Учение о кроветворении

Определение и значение гемопоэза, особенности данного процесса у эмбриона и плода. Система крови и ее функции. Факторы, влияющие на воспроизводство эритроцитов. Структура и функции гемоглобина, его биосинтез. Клиническая оценка показателей красной крови.

Рубрика Биология и естествознание
Вид лекция
Язык русский
Дата добавления 17.11.2018
Размер файла 69,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Учение о кроветворении

1. Гемопоэз. Определение и практическое значение

гемопоэз кровь эритроцит гемоглобин

Учение о кроветворении имеет для занимающихся гематологией большое значение. Трудно переоценить и практическое значение теории кроветворения для клиники и лаборатории - без знания генеза кровяных клеток немыслимо было бы разобраться в сущности заболеваний системы крови, так же как было бы невозможно точно определить природу участвующих в патологических процессах кровяных элементов.

Высшей ступенью эволюционного развития красных кровяных клеток являются безъядерные эритроциты, что наблюдается у большинства позвоночных и приводит к максимальному использованию всей поверхности эритроцитов для поглощения кислорода.

Что касается белой крови, то и здесь отмечается эволюция от низших форм к высшим - от амебоцитов внутренней среды у беспозвоночных до сложного и весьма дифференцированного лейкоцитарного состава крови у позвоночных.

Гемопоэз у эмбриона и плода

Первое образование крови у зародыша происходит в желточном мешке из клеток мезенхимы одновременно с развитием сосудов. Это - первый, так называемый ангиобластический период кроветворения. Кровяные островки окружают со всех сторон развивающийся зародыш.

Как выяснено, в мезенхиме зародыша, а также во внеэмбриональной мезенхиме у высших позвоночных и у человека из подвижных мезенхимных клеток очень рано (очевидно, в связи с тем, что мезенхима раньше всех других тканей принимает участие в обмене веществ) обособляются зачатки кровяной ткани, или кровяные гистиобласты (мезобласты) и гемоцитобласты. В кровяных островках мезенхимы клетки, округляясь или высвобождаясь из синцитиальной связи, преобразуются в первичные кровяные клетки. Клетки, ограничивающие кровяные островки, становятся плоскими пластинками и, соединяясь наподобие эпителиальных клеток, образуют стенку будущего сосуда. Эти уплощенные клетки получили название эндотелиальных клеток.

В кровяных островках найдены также предшественники тромбоцитов, мегакариоциты, которые тоже происходят от мезобластов.

После образования первых кровеносных сосудов мезенхима уже состоит из двух частей: кровеносного русла с жидким содержимым, в котором взвешены свободные кровяные клетки, и окружающий мезенхимы синцитиального строения, в которой также имеются подвижные клетки.

Первичные гемогистиобласты (мезобласты), дифференцирующие в кровяных островках, представляют собой довольно крупные клетки округлой формы с базофильной цитоплазмой и ядром, в котором хорошо заметные крупные глыбки хроматина. Эти клетки совершают амебоидные движения. Первичные кровяные клетки усиленно размножаются митотически, и значительное большинство их превращается в первичные эритробласты - мегалобласты.

Количество первичных эритробластов, продолжающих размножаться митотически, все время увеличивается, но одновременно с размножением нарастает пиктонизация ядра и первичные эритробласты, теряя ядро, превращаются в первичные крупные эритроциты - мегалоциты.

Однако некоторая часть первичных клеток остается в недиффиренцированном состоянии и дает начало гемоцитобластам - родоначальным элементам всех последующих кровяных клеток.

Из гемоцитобластов еще в сосудах желточного поля развиваются вторичные (окончательные) эритробласты, которые впоследствии синтезируют гемоглобин и становятся окончательными, или вторичными, нормобластами. В кровяных островках формируются сосудистые каналы, объединяющиеся в конечном счете в сеть кровеносных сосудов. Эта сеть примитивных кровеносных сосудов на ранних этапах содержит первичные эритробласты и гемоцитобласты, а на более поздних - зрелые эритробласты и эритроциты.

Развитие эритроцитов в раннем эмбриональной периоде характеризуется тем, что оно протекает внутри образующихся сосудов. Гранулоциты образуются из гемобластов, располагающихся вокруг, сосудов. На этом заканчивается ангиобластический период кроветворения. Желточный мешок на 4 - 5-й неделе подвергается атрофии и кроветворная функция сосудов постепенно прекращается.

С этого времени начинается собственно эмбриональное кроветворение: местом образования эритроцитов и лейкоцитов становятся печень, костный мозг, лимфатические узлы.

У созревающего эмбриона и в дальнейшей постнатальной жизни развитие гемоцитобластов и эритробластов из эндотелия сосудов уже не происходит. Кровообразование имеет место в ретикулярной адвентиции, где гистиоциты превращаются в эритробласты.

Эмбриональная мезенхима. Дополнительную роль в раннем эмбриональном гемопоэзе непосредственно в полости тела играют первичные мезенхимные клетки, особенно в районе передней прекардиальной мезенхимы. Малая часть мезенхимных клеток развивается в эритробласты, мегакариоциты, гранулоциты и фагоцитирующие клетки, аналогичные соответствующим клеткам взрослых. Количество этих клеток невелико, и больших разрастаний клеток крови, подобных кроветворным островкам желточного мешка, в мезенхиме полости тела не формируется. Стволовые клетки, располагающиеся среди этих гемопоэтических клеток (вне желточного мешка), вероятно, играют главную роль в генерации последующих поколений гемопоэтических клеток у плода и в постнатальном периоде, хотя относительный вклад первичных стволовых клеток, находящихся в желточном мешке и вне его, в более поздний гемопоэз пока не ясен.

Кроветворение в печени. У эмбриона (приблизительно 3 - 4-й неделе жизни) закладывается печень путем всасывания железистого эпителия двенадцатиперстной кишки в мезенхимную ткань.

У человека, начиная примерно со стадии 12 мм эмбриона (возраст 6 нед), гемопоэз постепенно перемещается в печень. Печень скоро становится основным местом гемопоэза и является активной в этом отношении до момента рождения. Поскольку эндотермальные тяжи печени формируются в поперечные перегородки, они сталкиваются с блуждающими мезенхимными клетками с морфологией лимфоцитов. Эти маленькие круглые лимфоидные клетки, называемые лимфоцитоидными блуждающими клетками, в последствии улавливаются между первичными печеночными эндотермальными тяжами и эндотелиальными клетками врастающих капилляров. Они образуют гемоцитобласты, подобные таковым в желточном мешке. Эти гемоцитобласты вскоре формируют очаги гемопоэза, аналогичные кровяным островкам желточного мешка, где вторичные эритробласты образуются в больших количествах. Вторичные эритробласты впоследствии делятся и дифференцируются в зрелые эритроциты, при этом происходят активация синтеза гемоглобина и потеря клеточного ядра. Хотя зрелые эритроциты обнаруживаются в печени эмбриона уже в возрасте 6 нед, в значимом количестве они появляются в циркуляции гораздо позднее. Таким образом, к четвертому месяцу жизни плода большинство циркулирующих эритроцитов представлено вторичными зрелыми формами. Мегакариоциты также, вероятно, образуются из гемоцитобластов в печени эмбриона и плода. В эмбриональной печени находят гранулоцитарные клетки, но развиваются они, видимо, не из гемоцитобластов, а непосредственно из блуждающих лимфоцитоидных клеток.

