Особенности биологического уровня организации материи
Основные этапы эволюции жизни, характеристика и свойства живых организмов. Исследование молекулярно-генетического уровня организации биологических систем. Причины и последствия повышения энтропии в окружающей среде. Механизм самовоспроизведения клеток.
Рубрика | Биология и естествознание |
Вид | лекция |
Язык | русский |
Дата добавления | 05.06.2018 |
Размер файла | 365,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru
Особенности биологического уровня организации материи
План лекции
1. Общая характеристика живых систем
2. Молекулярно-генетический уровень организации биологических систем
3. Клеточный уровень организации жизни
4. Онтогенетический уровень организации биологических систем
5. Популяционно-видовой уровень
6. Биоценотический уровень
7. Биосферный уровень
8. Развитие представлений о биологической эволюции
9. Основные этапы эволюции жизни
1. Общая характеристика живых систем
Живые объекты с точки зрения системных представлений. Природа жизни, разнообразие живых организмов, объединяющее их структурное и функциональное сходство всегда привлекали и привлекают пристальное внимание исследователей. С точки зрения системного подхода следует подчеркнуть, что живые системы на Земле - это открытые саморегулирующиеся, построенные из биополимеров - белков и нуклеиновых кислот (М.В. Волькенштейн). Им присущи закономерности развития, характерные для других сложных систем. Однако жизнь качественно превосходит другие формы существования материи в отношении многообразия и сложности, а также динамики протекающих в живых организмах процессов. Живые системы характеризуются гораздо более высоким уровнем пространственно-временной структурной и функциональной упорядоченности. Которая обеспечивает структурную компактность и энергетическую экономичность всего живого. Такая упорядоченность возможна только в макроскопической системе (наименьшая бактерия содержит около 109 атомов), иначе порядок разрушился бы флуктуациями, обусловленные тепловым движением.
Являясь открытыми системами, живые организмы обмениваются с окружающей средой энергией, веществом и информацией. При этом, в отличие от неживых систем, живым организмам присуща способность активно поддерживать упорядочение, противодействовать возрастанию энтропии внутри себя. Однако снижение энтропии в живых организмах возможно только за счет повышения энтропии в окружающей среде (в соответствии со вторым началом термодинамики для открытых систем). «Всеобщая борьба за существование живых организмов, не является борьбой за составные элементы - составные элементы всех организмов имеются налицо в избытке в воздухе, воде и недрах Земли - и не за энергию, ибо таковая содержится в изобилии во всяком теле, к сожалению, в форме непревращаемой теплоты. Но это - борьба за энтропию, которую можно использовать при переходе энергии с горячего Солнца к холодной земле» (Л.Больцман).
Все живые (биологические) системы разных уровней - организмы, популяции и т.д. - существуют в тесной взаимосвязи, обмениваясь веществом, энергией. Это позволяет рассматривать все живые системы и среду их обитания как одну масштабную разнородную систему - биосферу. Жизнь присуща только биосфере, вне ее - не существует.
Свойства живых объектов. Для решения вопроса о природе жизни, ее происхождении и эволюции на Земле целесообразно выделить основные отличительные свойства живых организмов. Следует отметить, что общепринятого определения фундаментального понятия «жизнь» сегодня нет. Однако имеют место характерные свойства, совокупность которых позволяет отличить живые организмы от объектов неживой материи:
обмен веществом и энергией: живая система постоянно обменивается веществом и энергией с окружающей средой;
дискретность и целостность: живые объекты относительно обособлены друг от друга (особи, популяции, виды), в то же время сложная организация немыслима без взаимодействия ее частей и структур - без целостности;
структурность: на всех уровнях организации живые системы образуют упорядоченные структуры;
единство химического состава: оно проявляется как на уровне химических элементов, так и на молекулярном уровне;
подвижность;
раздражимость;
рост и развитие: избыточное самовоспроизведение лежит в основе роста клеток, и организмов;
размножение и воспроизведение себе подобных;
наследственность и изменчивость;
адаптация: способность живых организмов приспосабливаться к внешним условиям, ассимилировать полученные извне вещества.
