic bacteria shown sensitivity to the metabolites of strains P agglomerans.

Thus, studies have shown that the quantitative composition of the endophytic microbiota of the intact vine and tumors varied depending on the weather conditions and the grape variety, while in the tumors the number of bacteria was higher. The frequency isolation bacteria of the genus Pantoea was determined by the medium of selection and weather conditions and did not depend on the grape variety.

TheTable 2 Fatty acid composition isolated strains from a grape and a tumors

Peak Name

1

la

3

4

5

7

9

10

12

15

22x

24

25

27

35

36

41

41a

12:00

3.72

3.06

3.62

33

3.83

3.54

3.61

3.44

3.25

3.84

3.19

3.04

3.33

3.31

3.96

3.98

4.57

4.12

13:00

0.06

0.05

0.1

0.08

0.07

--

0.05

--

--

0.07

0.05

0.05

0.07

0.06

--

--

0.14

--

12:0 ЗОН

--

0.04

--

0.05

--

--

--

--

--

0.04

0.03

0.05

0.04

0.04

--

--

--

--

14:00

5.51

4.79

4.8

5.13

4.94

4.98

5.31

5.23

5.15

5.03

5.04

4.78

5.27

5.11

5.51

5.6

5.72

5.42

15:0 iso

--

0.07

--

0.1

--

--

--

--

--

--

--

--

--

--

--

--

--

--

15:0 anteiso

--

0.06

--

0.11

--

--

--

--

--

--

--

--

--

--

--

0.12

0.12

--

14:0 ЗОН

6.81

7.15

6.76

6.43

6.13

8.14

6.22

6.34

6.28

6.51

7.12

7.15

7.51

7.54

9.3

8.46

9.98

9.74

16:1 w7c/16:l w6c

35.68

34.5

33.09

36.24

35.34

36.1

36.24

36.1

36.92

34.88

34.47

36.01

35.61

34.68

31.73

30.33

30.8

30.65

16:1 w5c

0.14

0.12

0.13

0.14

0.13

0.13

0.13

0.13

0.14

0.12

0.12

0.14

0.15

0.13

0.1

0.11

0.11

0.18

16:00

29.53

30.43

29.1

29.36

29.73

28.41

29.79

30.66

29.65

29.97

31.21

29.86

29.43

30.46

29.87

30.83

28.25

29.2

15:0 iso ЗОН

--

--

--

--

--

--

--

--

--

--

--

--

--

--

1.02

1.96

1.52

1.41

15:0 20H

--

--

--

--

--

--

--

--

--

--

--

--

--

--

0.33

--

--

0.4

17:0 anteiso

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

0.19

17:1 w8c

--

0.05

0.07

0.05

--

--

--

--

--

0.05

0.04

0.05

0.06

0.05

--

--

--

0.33

17:0 cyclo

5.25

4.8

5.88

4.54

4.3

4.57

5.32

4.67

4.42

4.6

4.89

3.74

5.33

5.17

5.97

7.11

7.55

5.64

17:00

0.19

0.24

0.48

0.31

0.33

0.26

0.21

0.17

0.18

0.3

0.2

0.26

0.27

0.25

0.26

0.34

0.4

0.43

18:0 ante/18:2 w6,9c

--

0.06

0.06

--

--

--

--

--

--

0.03

0.05

0.05

0.05

0.05

--

--

--

0.11

18:1 w7c

12.35

13.63

14.95

13.37

14.41

13.03

12.25

12.21

13.09

13.58

12.62

14

11.91

12.16

11.59

10.64

10.43

10.83

18:1 w5c

--

0.05

0.05

--

--

--

0.05

--

--

0.04

0.04

0.04

0.05

0.05

--

--

--

--

18:00

0.21

0.3

0.29

0.25

0.29

0.3

0.24

0.24

0.21

0.23

0.25

0.24

0.21

0.24

0.26

0.37

0.24

0.34

19:0 cyclo w8c

0.09

0.1

0.15

0.1

0.1

--

0.09

0.07

0.1

0.09

0.08

0.08

0.1

0.08

0.1

0.13

0.17

0.12

Similarity Index

0.869

0.769

0.944

0.763

0.815

0.708

0.759

0.723

0.701

0.847

0.823

0.731

0.767

0.822

0.862

0.789

0.707

0.74

The total-cellular fatty acid composition of representatives of the genus Pantoea

Peak Name

P. agglonierance LMG 1286

P. calida LMG 25383

P. gaviviae LMG 25382

P. rodasii

P. rwandensis

P. wallisii

Content in observing strains

12:00

3.8

5.4

5.3

4.5

4.2

5.8

3.04-4.57

14:00

6

6.6

6.7

6.7

6.9

3.5

4.78-5.72

15:0iso

1.1

...