У человека кроветворение в печени прекращается обычно к концу внутриутробного периода, и тогда костный мозг остается единственным органом, где происходит эритро- и миелопоэз. На 5-м месяце внутриутробной жизни в связи с накоплением в печени плода гемопоэтических веществ, поступающих из материнского организма, мегалобластическое кроветворение окончательно сменяется нормобластическим.

Кроветворение в костном мозгу. В конце 3-го месяца жизни эмбриона закладываются одновременно костный мозг и селезенка.

Эмбриональный костный мозг и миелопоэз. Различные кости у эмбриона образуются не одновременно. Раньше других - длинные кости добавочного скелета. Первоначально формируется хрящевая модель каждой кости. Центральное ядро диафиза впоследствии оссифицируется, и вскоре вслед за врастанием мезенхимных клеток из периоста развивается область костной резорбции. Процесс движения мезенхимных клеток сопровождается врастанием внутрь капилляров. Количество мезенхимных клеток продолжает увеличиваться за счет непрерывного притока новых клеток, а также делением тех, которые уже находятся внутри недавно сформировавшейся костномозговой полости. Они нарабатывают неклеточный материал, или матрикс, заполняющий развивающуюся полость кости. Из этих ранних костномозговых мезенхимных клеток образуются клетки, морфологически сходные с гемоцитобластами печени и желточного мешка. Аналогично последним, они дают начало мегакариоцитам и эритроидным клеткам, а также миелоидным, включая нейтрофилы, базофилы и эозинофилы. Эмбриональный костный мозг заметно отличается от центров более раннего развития гемопоэза тем, что образование миелоидных клеток идет здесь особенно энергично и доминирует в гемопоэзе. Процесс формирования ранних миелоидных клеток, или миелопоэз, начинается в центральной части костномозговой полости и распространяется оттуда, чтобы в конечном счете захватить всю полость кости. Эритропоэз в эмбриональном костном мозге развивается немного позже и в основном смешивается с процессом миелопоэза, так что среди большинства созревающих клеток миелоидной линии можно наблюдать малые очаги эритропоэза. После рождения у человека гемопоэз в печени прекращается, но продолжается в костном мозге всю оставшуюся жизнь.

Лимфопоэз. Лимфоидные элементы в организме зародышей позвоночных появляются позднее эритроцитов и гранулоцитов. Первые зачатки лимфатических узлов возникают в области шейных лимфатических мешков. В самом раннем периоде (у человеческого зародыша около 3 месяцев) образование лимфоцитов происходит следующим образом. В мезенхиме стенки лимфатического мешка начинают обособляться подвижные гемогистиобласты прямо из мезенхимного синцития. Последний преобразуется в ретикулярную кровь, в петлях которой накапливаются различные свободные элементы: гемогистиобласты, гемоцитобласты, макрофаги и лимфоциты.

На ранних стадиях развития зачатков лимфатических узлов в них наблюдается присутствие эритробластов и миелоидных элементов, однако размножение этих форм быстро подавляется образованием лимфоцитов.

Эмбриональный тимус развивается как производное третьего жаберного кармана. Тимический эпителий заполняется блуждающими мезенхимальными клетками, которые начинают быстро размножаться и деффиринцироваться в димфоциты. Одновременно в тимусе формируется незначительное количество эритроидных и миелоидных клеток, но преобладает процесс лимфопоеза. Лимфоциты образующиеся в этом органе, представляют собой особый класс лимфоцитов со специальной функцией - участие в клеточном иммунитете.

Селезенка. В петлях пульпы заложены крупные клетки ретикулярного происхождения. Между петлями ретикулярной ткани пульпы проходят венозные синусы с активным эндотелием. Развитие лимфатических очагов в селезенке происходит позднее: вокруг мелких артерий из адвентициальной ткани и периваскулярной мезенхимы развивается ретикулярная аденоидная ткань с большим количеством лимфоцитов в ее петлях (зачатки лимфатических фолликулов).

Костный мозг. Красный костный мозг составляет 50% общей массы всей костномозговой субстанции, включающей жировой костный мозг, и по всему весу соответствует примерно весу наибольшего органа человека - печени (1300-2000 г.).

У детей в костях преобладает красный костный мозг; начиная с 7 лет в диафизах длинных костей появляется жировой костный мозг. С 20 лет кроветворный красный костный мозг ограничивается эпифизами длинных костей, короткими и губчатыми костями. В старости в связи с развитием возрастного остеосклероза красный костный мозг местами замещается желтым (жировым) костным мозгом.

Костномозговая ткань. Костномозговая ткань представляет собой нежно-петлистую сеть, состоящею из разветвляющихся ретикулярных клеток, анастомозирующих между собой при помощи тончайших коллагеновых фибрилл; в петлях этой сети содержатся костномозговые элементы, а также жировые клетки. Ретикулярная сеть (строма костного мозга) более выражена в жировом костном мозгу; она особенно заметна при патологических состояниях, сопровождающихся атрофией кроветворной ткани и пролиферацией элементов крови.

Очень богатая кровеносная система костного мозга является замкнутой в том смысле, что непосредственного смывания кроветворной паренхимы кровью не происходит. Это в нормальных условиях препятствует выхождению незрелых клеточных элементов в периферическую кровь.

Среди ретикулярных элементов костного мозга различают следующие формы.

1. Недифференцированная клетка, малая лимфоидно-ретикулярная клетка, имеющая характерную грушевидную, хвостатую или веретенообразную форму, отрываясь от ретикулярного синцития, морфологически трудно отличима от узкопротоплазменных лимфоцитов.

2. Большая лимфоидно-ретикулярная клетка - молодая, функционально активная клетка, встречающаяся большей частью при регенераторных процессах.

3. Фагоцитирующая большая ретикулярная клетка - макрофаг. Клетка эта неправильной формы, с широкой светло-голубой цитоплазмой и малым, круглым, эксцентрически расположенным ядром. Она содержит азурофильные зерна, фагоцитированные ядра, эритроциты (эритрофаг) и глыбки пигмента (пигментофаг), жировые капли (липофаг) и т.д.