Еще раз подчеркнем, что весь комплекс этих свойств присущ живому объекту
Химическая основа жизни. В состав живой клетки входят такие же элементы, какие имеются в неживой природе. Однако ряд из них выполняют важные биологические функции. Эти элементы называются биогенными: C, H, O, N, P, S. В частности, четыре из них - C, H, O, N - составляют 96% субстрата организма человека. C, H, O - находятся в составе всех биополимеров, N, S- добавляются к ним в составе белков; N, P- в составе нуклеиновых кислот. Имеются и другие элементы, входящие в состав тех или иных организмов: Fe - в составе гемоглобина, Mg - в составе хлорофилла, Сu - в составе некоторых ферментов; I- в составе тироксина- гормона щитовидной железы; Na, K - обеспечивают проводимость импульсов в нервных волокнах; Zn - в составе инсулина, Co - в составе витамина В12. По процентному составу в порядке его убывания элементы образуют последовательность: O, C, H, N, Ca, K, Mg, P, S, Cl, Na, Fe ,Zn, Сu, I, F,Co.
Важнейшим компонентом жизни является вода H2 O. Но все основные свойства жизни определяются органическими соединениями: белками, углеводами, жирами, нуклеиновыми кислотами.
Уровни организации живой материи. Проявления жизни на Земле чрезвычайно многообразны. Живые организмы представлены доядерными (прокариоты) и ядерными (эукариоты), одно- и многоклеточными существами. Описание разнообразных многоклеточных осуществляется на основе систематики, использующей таксоны - иерархически связанные множества. Самые масштабные таксоны - три царства: растения, грибы, животные. Эти царства объединяет разнообразные типы, классы, отряды, семейства, роды, виды, популяции и индивидуумы. Иерархическая организованность, свойственная различным сложным системам, прослеживается для живых систем. На ряду с таксономической систематикой, в настоящее время принято выделять следующие уровни организации живого: молекулярно-генетический, клеточный, организменный (онтогенетический), популяционно-видовой, биогеоценотический (экосистемный), биосферный. Понимание этого предполагает отказ от концепции редукцианизма, в соответствии с которой все высшее сводимо к низшему (процессы жизнедеятельности - к совокупности физико-химических реакций, а целостный организм - к взаимодействию составляющих его клеток, тканей, органов и т.д.). В многоуровневой иерархической системе ниже лежащий уровень входит в более высокий как единое целое. Каждый новый уровень возникает из предыдущего посредством процессов объединения и организации его единиц (элементов) в единую систему. При этом каждый уровень является структурно и функционально автономной системой.
2. Молекулярно-генетический уровень организации биологических систем
На данном уровне биологические объекты представляют собой сложные биохимические полимерные структуры, основными из которых являются белки и нуклеиновые кислоты.
Белки: их структура и функции. Белки - макромолекулы, нерегулярные полимеры, мономерами которых являются аминокислоты. Аминокислота представляет собой органическое соединение, содержащее одновременно аминогруппу NH2 и карбоксильную группу COOH. При соединении двух аминокислот между этими двумя группировками соседних молекул возникает пептидная связь: NH-CO. Макромолекулы белков включают в себя сотни и тысячи аминокислотных остатков. В природных белках встречается 21 аминокислота. Расположение в сложной макромолекуле определенных частей (радикалов) может быть разным: правым и левым. Эта возможность существования двух зеркально симметричных форм молекул называется изомерией. Примечательно, что все аминокислоты в живых организмах являются левыми изомерами (L-изомерами). Такая асимметрия - проявление одного из характерных и особых свойств живого - хиральности.
Белки, в зависимости от последовательности аминокислот в их составе, образуют различные пространственные структуры, и реализуют в клетках самые разнообразные функции: двигательную (актин, миозин), структурообразующую т. е строительную (кератин, коллаген), энергетическую (казеин, яичный альбумин), каталитическую (ферменты), транспортную (гемоглобин, АТФаза), регуляторную (гормоны: инсулин, гормоны роста), защитную (антитела, ответственные за иммунитет - имунноглобулины, интерферон).