...

...

...

...

<0.1

14:0 ЗОН

11.2

6.9

7.1

13.9

14.3

15.3

6.22-9.98

16:1 w7c/16:lw6c

24.2

23.9

27.2

23.8

26.5

16.3

30.33-36.92

16:lw5c

...

...

...

...

...

...

0.1-0.18

16:00

27.1

31.8

32.1

27.4

26.1

25.6

29.1-30.38

17:0 cyclo

13.2

1.3

...

8.8

7.1

7.9

3.74-7.55

17:00

<1

<0.5

...

...

...

...

0.17-0.34

biological properties of the P agglomerans strains isolated from the veins and tumors were the same except of the ability to utilize individual carbohydrates. Allocated strains are not capable to suppress the

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

1. Іваниця В. О., Горшкова О. Г., Коротаєва Н. В., Волювач О. В., Гудзенко Т В., Остапчук А. М. Склад жирних кислот ліпідів штаму Bacillus sp. ОЗ-5, виділеного із забрудненого нафтою ґрунту о. Зміїний // Мікробіологія і біотехнологія. - 2015. - 32, № 4. - С. 28-36.

2. Нетрусов А. И., Егорова М. А., Захарчук Л. М., Колотилова Н. Н. и др. Практикум по микробиологии: учебное пособие для студентов высших учебных заведений. - М.: Академия, 2005. - 608 с.

3. Andrews J. H., Harris R. F. The ecology and biogeography of microorganisms on plant surfaces. // Ann. Rev. Phytopathol. - 2000. - 38. - P. 145-180.

4. Brady C. L. Emended description of the genus Pantoea, description of four species from human clinical samples, Pantoea septica sp. nov., Pantoea eucrina sp. nov., Pantoea brenneri sp. Nov. and Pantoea conspicua sp. nov., and transfer of Pectobacterium cypripedii (Hori 1911) Brenner et al. 1973 emend. Hauben et al. 1998 to the genus as Pantoea cypripedii comb. nov. Int. // J. Syst. Evol. Microbiol. 2010. - 60. - P. 2430-2440.

5. Brady C. L., Cleenwerck I., Westhuizen L. V., Venter S. N., Coutinho TA., & Vos P.D. Pantoea rodasii sp. nov., Pantoea rwandensis sp. nov. and Pantoea wallisii sp. nov., isolated from Eucalyptus. // International Journal Of Systematic And Evolutionary Microbiology. - 2016. - 62. - P 1457-1464.

6. Brady C.L. et al. Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA) // Syst. Appl. Microbiol. -2008. - 31. - P. 447-460.

7. Costa E., Teixido N., Usall J., Atarйs E., Vinas I. Production of the biocontrol agent Pantoea agglomerans strain CPA -2 using commercial products and by-products. // Appl. Microbiol. Biotechnol. - 2001. 56 - P 367-371.

8. Cruz A.T., Cazacu A.C., Allen C.H. Pantoea agglomerans: a plant pathogen causing human disease. // J. Clin. Microbiol. - 2007. - 45:6. - P 1989-1992.

9. Dutkiewicz J., MackiewiczB., Kinga LemieszekM., GolecM., Milanowski

J.Pantoea agglomerans: a mysterious bacterium of evil and good: Part III. Deleterious effects: infections of humans, animals and plants. Ann. Agric. Environ. Med. // 2016. - 23:2. - P. 197-205.

10. Dutkiewicz J, Mackiewicz B, Kinga LemieszekM, Golec M, Milanowski J.

Pantoea agglomerans: a mysterious bacterium of evil and good: Part IV Beneficial effects. // Ann. Agric. Environ. Med. -2016.- 23 :2.-P. 206-222.

11. Dutkiewicz J., Mackiewicz B., Kinga Lemieszek M., Golec M. & Milanowski J. Pantoea agglomerans: a mysterious bacterium of evil and good. Part

III. Deleterious effects: infections of humans, animals and plants. // Ann. Agric. Environ. Med. - 2016. - 23. - P. 197-205 .

12. Gavini F, Mergaert J., Beji A., Mielcarek C., Izard D., Kersters K., De Ley J. Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov. Int. // J. Syst. Bacteriol. 1989. - 39:3. - P. 337-345.

13. Kato Tanaka Y. et al. Pantoea theicola sp. nov., isolated from black tea. // Int. J. Syst. Evol. Microbiol. - 2015. - 65. - P 3313-3319.

14. Lim J.A., Lee D.H., Kim B.Y. & Heu S. Draft genome sequence of Pantoea agglomerans R190, a producer of antibiotics against phytopathogens and foodborne pathogens. // J. Biotechnol. - 2014. - 188. - P. 7-8.