4. Костномозговая жировая клетка. Жировая клетка, происходя из ретикулярной, может при потере ею жира возвращаться в первоначальное состояние и вновь получать свойственные ретикулярной клетки потенции, в частности и способность продуцировать элементы крови. Клинические наблюдения подтверждают тот факт, что очень бедный миелоидными элементами, но богатый жировыми клетками костный мозг сохраняет способность к физиологической регенерации.

5. Плазматическая клетка, плазмоцит. Плазматические клетки встречаются в нормальном костномозговом пунктате в незначительном количестве, составляя, по данным разных авторов, от 0,1 до 3%.

О плазматических клетках будет сказано ниже, в последующих лекциях.

Таким образом, во всех гемопоэтических органах эмбриона и плода происходят тождественные процессы. Циркулирующие первичные гемопоэтические стволовые клетки расселяются в специфической тканевой нише способом, который до конца еще не понят. Там они дифференцируются в клетки, распознаваемые как гемопоетические предшественники. Эти эмбриональные гемопоэтические предшественники, вероятно, способны к мультилинейной дифференцировке, но в каждом конкретном месте процесс гемопоэза может быть нацелен на формирование определенной линии клеток, возможно, под влиянием локального микроокружения. Различные очаги эмбрионального гемопоэза активны только на соответствующих этапах развития. За этой активацией следует программированая инволюция. Исключение составляет костный мозг, который сохраняется как основной центр гемопоэза у взрослых. Лимфатические узлы, селезенка, тимус и другие лимфоидные ткани продолжают выполнять лимфопоэтическую функцию и у взрослого человека.

Определение системы крови и ее функций

Система крови - это единая система кроветворных органов и крови, обеспечивающая образование форменных элементов крови, транспортную, защитную, регуляторную и другие функции в целях стабилизации всех констант организма и обеспечения постоянства его внутренней среды. Понятие «система крови» предложена Г.Ф. Лангом в 1939 г. ввиду неразрывной функциональной связи кроветворных органов и крови.

К кроветворным органам человека относят вилочковую железу, костный мозг, лимфатические узлы и селезенку. Кроветворение в этих органах, за исключением костного мозга, осуществляется в основном в антенальном периоде, а после рождения интенсивность его быстро снижается. В постнатальном периоде основным кроветворным органом становится костный мозг. Главной функцией органов кроветворения является образование зрелых клеток периферической крови в процессе клеточных дифференцировок.

Кровь - это ткань организма, состоящая из жидкой части(плазмы) и взвешенных в ней клеточных(форменных) элементов. Кровь осуществляет транспорт химических веществ (в том числе кислорода), благодаря которому происходит интеграция биохимических процессов, протекающих в различных клетках и межклеточных пространствах. Основная функция крови - транспортная, т.е. перенос различных веществ, в том числе тех, с помощью которых организм защищается от воздействия окружающей среды или регулирует функции отдельных органов.

В зависимости от характера переносимых веществ различают следующие функции крови:

1. Дыхательная функция - транспорт кислорода от легочных альвеол к тканям и углекислоты от тканей к легким.

2. Трофическая (питательная) функция - перенос во все клетки организма питательных веществ (глюкозы, аминокислот, жиров, витаминов, минеральных веществ, воды).

3. Экскреторная функция - перенос конечных продуктов обмена веществ (мочевины, креатинина, мочевой кислоты и т.д.) в почки и другие органы (например, кожу, желудок) и участие в процессе образования мочи.

4. Гомеостатическая функция - достижение постоянства внутренней среды организма, благодаря перемещению крови и омыванию ею всех тканей.

5. Регуляторная функция - перенос гормонов, вырабатываемых железами внутренней секреции, и других биологически активных веществ, при помощи которых осуществляется регуляция функций отдельных клеток тканей.

6. Терморегуляторная функция - охлаждение кровью энергоемких органов и согревание органов, теряющих тепло, благодаря ее высокой теплопроводности и теплоемкости.

7. Защитная функция крови прежде всего представлена функционированием системы иммунитета и системы гемостаза. Током крови удаляются и обезвреживаются образующиеся при повреждении тканей продукты их деструкции.

2. Нормальное кроветворение

Из всех лабораторных тестов наиболее востребован общий (клинический) анализ крови, отражающий широкий спектр как часто встречающихся, так и менее распространенных нарушений здоровья, которые могут быть связаны с отклонениями количества клеток крови от нормы. Конечно, это не один тест, а набор анализов, включающих подсчет каждого из трех видов форменных элементов крови: эритроцитов, тромбоцитов и кровяных пластинок (тромбоцитов).

Воспроизводство эритроцитов

Из трех типов форменных элементов крови эритроциты - наиболее многочисленный, их количество превосходит число лейкоцитов примерно в 1000 раз, а кровяных пластинок в 100 раз. Процесс воспроизводства клеток крови, который называется гемопоэзом, происходит в костном мозге. В раннем детстве все кости содержат костный мозг, способный вырабатывать клетки крови, но у взрослых этот процесс ограничен костным мозгом ребер, позвонков, грудины, лопаток, тазовых костей, например бедра и плеча. Все клетки крови происходят от так называемых плюрипотентных (полипотентных) стволовых клеток костного мозга, которые потенциально способны превращаться в клетки, предназначенные стать зрелыми эритроцитами, лейкоцитами или тромбоцитами.

Лабораторные анализы, оценивающие функции эритроцитов.

Показатель

Что измеряется

Единицы измерения

Количество эритроцитов

Гемоглобин

Гематокрит

Средний объем эритроцита

Концентрация эритроцитов в крови

Концентрация гемоглобина в крови

Процентная доля эритроцитов в цельной крови

Средний объем эритроцита

n · 1012

г/л (г/дл)

%

мкм3

Теория и схема кроветворения

Обеспечение кроветворения, строго адекватного запросу, возможно благодаря сложной системе его регуляции. Установлено, что более 95% всех клеток кроветворной ткани (костный мозг, селезенка, и лимфоузлы), хорошо изученных морфологически, не участвуют в постоянных регуляторных процессах, так как их гистогенез уже определен на предыдущих этапах дифференцировки. Качественная и количественная регуляция кроветворения осуществляется клетками-предшественниками гемопоэза последовательно в несколько этапов.

Прямое экспериментальное изучение этих клеток стало возможным благодаря развитию с начала 60-х годов ХХ столетия клональных методов исследования (введение смертельно облученным мышам костного мозга здоровых мышей с обнаружением через 7-10 дней в селезенке облученных животных колоний, состоящих из развивающихся кроветворных клеток). Эти и другие постоянно совершенствующиеся методы изучения кроветворных клеток, в том числе радиобиологические, иммунологические, электронномикроскопические, генетические, позволили зарубежным и отечественным исследователям накопить важные фактические данные, характеризующие кинетику клеточных популяций в процессе кроветворения. Отражением достигнутого уровня знаний явилось построение схем кроветворения, которые в отличие от предыдущих вносят уточнение в представление о ранних стадиях гемопоэза, когда морфологическое разделение клеток еще невозможно.