Нуклеиновые кислоты. Нуклеиновые кислоты подразделяются на два типа: рибонуклеиновые (РНК) и дезоксирибонуклеиновые (ДНК). И те, и другие состоят из различного числа мономерных звеньев - нуклеотидов. Нуклеотиды, в свою очередь, включают в себя остатки фосфорной кислоты и циклической формы углевода (рибозы - в РНК и дезоксирибозы - в ДНК), а также одно из гетероциклических азотистых оснований. Из этих оснований в состав ДНК входят аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т), а в составе РНК тимин заменен на урацил (У).
Молекула ДНК - это двухцепочечная (двойная) спираль (две комплементарно связанные полимерные цепи, спирально закрученные вокруг общей оси), а РНК - одноцепочечный полимер. Следует отметить, что и в этом случае проявляется хиральность: в живых организмах присутствует только одна (правая) из двух возможных зеркально симметричных изомеров молекул нуклеотидов, т.е. они являются D-изомерами
Нуклеиновые кислоты обеспечивают хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов, выполняют три основные функции - самовоспроизведение, хранение информации и реализацию этой информации в процессе жизнедеятельности клеток. Основная роль ДНК в клетках - долговременное хранение информации о структуре РНК и белков. Эта генетическая информация закодирована химическим способом в ДНК в виде определенной последовательности нуклеотидов. ДНК нередко сравнивают с набором чертежей для сборки живого организма, поскольку на основе информации, «записанной» в ней, синтезируются белки. Г.А. Гамов предположил, что для кодирования одной аминокислоты используется сочетание трех нуклеотидов. Только сочетания по 3 дает 64 возможных комбинации, что достаточно для синтеза 21-й аминокислоты (сочетания по 2 не дают нужного числа комбинаций).
Триплет нуклеотидов, кодирующий аминокислоту, называется кодоном. Система записи информации с помощью кодонов называется генетическим кодом. Последовательность кодонов (в гене) определяет последовательность аминокислот в полипептидной цепи белка, (кодируемой этим геном). Такая модель легла в основу интерпретации результатов рентгеноструктурного анализа молекул ДНК, проведенного в 1953 г. Ф. Криком (1916 - 2004) и Дж. Уотсоном (р. 1928), и с этого времени является общепринятой. Следует отметить, что в ходе эволюции природа обеспечила возможность кодирования большинства аминокислот несколькими кодонами. Такой код в молекулярной биологии называется вырожденным, в нем несколько разных триплетов кодируют одну и ту же аминокислоту. Вместе с тем, в любых живых организмах генетический код универсален.
Таким образом, в настоящее время достоверно установлено, что генетический код характеризуется: триплетностью, однозначностью (каждый кодон соответствует определенной аминокислоте), вырожденностью, наличием «знаков препинания» между генами (соответствующими кодонами), отсутствием их внутри гена, универсальностью.
ДНК - чрезвычайно емкий носитель информации. В клетке человека молекула ДНК содержит около 1 млрд пар оснований, длина ее около 1м. Если составить цепочку из ДНК всех клеток одного человека, то она может протянуться через всю Солнечную систему. Заметим, что в ДНК даже для простейшего организма содержится информация, объем которой эквивалентен информации во всех томах Российской государственной библиотеки. биологический клетка живой эволюция
Механизм реализации генетической информации. Как уже указывалось, в современной живой природе ДНК выполняет функцию хранения генетической информации организмов. Совокупность всех молекул ДНК организма образует его геном. ДНК находится в хромосомах в ядре клетки, отделена мембраной от цитоплазмы и непосредственно в синтезе белка не участвует. Сквозь мембрану проникает РНК. Она обеспечивает реализацию информации при построении (синтезе) белковых молекул в рибосомах - местах сборки белков. Рибосомы - очень сложно устроенные РНК-белковые комплексы. При этом матрицей, которая определяет последовательность соединения аминокислот в синтезируемом белке, является молекула РНК определенного типа (информационная или и-РНК). Аминокислоты доставляются на рибосому молекулами РНК другого типа (транспортными или т-РНК). Процесс осуществляется по схеме:
ДНК > и-РНК > белок
Эта схема называется центральной догмой молекулярной биологии. Смысл ее состоит в том, что генетическая информация, записанная в ДНК, реализуется в виде белков, но не непосредственно, а с помощью родственного полимера - РНК, и этот путь от нуклеиновых кислот к белкам необратим. В целом общий вид процесса воспроизводства и реализации генетической информации в большинстве живых организмов можно представить как триаду последовательных реакций:
репликация: синтез дочерней ДНК на ДНК-матрице;
транскрипция: синтез и-РНК на ДНК-матрице;
трансляция: синтез белка на и-РНК-матрице.