15. Mishra A., Chauhan P. S., Chaudhry V, Tripathi M. & Nautiyal C. S. Rhizosphere competent Pantoea agglomerans enhances maize (Zea mays) and chickpea (Cicer arietinum L.) growth, without altering the rhizosphere functional diversity. Anton. Leeuw. // Int. J. G.2011. - 100. - P 405-413.

16. J. Mergaert, L. V. UGent, K. Kersters Transfer of Erwinia-ananas (synonym, Erwinia-uredovora) and Erwinia-stewartii to the genus Pantoea emend as Pantoea-ananas (serrano 1928) comb-nov and Pantoea-stewartii (smith 1898) comb-nov, respectively, and description of Pantoea-stewartii subsp indologenes subsp nov. // Int. J. Syst. Bacteriol.1993. - 43. -P 162-173.

17. Popp A., Cleenwerck I., Iversen C., De Vos P & Stephan R. Pantoea gaviniae sp. nov. and Pantoea calida sp. nov., isolated from infant formula and an infant formula production environment. // Int. J. Syst. Evol. Microbiol.2010. - 60. -P 2786-2792.

18. Rezzonico F., Smits T.H.M., Montesinos E., Frey J.E., Duffy B. Genotypic comparison ofPantoea agglomerans plant and clinical strains. // BMC Microbiology. - 2009. - 9. -P. 204.

19. Sturz A.V., Christie B.R., Nowak J. Bacterial endophytes: potential role in developing sustainable systems of crop production. // Critical Reviews in Plant Science. 2000. - 19. - P 1-30.

References

1. Ivanytsia VO, Gorshkova OG, Korotaieva NV, Voluvach OV, Gudzenko TV, Ostapchuk AM. The composition of fatty acids of strain Bacillus sp. OZ-5, isolated from oil contaminated groud from Zmiiniy island. // Mikrobiologiia I biotechnologiia. 2015; 32(4): 28-36. (in Ukrainian)

2. Netrusov AI, Egorova MA, Zaharchuk LM, Kolotilova NN Microbiology of work shop: Textbook for higher education institutions. // Moscow: Akademiya, 2005. 608.(in Russian)

3. Andrews JH, Harris RF. The ecology and biogeography of microorganisms on plant surfaces. Ann. Rev. Phytopathol. 2000; 38:145-180.

4. Brady C L. Emended description of the genus Pantoea, description of four species from human clinical samples, Pantoeaseptica sp. nov., Pantoeaeucrina sp. nov., Pantoeabrenneri sp. Nov. and Pantoeaconspicua sp. nov., and transfer of Pectobacteriumcypripedii (Hori 1911) Brenner et al. 1973 emend. Hauben et al. 1998 to the genus as Pantoeacypripedii comb. nov. Int. J. Syst. Evol. Microbiol. 2010; 60: 2430-2440.

5. Brady CL, CleenwerckI, Westhuizen, LV, Venter, SN, Coutinho TA, Vos P D. Pantoea rodasii sp. nov., Pantoea rwandensis sp. nov. and Pantoea wallisii sp. nov., isolated from Eucalyptus. International Journal Of Systematic And Evolutionary Microbiology. 2016; 62:1457-1464.

6. Brady CL. Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). Syst. Appl. Microbiol.2008; 31: 447-460.

7. Costa E, Teixido N, Usall J, Atarйs E, Vinas I. Production of the biocontrol agent Pantoea agglomerans strain CPA -2 using commercial products and byproducts. Appl. Microbiol. Biotechnol. 2001; 56: 367-371.

8. Cruz AT, Cazacu AC, Allen CH. Pantoea agglomerans: a plant pathogen causing human disease. J. Clin. Microbiol. 2007;45(6): 1989-1992.

9. Dutkiewicz J, Mackiewicz B, Kinga LemieszekM, Golec M, Milanowski J. Pantoea agglomerans: a mysterious bacterium of evil and good: Part III. Deleterious effects: infections of humans, animals and plants. Ann. Agric. Environ. Med. 2016; 23 (2): 197-205.

10. Dutkiewicz J, Mackiewicz B, Kinga LemieszekM, Golec M, Milanowski J. Pantoea agglomerans: a mysterious bacterium of evil and good: Part IV Beneficial effects. Ann. Agric. Environ. Med. 2016; 23 (2): 206-222.

11. Dutkiewicz J, Mackiewicz B, Kinga Lemiesze, M, Golec, MMilanowski J. Pantoea gglomerans: a mysterious bacterium of evil and good. Part III. Deleterious effects: infections of humans, animals and plants. Ann. Agric. Environ. Med. 2016; 23: 197-205 .