Наиболее признанные современные схемы кроветворения И.Л. Черткова и А.И. Воробьева (1973, 1981) и Аstaldi с соавторами (1973) исходят из представления о происхождении всех клеток крови из единого источника, что составляет сущность унитарной теории кроветворения, сформулированной в 20-е годы А.А. Максимовым и получившей в настоящее время экспериментальное подтверждение и дальнейшее развитие. Родоначальным элементом клеток крови служит полипотентная стволовая клетка (см. таблицу №2) (колониеобразующая единица в селезенке - КОЕс), способная к разнообразным дифференцировкам и обладающая свойством самоподдержания (пролиферации без видимой дифференцировки) в течение всей жизни индивидуума. В отделе стволовых клеток, число которых в кроветворной ткани менее 1%, осуществляется качественная регуляция кроветворения, т.е. снабжение его всеми видами предшественников, в том числе и лимфоцитарных. Без участия стволовых клеток отделы коммитированных (с выбранным направлением дифференцировки) предшественников, имеющих ограниченное время существования, не способны поддержать постоянно обновляющиеся популяции клеток крови в течении длительного срока. Пролиферация и дифференцировка стволовых клеток происходит только в кроветворной ткани в соседстве со стромальными клетками, создающие для них необходимое микроокружение. В настоящее время нет данных, свидетельствующих о возможности перехода стромальных клеток в стволовые гемопоэтические и поддержании таким образом непрерывного кроветворения. Напротив, показано, что стволовые клетки сами способны к безграничному самоподдержанию и признание этого факта составляет принципиальное отличие всех современных схем кроветворения от предыдущих, допускающих происхождение кроветворных клеток (гемоцитобластов) из стромальных ретикулярных клеток (гемогистобластов). Несмотря на то, что стволовая клетка, видимо, способна проделывать около 100 митозов, ее пролифиративная активность в условиях нормального кроветворения невелика; основная масса стволовых клеток находится вне клеточного цикла и лишь 10-20% их медленно пролиферирует с периодом генерации до 10 дней. Регуляция темпа пролиферации и поддержания числа стволовых клеток обеспечивается близкодействующими механизмами при участии специального индуктора микроокружения, вероятность ухода стволовых клеток в дифференцировку при стабильном кроветворении равняется примерно 50%. Имеющиеся экспериментальные данные показывают, что первый этап дифференцировки стволовых клеток, приводящий к образованию самых ранних предшественников того или иного ряда, не зависит от запроса, частота соответствующих дифференцировок стабильна и, видимо, закреплена генетически.

Ближайшей ступенью дифференцировки стволовой клетки является класс (II) частично детерминированных полипотентных клеток-предшественников миелопоеза и лимфопоэза. Существование клетки-предшественницы миелопоеза доказано на примере ряда лейкозов, прежде всего хронического миелолейкоза, при котором приобретенный дефект генетического аппарата - появление укороченной хромосомы в 22-й паре, обнаружен в трех ростках кроветворения (гранулоцитарном, мегакариоцитарном, эритроцитарном), но не в лимфоцитарном. Точно так же исключительно в клетках этих трех ростков выявлено повреждение, наблюдаемое при пароксизмальной гемоглобинурии с постоянной гемосидеринурией - болезни Маркиафавы-Микели. Разработаны методы, позволяющие обнаружить клетку-предшественницу миелопоэза (КОЕ-ГЭММ) человека в культуре (в присутствии специального стимулятора). Частично детерминированные полипотентные клетки-предшественницы могут тормозить пролиферацию стволовых клеток и имеют ограниченные возможности к самоподдержанию (3-4 нед.)

В процессе дальнейшей дифференцировки образуются унипотентные предшественники (III класс), которые также не способны к длительному самоподдержанию, однако при прохождении через этот этап количество клеток, ушедших в дифференцировку, возрастает в десятки тысяч раз, так как на стадии унипотентных предшественников возможное число проделываемых ими митозов равняется 10-15, а доля пролиферирующих клеток составляет 60-100%. В данном отделе осуществляется основная количественная регуляция кроветворения, т.е. обеспечение необходимого количества клеток нужного типа в ответ на конкретные потребности (запрос) организма. Существуют гуморальные регуляторы кроветворения - поэтины (гормоны), один из которых, эритропоэтин, хорошо изучен. Поэтины не только вызывают дифференцировку унипотентных предшественников в морфологически распознаваемые элементы, но и определяют число митозов совершаемых в процессе дифференцировки клетками данного класса. В результате III класс поэтинчувствительных клеток-предшественниц оказался подразделенным на два подкласса - клеток, способных к дифференцировке в направлении двух ростков, и клеток, дифференцирующих лишь в одном направлении.

К этому классу отнесены следующие клетки: клетка-предшественница грануло- и моноцитопоэза (КОЕ-ГМ), способная дифференцироваться как в моноциты-макрофаги, так и гранулоциты; смешанная гранулоцитарно-эритроцитарная клетка-предшественница (КОЕ-ГЭ); мегакариоцитарно-эритроцитарная колониеобразующая единица (КОЕ-МГЦЭ); самостоятельная клетка-предшественница гранулоцитов (КОЕ-Г); отдельная клетка-предшественница моноцитопоэза (КОЕ-М); клетка-предшественница эозинофилов (КОЕ-Э); клетка-предшественница базофилов (КОЕ-Б), которая однако допускается по аналогии с предыдущей, так как пока нет метода ее выявления (предполагают существование и клетка-предшественница тучной клетки, близкой по своей гепаринопродуцирующей функции к базофилам); клетка-предшественница мегакариоцитов (КОЕ-МГЦ).

Клетки, учавствуют в эритропоэзе - это уже упоминавшаяся КОЕ-ГЭ; бурстообразующая («бурсты» - большие колонии) эритроидная единица (БОЕ-Э), зрелая и незрелая; эритроидная колониеобразующая единица (КОЕ-Э). Эритропоэз в обычных условиях проходит стадии БОЕ-Э>КОЕ-Э или КОЭ-ГЭ>БОЕ-Э>КОЕ-Э и затем стадию морфологически распознаваемых эритробластов - проэритробласт (пронормобласт), но в определенных условиях, например при напряженном эритропоэзе, может, по-видимому миновать стадии КОЕ-Э и БОЕ-Э. В настоящее время можно считать доказанным, что при повышенной потребности в отдельных клетках крови наряду с основным кроветворением происходит и параллельно шунтовое, обеспечивающее дополнительную быструю продукцию каждого из рядов кроветворения и имеющие самостоятельные клетки-предшественницы.