Следует подчеркнуть, что некоторые виды РНК обладают выраженной способностью ускорять и направлять определенные биохимические реакции.
Итак, именно ДНК определяет . наследственность организмов (воспроизводящийся в поколениях набор белков и связанных с ними признаков). Биосинтез белка является центральным процессом живой материи, а нуклеиновые кислоты обеспечивают его, с одной стороны, программой, определяющей весь набор и специфику синтезируемых белков, а с другой - механизмом точного воспроизведения этой программы в поколениях. Следовательно, происхождение жизни в ее современной клеточной форме предполагает возникновение механизма наследуемого биосинтеза белков.
Гены. Участки ДНК, содержащие информацию о строении молекулы белка или РНК, называются генами. Ген - это участок молекулы ДНК и РНК со специфичным набором нуклеотидов, в последовательности которых закодирована генетическая информация о последовательности аминокислот в полипептидной цепи белка. Ген является элементарной единицей наследственности. Этот термин ввел в биологический обиход в 1909 г. датский ученый В. Иогансен (1857 - 1927). Обычно каждый ген отвечает за синтез определенного белка. Контролируя образование белков, гены управляют всеми химическими реакциями организма и определяют тем самым его признаки. Уникальными свойствами гена являются его высокая устойчивость (неизменяемость в ряду поколений - в этом суть самой наследственности) и способность к наследуемости изменений в результате мутаций.
Обычно молекулы ДНК, содержащие гены, присутствуют в виде структур ядра клетки, которые называются хромосомами. Основу хромосомы составляет одна непрерывная молекула ДНК, связанная со специализированными белками в единый комплекс. Хромосомы состоят из большого числа генов, которые расположены на ней в линейном порядке. Если отдельные гены определяют возможность развития одного элементарного признака или одной белковой молекулы, то распределение их в хромосомах и последующее распределение хромосом по дочерним клеткам при клеточном делении обеспечивают передачу совокупности наследственных свойств всего организма от поколения к поколению. Хромосомы как структурные образования клеточного ядра имеют специфичную форму и размер около 1 мкм. Число хромосом у разных видов варьируется от двух до нескольких сотен. Каждый вид организмов обладает характерным и постоянным набором хромосом в клетке, закрепленным в эволюции данного вида, а изменения в числе хромосом происходят только в результате мутаций. Так, у человека их 46 (а у обезьян, согласно последним исследованиям, их может быть и 48), у плодовой мушки дрозофилы (любимого объекта исследований генетиков) - 8, у некоторых видов растений - до 100. В клетках тела двуполых животных и растений все хромосомы присутствуют в двух экземплярах (т.н. гомологичные), происходящих одна - из материнского, а другая - из отцовского организма. Такой парный набор хромосом называется диплоидным, т.е. двойным. Его кодовый номер 2n, где n - число пар, или гаплоидное число (от греческого слова «гаплос» - половина). Для диплоидных организмов, к которым принадлежит и человек, каждый признак обеспечивается двумя генами. Они могут быть представлены на двух парных хромосомах разными вариантами, которые называются аллелями. В отличие от остальных клеток организма, половые клетки являются гаплоидными: они содержат по одной хромосоме, несущей ген какого-либо признака, благодаря чему происходит расщепление - образование новых клеток и особей с сохраненными или измененными признаками одного типа (цвет, размер и т.д.).Таким образом, аллели - это формы гена, ответственного за признак, расположенные в одинаковых участках парных хромосом, которые определяют варианты развития одного и того же признака. Гены, определяющие альтернативное развитие одного и того же признака, называются аллельными. Неаллельные гены (ответственные за разные признаки) могут быть комплиментарными (дополняющими друг друга) и их совместное проявление обуславливает развитие нового признака.
В генетике используют также понятия: геном и генофонд. Геном - это совокупность генов, содержащихся в одинарном наборе хромосом определенной животной или растительной клетки. А генофонд совокупность генов особей (фенотипов), составляющих данную популяцию. Он определяет относительную численность разных аллелей различных генов в популяции. Это видовой, а не индивидуальный признак.