12. Gavini F, Mergaert J, Beji A, Mielcarek C, Izard D, Kersters K, De Ley J. Transfer of Enterobacter agglomerans (Beijerinck 1888)Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov. Int. J. Syst. Bacteriol.1989; 39 (3): 337-345.

13. Kato Tanaka, Y. Pantoea theicola sp. nov., isolated from black tea. Int. J. Syst. Evol. Microbiol. 2015; 65: 3313-3319.

14. Lim, JA, Lee DH, Kim BY, Heu S. Draft genome sequence of Pantoea agglomerans R190, a producer of antibiotics against phytopathogens and foodborne pathogens. J. Biotechnol.2014; 188: 7-8.

15. MishraA, ChauhanPS, Chaudhry V TripathiM, Nautiyal CSRhizosphere competent Pantoea agglomerans enhances maize (Zea mays) and chickpea (Cicer arietinum L.) growth, without altering the rhizosphere functional diversity. Anton. Leeuw. Int. J. G. 2011; 100: 405-413.

16. Mergaert J, UGent LV, Kersters K. Transfer of Erwinia-ananas (synonym, Erwinia-uredovora) and Erwinia-stewartii to the genus Pantoea emend as Pantoea- ananas (serrano 1928) comb-nov and Pantoea-stewartii (smith 1898) comb-nov, respectively, and description of Pantoea-stewartii subsp indologenes subsp nov. Int. J. Syst. Bacteriol. 1993; 43: 162-173.

17. Popp A, Cleenwerck I, Iversen C, De Vos P, Stephan R. Pantoea gaviniae sp. nov. and Pantoea calida sp. nov., isolated from infant formula and an infant formula production environment. Int. J. Syst. Evol. Microbiol. 2010; 60: 27862792.

18. Rezzonico F, Smits THM, Montesinos E, Frey JE, Duffy B. Genotypic comparison of Pantoea agglomerans plant and clinical strains. BMC Microbiology. 2009; 9: 204.

19. Sturz AV, Christie BR, Nowak J. Bacterial endophytes: potential role in developing sustainable systems of crop production. Critical Reviews in Plant Science. 2000; 19: 1-30.

Размещено на Allbest.ru


Подобные документы

  • Animal physiology as a branch of the biological sciences life processes, bodily functions and behavior of animals. The history of physiology, its purpose, the main sections, concepts and relationship with other sciences. Basic life processes of animals.

    презентация [1,4 M], добавлен 22.12.2014

  • The use of digital technology in analyzing the properties of cells and their substructures. Modeling of synthetic images, allowing to determine the properties of objects and the measuring system. Creation of luminescent images of microbiological objects.

    реферат [684,6 K], добавлен 19.04.2017

  • Hormones as organic substances, produced in small amounts by specific tissues (endocrine glands), secreted into the blood stream to control the metabolic and biological activities. Classification of hormones. The pro-opiomelanocortin peptide family.

    презентация [1,2 M], добавлен 21.11.2012

  • Vectors of the molecular cloning, their functions and basic properties. Double-stranded phage. Scope of Present Review. Life cycle and genetics of Lambda. Phage Lambda as a vector. Transfection of Recombinant Molecules. Storage of Lambda Stocks.

    курсовая работа [1,4 M], добавлен 11.12.2010

  • It was proposed to use the 2H-labeled hydrolysate of RuMP facultative methylotroph Brevibacterium methylicum, obtained from deuterated salt medium dM9 as a substrate for the growth of inosine producing bacterium Bacillus subtilis.

    статья [550,4 K], добавлен 23.10.2006

  • Skeletal system: protection of internal organs, movement in union with muscles, storage of minerals (calcium, phosphorus) and lipids. Axial, appendicular skeleton. Surface anatomy of the bone. Structure/function of joints, muscle and ligament attachments.

    презентация [1,8 M], добавлен 10.03.2013

  • Analysis of the role and the region's place in the economic sector of the country. The model of rational territorial organization of the economy in Ukraine. The structure of the anthropogenic pressure in the region. Biosphere organization environment.

    топик [18,6 K], добавлен 16.02.2016

  • Value and probability weighting function. Tournament games as special settings for a competition between individuals. Model: competitive environment, application of prospect theory. Experiment: design, conducting. Analysis of experiment results.

    курсовая работа [1,9 M], добавлен 20.03.2016

  • Organizational structure of the company. Analysis of the external and internal environment. Assessment of the company's competitive strength. Company strategy proposal. Structure of implementation and creation of organizational structure of management.

    дипломная работа [2,7 M], добавлен 19.01.2023

  • The profit function possesses several important properties that follow directly from its definition. These properties are very useful for analyzing profit-maximizing behavior. Outlining the properties of the profit function important to recognize.

    анализ книги [15,2 K], добавлен 19.01.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.