Перечисленные выше классы клеток, начиная со стволовых клеток и кончая унипотентными поэтинчувствительными клетками морфологическими методами не различаются, известно лишь, что все они могут находиться в двух состояниях: лимфоцитоподобном-спокойном, и бластном-активном (бласты - клетки, имеющие нежно-структурное, равномерномерноокрашенное ядро с нуклеолами и беззернистую неширокую цитоплазму).

Очередными ступенями дифференцировки клеток-предшественниц кроветворной ткани является класс (отдел) морфологически распознаваемых пролиферирующих клеток (миелобласт, пронормобласт, мегалобласт, монобласт), затем класс созревающих клеток (миелоцит, нормобласты и др.), наконец, класс зрелых клеток (эритроцит, тромбоцит, гранулоциты). В процессе дифференцировки морфологически распознаваемые клетки эритроцитарного ряда проходят 5-6 митозов, гранулоцитарного - 4 митоза, в процессе моноцитопоэза от монобласта до макрофага - 7-8 митозов, клетки мегакариоцитарного ряда проделывают 4-5 эндомитозов (деление ядер без деления всей клетки - процесс полиплоидизации). Последними клетками, способными к делению, среди гранулоцитов являются миелоциты, среди ядерных эритроидных клеток - полихроматофильные нормобласты (нормоциты), дальнейшее созревание этих клеток идет без деления. Время созревания гранулоцитов в костном мозге, по данным разных авторов, равняется 60-204 ч, генерационное время клеток красного ряда - в среднем 42-60 ч, время созревания мегакариоцидов - 120 ч (весь жизненный цикл мегакариоцитов исчисляется 10-ю днями).

В отличие от миелопоэза, сведения о котором получают из поведения клеток в различных условиях культивирования, представление о лимфопоэзе основывается главным образом на изучении антигенных клеточных маркеров (поверхностных и цитоплазматических), которые не одинаковы как для Т- и В-лимфоцитов, так и для различных стадий дифференцировки этих двух основных направлений лимфопоэза. По выявления соответствующих маркеров в настоящее время оказалось возможным идентифицировать клетки-предшественницы В-лимфоцитов (пре-В-клетки) и клетки-предшественницы Т-лимфоцитов (претимоциты), а также отдельные субпопуляции Т-лимфоцитов (супрессоры, хелперы), однако в схеме дана преимущественно морфологическая дифференцировка В- и Т-лимфоцитов. Имеется принципиальная разница в поведениии на конечных этапах дифференцировки клеток лимфоидного и миелоидного рядов. Если развитие клеток миелоидного ряда строго детерминировано вплоть до гибели, то в лимфоидном ряду под влиянием специфических индукторов (антиген) возможен переход морфологически зрелых лимфоцитов в соответствующие бластные формы (например, В-лимфоцит - В-иммунобласт - плазматические клетки). Поэтому в схеме кроветворения разделены лимфобласты и иммунобласты: лимфобласт - морфологически распознаваемый предшественник лимфоцита, иммунобласт представляет собой стадию существования активированного лимфоцита (бласттранформация, синтез ДНК), предшествующую проявлению его функциональной активности (в частности, для В-лимфоцитов - секреция иммуноглобулинов).

Все тканевые макрофаги имеют костномозговое происхождение циркулирующие в крови моноциты служат промежуточной стадией между ними и костномозговыми предшественниками. Поскольку клетки, обладающие способностью к фагоцитозу, пиноцитозу и прикреплению к стеклу, не имеют, таким образом, гистогенетической общности ни с ретикулярными клетками (фибробластами), ни с эндотелием, то систему, выполняющую в организме эту функцию, обозначают как систему фагоцитирующих мононуклеаров вместо ретикулоэндотелиальной системы - РЭС.

Таким образом, наиболее примитивная из клеток в костном мозге, которая обязательно превратится в зрелый эритроцит - пронормобласт (проэритробласт). Он развивается путем деления и дифференцировки, проходя хорошо различимые стадии: нормобласт, ретикулоцит, и, наконец, зрелый эритроцит. Это развитие от стволовой клетки до зрелого эритроцита характеризуется следующими чертами:

§ постепенным уменьшением размера;

§ потерей ядра, и следовательно, способностью к делению;

§ потерей внутриклеточных органелл.

Последняя стадия созревания (ретикулоцита в эритроцит) происходит как в костном мозге, так и в периферической крови; обычно 1-3% циркулирующих эритроцитов являются ретикулоцитами.

В ретикулоцитах продолжается биосинтез белка (глобина), гема, пуринов, пиридиннуклеотидов, липидов, фосфатидов. Превратившись через 1-3 дня в зрелые эритроциты, они длительно циркулируют в переферической крови. Созревание ретикулоцита сопровождается существенными изменениями в обмене веществ; прекращается значительная часть синтетических процессов (синтез белка гема), почти полностью утрачивается способность к дыханию свойственная ядросодержащим эритроидным клеткам. Никаких более ранних форм эритроцитов в норме кровь не содержит.

Продолжительность жизни эритроцитов составляет около120 дней. Необходимо их постоянное обновление: каждую секунду в костном мозге воспроизводится с среднем около 2,3 млн эритроцитов. Этот процесс регулируется эритропоэтином, о котором уже говорилось выше - гормоном, который синтезируется в клетках почек. В ответ на снижение уровня кислорода в крови почка высвобождает эритропоэтин в кровоток для транспортировки его в костный мозг. Здесь эритропоэтин стимулирует воспроизводство эритроцитов. Как только количество эритроцитов повышается, содержание кислорода в крови возрастает и продукция эритропоэтина в почке снижается.

Существуют и другие регуляторы эритропоэза, в частности стимулирующим продукцию эритроцитов действием обладают андрогены, благодаря способности повышать биосинтез эритропоэтина, но также вероятно, путем непосредственного воздействия на клетки-предшественницы в костном мозге (противоположное действие на эритропоэз оказывают эстрогены, по-видимому, вследствие подавления образования эритропоэтина).

Схема нормального гемостаза

В условиях экспериментальной полицитемии были обнаружены ингибиторы эритропоэза: ими могут быть эритроцитарные кейлоны - клеточные регуляторные субстанции, ингибирующие митоз (пролиферацию) эритробластов.