3. Клеточный уровень организации жизни
Развитие представлений о клетке. Клетка - основная структурно-функциональная единица всех живых организмов, элементарная живая система, которая может существовать как отдельный организм (клетки бактерий, простейших) или в составе тканей многоклеточных организмов. Лишь вирусы представляют собой особые неклеточные формы жизни, состоящие из молекулы нуклеиновой кислоты и белков. Клеточное строение организмов впервые в 1665 г. наблюдал Р. Гук (1635 - 1703) у растений. Ядро в растительной клетке впервые описал в 1831 г. Р. Броун (1831), но только в 1838 г. М. Шлейден сделал первые шаги к раскрытию и пониманию его роли. Основная заслуга в оформлении клеточной теории в 1839 г. принадлежит Т. Шванну, который, использовав собственные данные и результаты Шлейдена и сопоставив тканевые структуры животных и растений, указал на общий для них принцип клеточного строения и роста. В дальнейшем клеточная теория была распространена и на одноклеточные организмы. Р. Вирхов (1821 - 1902) в 1858 г. обосновал принцип преемственности клеток путем деления («каждая клетка - из клетки»).
Строение клетки. Все живые организмы в зависимости от строения клеток подразделяются на прокариот и эукариот. Прокариоты - примитивные и наиболее древние организмы (бактерии, сине-зеленые водоросли), клетки которых не имеют оформленного ядра. Эукариоты - одноклеточные или многоклеточные организмы, клетки которых имеют оформленное ядро, отделенное от остальной части клетки мембраной.
Рис. 1. Строение клетки
На рис.1 представлен общий план строения эукариотной клетки. В центре клетки находится ядро. В нем сконцентрирован наследственный материал, который представлен хромосомами, способными к самовоспроизведению и являющимися носителями генов. Вязкое внутреннее содержимое клетки, окружающее ядро, носит название цитоплазмы.
Многообразные функции клеток, выполняются специализированными внутриклеточными структурами - органоидами. Универсальными органоидами эукариотных клеток являются: в ядре - хромосомы, в цитоплазме - рибосомы, на которых происходит синтез белка, митохондрии, содержащие «энергетические станции». преобразующие поступающую в клетку извне энергию питательных веществ в энергию нуклеотида АТФ (аденозинтрифосфата) -универсального аккумулятора клеточной энергии, которая затем расходуется на различные процессы жизнедеятельности, эндоплазматическая сеть (ЭПС) - система соединенных между собой канальцев и полостей, мембранные стенки которых служат местом прикрепления входящих из ядра рибосом, комплекс Гольджи - сетчатый аппарат, участвующий в формировании некоторых важных продуктов жизнедеятельности клетки (секретов, коллагена и др.), вакуоли - полости, служащие для регулирования осмотического давления и выведения из клетки продуктов распада, лизосомы, участвующие в расщеплении «старых» частей клеток и выполняющих защитную функцию, клеточная мембрана. В цитоплазме растительных клеток присутствуют также специальные органоиды - пластиды, в одном из типов которых (хлоропластах) осуществляется процесс фотосинтеза.
Важнейшие химические компоненты живых организмов - белки, включая ферменты, - синтезируются только в клетках. Характерной особенностью клеток является четкая пространственная организация происходящих в них химических процессов. Например, процесс клеточного дыхания у эукариот осуществляется только на мембранах митохондрий, синтез белка - на рибосомах и т.д. Концентрирование ферментов, упорядоченное их расположение в структурах ускоряет химические реакции, протекающие в клетках.
Единство и многообразие клеток. Все клетки эукариот имеют сходный набор органоидов, аналогично регулируют метаболизм, запасают и расходуют энергию, используют генетический код для синтеза белков. Общие признаки клеток свидетельствуют о единстве их происхождения, однако разные клетки организма значительно различаются по размерам, форме, числу тех или иных органоидов, набору ферментов, что обусловлено, с одной стороны, кооперированием клеток в многоклеточном организме, с другой - выполнением множества функций организма различными специализированными клетками. Размеры клеток варьируются от 0,1-0,25 мкм (бактерии) до 155 мм (яйцеклетка страуса), но диаметр большинства эукариотных клеток находится в пределах 10-100 мкм. Различия в структуре и функциях одноклеточных организмов в значительной степени связаны с их конкретными приспособлениями к определенной среде обитания.