3. Структура и функции эритроцитов

Структура зрелого эритроцита хорошо подходит для выполнения его основной функции: переноса кислорода от легких к тканям и переноса углекислого газа от тканей к легким. Главное звено этой функции - белок гемоглобин, содержащийся в эритроцитах. Образование гемоглобина происходит в эритроцитах во время их раннего развития в костном мозге и завершается до полного созревания. Каждый зрелый эритроцит покидает костный мозг с полным комплектом из 640 млн молекул гемоглобина. Обычно описываемый как двояковогнутый диск, зрелый эритроцит может быть представлен как сплюснутая сфера, с поверхностными вдавлениями. Эта уникальная форма дает наибольшую площадь поверхности для имеющегося объема, обеспечивая максимальные возможности для обмена кислорода и углекислого газа. Диаметр эритроцита около 8 мкм, что в два раза больше диаметра самых мелких кровеносных сосудов, через которые он должен пройти. Мембрана способна деформироваться, через микрососуды в тканях и альвеолах легких, где происходит обмен газов. Эритроцит, не содержащий ядра и других внутриклеточных органелл, можно рассматривать как деформируемую мембранную сумку, заполненную гемоглобином.

4. Структура и функции гемоглобина

Гемоглобин - это пигмент эритроцитов, переносящий кислород и обусловливающий цвет крови. Молекула гемоглобина состоит из 4 сложенных цепей аминокислот. Вместе они формируют белковую, или глобиновую, часть молекулы. Каждая из четырех глобиновых субъединиц имеет присоединенную группу гема, а в центре каждой группы гема имеется атом железа в форме Fe2+.

В то время как структура группы гема всегда одинакова, точная последовательность аминокислот в глобиновых субъединицах слегка варьируется - имеется четыре разновидности глобиновых цепей: альфа (б), бета (в), гамма (г) и дельта(д). Примерно 97% гемоглобина взрослых - это гемоглобин А (HbA), состоящий из двух б и двух в глобиновых субъединиц. Оставшиеся 3% приходятся на HbA2 (две б- и две д - глобиновых цепи). У развивающегося плода и в первые несколько месяцев жизни образуется только фетальный гемоглобин (HbF), состоящий из двух б- и двух г-глобиновых субъединиц.

Биосинтез гемоглобина

Биосинтез гемоглобина осуществляется путем синхронной продукции гема и глобиновых цепей в эритроидных клетках костного мозга и их сочетания с образованием законченной молекулы.

Синтез полипептидных цепей, входящих в состав глобина, происходит под контролем структурных и регуляторных генов. Полагают, что структурные локусы, определяющие синтез б-цепей в течении всей жизни человека (эмбриональной и постнатальной) находится в одной паре хромосом. Структурные локусы, детерминирующие синтез в- и д-цепей, содержатся в другой паре хромосом. Возможно, что гены г-цепей находятся рядом с в- и д-генами. Гены-регуляторы, по-видимому, занимают смежные со структурными генами цистроны. В первой половине фетальной жизни у человека активны, главным образом, локусы б-, г- и е-цепей (последний лишь кратковременно в раннем периоде эмбриональной жизни). После рождения одновременно с «выключением» локуса г-цепей активизируются локусы с- и д-цепей. В результате такого «переключения» происходит замена фетального гемоглобина (HbF) гемоглобином взрослого (HbA) с малой фракцией HbA2. Синтез гемоглобиновых цепей представляет собой частный пример белкового синтеза в клетке. Генетическая информация, определяющая последовательность расположения аминокислот в полипептидных цепях, закодирована в ДНК с помощью составляющих гены оснований. Заключенная в ДНК информация в процессе транскрипции передается из ядра в цитоплазму с помощью посредника - информационной РНК (иРНК). Последняя диффундирует в цитоплазму и действует как матрица для синтеза белка, происходящего в рибосомах. Аминокислоты, из которых образуется полипептидная цепь, транспортируются к рибосомам с помощью транспортной РНК (тРНК), причем большинство аминокислот имеет различные виды тРНК.

Гемовая часть молекулы гемоглобина синтезируется отдельно с помощью серии регулируемых энзиматических ступеней. На первом этапе биосинтеза порфиринов в результате соединения глицина с производным янтарной кислоты (янтарная кислота связывается с коэнзимом А с образованием активной формы сукцинил-КоА) синтезируется д-аминолевулиновая кислота с помощью фермента синтетазы д-аминолевулиновой кислоты (в этом синтезе участвуют кофермент витамина В6-пиридоксальфосфат.). На следующем этапе из двух молекул д-аминолевулиновой кислоты благодаря ферменту дегидразы д-аминолевулиновой кислоты образуется вначале уропорфиноген (III изомер), затем копропорфиноген при участии фермента декарбоксилазы уропорфиногена. Из копропорфиногена под влиянием декарбоксилазы копропорфиногена синтезируется протопорфирин, который соединяясь с железом, образует гем. Соединение протопорфина с железом осуществляет фермент гемсинтетаза.

Железо гемоглобина составляет примерно 60% всего содержащегося в организме железа (3-4 г. у здорового взрослого человека). Транспортировка железа в костный мозг происходит в комплексе с трансферином - специфическим белком, содержащимся в-глобулиновой фракции плазмы крови. Трансферин имеет сродство к эритроидным элементам костного мозга, так как при экспозиции меченого трансферина с различными клетками он обнаруживается только в связи с предшественниками эритроцитов (в полихроматофильных и ортохромных нормобластах, ретикулоцитах) и не выявляется в мембране лейкоцитов, тромбоцитов и зрелых эритроцитов. Железо поступает в митохондрии, где связывается с протопорфирином в присутствии гемсистетазы. Клетки, в которых содержащиеся в митохондриях железо имеют вид гранул, называют сидеробластами, обычно они составляют 20-50% всех эритроидных элементов костного мозга. При дефиците железа сидеробласты в первую очередь исчезают из костного мозга, что считают одним из ранних признаков недостаточности железа.

Важнейшей и уникальной особенностью обмена железа является реутилизация - многократное повторное использование этого элемента в процессах имеющих циклический характер. Около 40% освободившегося при разрушении гемоглобина железа появляется в новых эритроцитах в течении 12-14 дней. Остальная его часть поступает в ферритин и гемосидерин (депо железа в печени, селезенке, слизистой кишечника, костном мозге) и включается повторно в обмен более медленно (у здорового человека около половины этого железа остается в запасе на протяжении 140 дней). Каждые сутки для обеспечения эритропоэза из плазмы крови в костный мозг поступает около 25 мг железа.