У всех клеток одного организма геном не отличается по объему потенциальной информации. Различия в свойствах клеток многоклеточного организма обусловлены неодинаковой активностью генов, что вызывает различную дифференцировку клеток, в результате чего одни из них становятся возбудимыми (нервные клетки), другие приобретают сократимые белки, образующие миофибриллы (мышечные клетки), третьи начинают синтезировать пищеварительные ферменты или гормоны (клетки желез) и т.д. Клетки близкого происхождения и сходных функций образуют ткани (мышечную, эпителиальную и др.).
Клетка - самоорганизующаяся система. Регулирующими факторами внутри клеток являются метаболиты (продукты обмена веществ), ионы, которые действуют или на гены, приводя к изменению количества ферментов, или на сам фермент, изменяя его активность. Регуляция может осуществляться по принципу обратной связи, в результате чего поддерживается оптимальный уровень многих важных внутриклеточных процессов, иногда даже при значительных изменениях во внеклеточной среде.
Самовоспроизведение клеток. В организме человека около 1014 клеток, из которых ежедневно погибает около 70 млрд. Постоянство количества клеток поддерживается их постоянным самовоспроизведением - делением и дифференциацией. В основе самовоспроизведения диплоидных клеток лежит процесс клеточного деления - митоз. Митоз - способ деления эукариотных клеток, при котором каждая из двух вновь возникающих клеток идентична исходной клетке. Митоз сопровождается предварительным удвоением генетического материала материнской клетки, в результате чего в каждую новую дочернюю клетку попадает полный набор всей наследственной информации клетки-предшественницы. Однако клетки некоторых типов (клетки мышечного эпителия) не самовоспроизводятся, и продолжительность их жизни соответствует таковой всего организма. В то же время минимальная продолжительность жизни клеток человека - 1-2 дня (клетки кишечного эпителия). Во всех клетках происходит интенсивное обновление веществ и структур. Огромное количество клеток в каждой ткани, объединенных метаболическими и регуляторными процессами, их постоянное внутреннее обновление обеспечивают надежность работы органов многоклеточного организма.
Половые клетки обладают одинарным гаплоидным набором хромосом. Гаплоидные клетки образуются из диплоидных в результате специального процесса деления клеток - мейоза. Мейоз - тип деления диплоидных клеток, при котором происходит уменьшение числа хромосом и образование гаплоидных клеток.
4. Онтогенетический уровень организации биологических систем
Разные виды организмов. Онтогенетический (организменный) уровень характеризует особенности существования отдельных (дискретных) индивидуумов (особей). Особи могут представлять собой одноклеточные микроорганизмы и многоклеточные организмы. Сложность многоклеточного индивидуума во много раз выше, по сравнению с одноклеточным, поскольку он образован миллионами или миллиардами клеток. Но и одноклеточная, и многоклеточная особь обладают системной организацией и функционируют как единое целое с момента возникновения до смерти. Индивид (особь) - элементарная неделимая единица жизни на Земле. Следует отметить, что в ряде случаев вопрос об определении границ особи не вполне очевиден. Например, не ясно, считать ли отдельными особями организмы, составляющие колонии коралловых полипов или такие комплексные существа как лишайники, являющиеся симбиотическим сообществом водорослей, грибов и специфических микроорганизмов. С эволюционной точки зрения особью следует считать все организмы, происходящие от одной клетки, споры, почки и индивидуально подлежащие действию элементарных эволюционных факторов.