Транспорт кислорода гемоглобином

Cвойство гемоглобина связывать кислород определяется тем, что в центре каждого из четырех гемов находится по атому железа. Молекулы кислорода формируют слабую неполярную связь с атомами железа. Продукт этой реакции называется оксигемоглобином. Когда все четыре гема заняты кислородом, говорят, что молекула гемоглобина насыщена. Степень, до которой насыщается гемоглобин, зависит от содержания кислорода в крови. Насыщение гемоглобина кислородом увеличивается, когда парциальное давление кислорода в крови (РО2) повышается. Физиологическое значение этого соотношения лежит в основе транспортной функции гемоглобина. В легких кислород вдыхаемого воздуха проходит через альвеолы в кровь, так что РО2 высокое (около 95 мм рт. ст.). При высоком РО2 сродство гемоглобина к кислороду увеличивается и гемоглобин быстро (за несколько секунд) полностью насыщается (до 100%). Наоборот, в тканях РО2 относительно низкое (только около 40 мм рт. ст.), поэтому и сродство гемоглобина к кислороду снижено. В результате кислород высвобождается из гемоглобина и диффундирует из эритроцитов в тканевые клетки, где используется в процессах клеточного метаболизма.

Роль эритроцитов и гемоглобина в транспорте СО2

В то время как транспорт кислорода из легких к тканям почти полностью зависит от гемоглобина в эритроцитах, транспорт двуокиси (диоксида) углерода в обратном направлении немного сложнее. Двуокись углерода, в отличии от кислорода, растворима в плазме крови, так что большое количество СО2 переносится просто в растворенном виде. Остаток транспортируется эритроцитами. В тканях СО2 диффундирует из клеток в кровоток. Часть остается растворенной в плазме, а часть диффундирует в эритроциты. Внутри эритроцитов часть углекислоты соединяется с гемоглобином, освободившимся от кислорода, и формирует карбгемоглобин, а часть соединяется с водой в цитоплазме эритроцитов и образует угольную кислоту. Эту реакцию катализирует фермент карбоангидраза. Угольная кислота диссоциирует на ионы водорода (количество которых определяется гемоглобином) и бикарбонат-ионы, которые диффундируют из эритроцитов в плазму. В легких эти клеточные реакции протекают в обратном направлении, и СО2, диффундируя из эритроцитов, проходит вместе с СО2, растворенным в плазме крови, в альвеолы, чтобы выделиться с выдыхаемых воздухом.

5. Нормальное разрушение эритроцитов

Примерно после 120 дней жизни эритроциты теряют жизнеспособность и удаляются из крови ретикулоэндотелиальной системой, когда кровь проходит через костный мозг, селезенку и печень. В течении этого времени часть эритроцитов разрушается, другие циркулируют в кровяном русле. В физиологических условиях число разрушающихся эритроцитов равно числу вновь генерируемых, благодаря чему сохраняется постоянное нормальное их количество. Разрушение эритроцитов может произойти под влиянием различных случайных факторов, связанных с их движением и физико-химическими свойствами окружающей среды, и в результате старения. В физиологических условиях стареющие эритроциты удаляются из циркуляции и разрушаются преимущественно в селезенке, печени и в меньшей степени в костном мозге (в норме костный мозг более активен в отношении эритрокариоцитов, 10-15% которых не используются в эритропоэзе и разрушаются) клетками системы фагоцитирующих мононуклеаров. Известно, что фракция IgG сыворотки содержит аутоантитела против старых эритроцитов, прикрепление которых к эритроцитам приводит к фагоцитозу последних.

При разрушении мембраны эритроцитов высвобождается гемоглобин, который расщепляется на составные части: гем и глобин. Железо гема используют для воспроизводства новых эритроцитов, а глобиновые цепи разрушаются до аминокислот, которые пополняют запас аминокислот организма. То, что осталось от гема после удаления железа, превращается в желтый пигмент билирубин, который транспортируется кровью к печени для дальнейшего метаболизма и выведения, большей частью с желчью и фекалиями; остаток выделяется в виде метаболитов билирубина-уробилина и уробилиногена - с мочой.

6. Клиническая оценка показателей красной крови

Среднее значение и пределы нормальных колебаний основных показателей красной крови у взрослого человека представлены в таблице.

Показатели красной крови у здорового человека

Число эритроцитов

Концентрация гемоглобина, г/л

Гематокрит,

%

Средний объем эритроцитов, мкм3

Среднее содержание Нb в 1 эритроците, пг

Средняя концентрация Нb в эритроцитах, %

4,0·1012-5,1·1012

3,7·1012-4,7·1012

130-160

120-140

Мужчины

40-48

Женщины

36-42

75-96

75-96

27,0-33,3

27,0-33,3

30-38%

30-38%

Количество эритроцитов подвергается дневным колебаниям (нормальный биоритм), но эти колебания незначительны. Некоторые физиологические факторы могут существенно изменять эритроцитарные показатели.

На число эритроцитов влияют:

§ возраст (у новорожденных оно выше, чем у взрослых, в среднем 5,7·1012 эритроцитов в 1 л крови, затем быстро снижается ко 2-4-му месяцу жизни, составляя в последующем в среднем 4,2·1012 эритроцитов в 1 л крови, уровень взрослого устанавливается к 14 годам);

§ пол (женщины имеют значительно более низкое число эритроцитов, чем мужчины, что объясняют ингибирующим действием эстрогенов на эритропоэз; в допубертатном периоде и в старческом возрасте разницы в числе эритроцитов лиц мужского и женского пола нет);

§ физическая и эмоциональная нагрузка (умеренная физическая нагрузка мало влияет на число эритроцитов, однако интенсивные физические упражнения, а также сильные волнения могут значительно повысить уровень эритроцитов в крови);

§ положение тела (при заборе крови в лежачем положении число эритроцитов на 5,7% ниже, чем в положении стоя, у больных анемией эта разница еще выше);

§ концентрация крови (дегидратация при интенсивном потоотделении, ожогах может приводить к резкому увеличению числа эритроцитов и гематокрита за счет уменьшения объема плазмы);

§ подъем на высоту (высота - важный фактор, влияющий на число эритроцитов и концентрацию гемоглобина в крови: чем выше над уровнем моря и меньше парциальное давление кислорода в атмосфере, тем выраженнее гипоксия и вызванная ею стимуляция эритропоэза). Высотная гипоксия сопровождается увеличением общей массы эритроцитов и более высоким содержанием плазменного железа, которые приходят к норме примерно через месяц после возвращения к уровню моря. У жителей высокогорных областей отмечается стойкое повышение показателей красной крови; в некоторых случаях развивается горная болезнь, характеризующаяся цианозом, повешением гематокрита и вязкости крови, развитием легочного сердца.

Увеличение количества эритроцитов и концентрация гемоглобина в единице объема крови называется эритроцитозом (полиглобулией.)

Показатель гематокрита соответствует процентной (на 100 объемных единиц крови) массе эритроцитов венозной или капиллярной крови после центрифугирования в гематокритной трубочке в стандартных условиях до получения плотного столбика эритроцитов. Для этой цели кровь центрифугируют либо в обычной (электрической) центрифуге со скоростью 3000 об/мин в течении получаса, либо в специальной центрифуге, дающей высокие обороты (16 500 об/мин) в течении минуты.

Средний объем эритроцитов определяется с помощью гематокрита по соотношению эритроцитов и плазмы.

Концентрация гемоглобина в 1 µ3 массы эритроцитов определяется путем деления среднего содержания гемоглобина в одном эритроците на средний объем одного эритроцита.

Эритроцитозы, наблюдаемые в патологии, бывают абсолютные (увеличение массы циркулирующих эритроцитов вследствие увеличения эритропоэза) и относительные (уменьшения объема плазмы - сгущение крови без увеличения эритропоэза). Абсолютные эритроцитозы бывают первичными (эритремия, относящаяся к группе гемобластозов), но чаще они являются вторичными (симптом от какого-либо заболевания). Основные состояния, характеризующиеся повышением числа эритроцитов и концентрации гемоглобина, представлены в таблице.

Наиболее частой причиной эритроцитоза является гипоксия. Вторичные эритроцитозы на почве гипоксии в отличие от эритремии характеризуются снижением насыщенности крови кислородом (при эритремии она нормальная), обычно высоким уровнем эритропоэтина (при эритремии уровень эритропоэтина в крови и моче ниже нормального), отсутствием лейкоцитоза, тромбоцитоза, спленомегалии (панцитоз свойствен эритремии и отражает миелоидную гиперплазию костного мозга). При относительных эритроцитозах насыщение крови кислородом нормальное, но отмечается снижение общего объема плазмы (повышение гематокрита без увеличения общего объема крови в отличие от абсолютных эритроцитозов, особенно эритремии, где имеется повышение эритроцитарной массы и общего объема крови).

Эритроцитозы

Основные группы

Клинические формы

I. Абсолютные эритроцитозы

Первичные

Вторичные:

Вызванные гипоксией

Связанные с повышенной продукцией эритропоэтина

Связанные с избытком адренокортикостероидов или андрогенов в организме

II. Относительные эритроцитозы

Эритремия

Заболевания легких: обструктивная вентиляционная недостаточность (хронический обструктивный бронхит, обструктивная эмфизема легких); рестриктивная вентиляционная недостаточность (пневмокониозы, саркоидоз, бактериальные, вирусные и паразитарные поражения, гистиоцитоз); диффузные заболевания печени; врожденные заболевания сердца с шунтом справа - налево; стеноз легочной артерии, высокий дефект межжелудочковой перегородки; присутствие аномальных гемоглобинов: метгемоглобинемия, носительство гемоглобина с повышенным сродством к кислороду (наследственный эритроцитоз) и др.

Рак паренхимы почки, гидронефроз и поликистоз почек, рак паренхими печени, доброкачественный семейный эритроцитоз (наследственный)

Синдром Кушинга, феохромоцитома, гиперальдостеронизм

Потеря жидкости организмом, эмоциональные стрессы, алкоголизм, усиленное курение, системная гипертензия

В последнее время повысился интерес к наследственным эритроцитозам - гетерогенной группе заболеваний с аутосомно-доминантной или рецессивной формой наследования и сравнительно доброкачественным течением. Заболевание чаще выявляется в детском возрасте, носит обычно семейный характер, хотя встречаются и спорадические случаи, в основе патогенеза могут лежать изменения функции гемоглобина (мутантные гемоглобины с повышенным сродством к кислороду вследствие замещения аминокислот, расположенных вблизи гемовых групп, при уменьшении 2,3 - дифосфоглицетата или повышении АТФ в эритроцитах), автономное повышение продукции эритропоэтина (вероятно, вследствие нарушения регулирующих механизмов) и другие невыясненные причины.


Подобные документы

  • Функции и формы патологии крови. Линии кроветворения в системе гемопоэза. Количественные и качественные расстройства системы красной крови. Этапы нарушений процесса эритропоэза, этиология, патогенез. Эритроцитозы, анемии, клиническая картина, лечение.

    презентация [3,2 M], добавлен 02.03.2016

  • Внутренняя среда организма. Система крови. Основы гемопоэза. Физико-химические свойства крови, состав плазмы. Резистентность эритроцитов. Группы крови и резус-фактор. Правила переливания крови. Количество, виды и функции лейкоцитов. Система фибpинолиза.

    лекция [29,4 K], добавлен 30.07.2013

  • Функции антигенов эритроцитов, их химическая природа и факторы, влияющие на динамику действия. Современная классификация и типы, биологическая природа и значение в организме. Система антигенов эритроцитов Резус. Описание других антигенных систем крови.

    реферат [477,9 K], добавлен 18.02.2015

  • Общая характеристика крови, ее свойства (суспензионные, коллоидные, электролитные) и основные функции. Состав плазмы, строение эритроцитов и лейкоцитов. Факторы, обуславливающие разделение крови людей на группы. Особенности процесса кроветворения.

    реферат [405,2 K], добавлен 25.12.2012

  • Транспортная функция крови. Соединение гемоглобина с газами, патологические соединения с кислородом. Помощь при отравлении угарным газом. Характеристика эритроцитов. Истинный (абсолютный) эритроцитоз. Факторы, влияющие на дифференцировку стволовой клетки.

    презентация [236,8 K], добавлен 15.02.2014

  • Количество крови у животных. Кровяное депо. Состав крови. Плазма. Сыворотка. Строение, функции, количество. Количество эритроцитов в крови. Необходимое условие образования и созревания эритроцитов. Фолиевая кислота. Истинный и относительный эритроцитоз.

    реферат [22,6 K], добавлен 08.11.2008

  • Кровь — жидкая ткань организма, состоящая из плазмы и взвешенных в ней клеток: лейкоцитов, эритроцитов и тромбоцитов. Свойства крови, транспортная, защитная, терморегуляторная функции. Антигенные характеристики эритроцитов, определяющих группы крови.

    презентация [532,1 K], добавлен 21.02.2016

  • Общая характеристика и функции иммунной системы. Органы и клетки иммунной системы. Основные виды иммунитета. Обеспечение оптимальной для метаболизма массы циркулирующей крови и количества форменных элементов крови (эритроцитов, лейкоцитов и тромбоцитов).

    презентация [1001,2 K], добавлен 21.01.2015

  • Содержание воды в организме человека. Кровь как разновидность соединительных тканей. Состав крови, ее функции. Объем циркулирующей крови, содержание веществ в ее плазме. Белки плазмы крови и их функции. Виды давления крови. Регуляция постоянства рН крови.

    презентация [593,9 K], добавлен 29.08.2013

  • Понятие о внутренней среде организма. Функции крови, ее количество и физико-химические свойства. Форменные элементы крови. Свертывание крови, повреждение сосуда. Группы крови, кровеносная система, большой и малый круги кровообращения, переливание крови.

    учебное пособие [26,7 K], добавлен 24.03.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.