Генотип и фенотип. Совокупность всех генов одного организма называется генотипом. Генотип реализуется в признаках конкретного индивидуума (особи). Совокупность всех признаков организма определяется как фенотип. Таким образом, фенотип, представляет собой результат взаимодействия генотипа и окружающей среды. Как отмечал известный советский генетик Н.П. Дубинин, «фенотип - это явление, а генотип - его сущность». Это означает, что генотип проявляется в фенотипе, поэтому фенотип как результат взаимодействия генотипа и среды всегда шире и разнообразней генотипа. Естественный отбор действует на фенотип, а не непосредственно на генотип, который лишь определяет реакции развивающегося организма на внешнюю среду. Заметим, что генетическая информация становится биологически осмысленной только в том случае, когда она «расшифровывается» в результате контакта с окружающей средой. В известном смысле фенотип включает в себя биологические задатки, природную и социальную среду, деятельность индивидуума, его сознание и все возможные взаимодействия между этими признаками. В ходе эволюции возникает и постепенно усложняется путь от генотипа к фенотипу, от гена, до признака. Онтогенез (индивидуальное развитие организма) совершается как реализация наследственных признаков под воздействием механизмов их согласования с условиями существования данного организма.
Аксиомы Медникова. Описанное выше соотношение генотипа и фенотипа обосновываются с помощью сформулированных Б.М. Медниковым аксиом теоретической биологии:
все живые организмы представляют собой единство комплекса признаков (фенотипа) и наследственной программы для его построения (генотипа), передающееся из поколения в поколение;
наследственные молекулы синтезируются матричным путем, в качестве матрицы, на которой строится ген будущего поколения, используется ген предыдущего поколения;
в процессе передачи из поколения в поколение в результате многих причин генетические программы изменяются случайно и ненаправленно, и лишь случайно эти изменения оказываются приспособительными;
случайные изменения генетических программ при становлении фенотипов многократно усиливаются и подвергаются отбору условиями внешней среды.
5. Популяционно-видовой уровень
Объединение особей в популяции, а последних - в виды по степени генетического и экологического единства приводит к появлению новых свойств и особенностей в живой природе. Популяция - система особей одного вида, длительно занимающих определенное пространство и воспроизводящих себя в течение большого числа поколений. Вид -система популяций особей, обладающих рядом общих морфо-физиологических признаков, способных к скрещиванию с образованием плодовитого потомства. Популяция - элементарная структура на популяционно-видовом уровне, а элементарное явление на этом уровне - изменение генотипического состава популяции; элементарный материал на этом уровне - мутации. Особую роль играют отношения между особями внутри популяции и вида. При этом популяции выступают как основные эволюционные единицы, представляющие собой генетически открытые системы (особи из разных популяций иногда скрещиваются, - таким образом, происходит обмен генетической информацией). Популяции и виды способны к существованию в течение длительного времени и к самостоятельному эволюционному развитию. Жизнь отдельной особи при этом находится в зависимости от популяционных процессов. Популяционно-видовая целостность связана с взаимодействием особей внутри популяций и поддерживается обменом' генетического материала в процессе полового размножения.
6. Биогеоценотический (экосистемный) уровень. Принципы устойчивости биогеоценоза
Популяции разных видов образуют сложные сообщества - биоценозы. Биоценозы - совокупность растений, животных, грибов и прокариот, населяющих участки суши или водоема и находящихся в определенных отношениях между собой. Вместе с конкретными участками земной поверхности, занимаемыми биоценозами, и прилежащей атмосферой они формирую экосистему (биогеоценоз). Экосистема - взаимообусловленный комплекс живых и неживых (косных) компонентов, связанных между собой обменом веществ и энергии. Название «биогеоценоз» используется только по отношению к природным системам. В целом жизнь биогеоценоза регулируется в основном силами, действующими внутри самой системы, т.е. можно говорить о саморегуляции биогеоценоза.
Биогеоценоз представляет собой открытую систему, имеющую энергетические «входы» и «выходы», связывающие соседние биогеоценозы, обмен веществ между которыми может осуществляться как в газообразной, так и в жидкой и твердой фазах, а также в форме живого вещества (например, миграции животных). Нынешнее состояние экосистем - результат длительной эволюции и адаптации организмов друг к другу и к условиям существования. Все группы экосистемы - продукт совместного исторического развития различающихся и приспосабливающихся друг к другу видов. Первичной основой для функционирования экосистемы служат растения и прокариоты - автотрофы, синтезирующие из неорганических веществ (воды, двуокиси углерода, соединений азота) необходимые для жизни органические вещества. Автотрофы используют энергию фотосинтеза (зеленые растения) или хемосинтеза (бактерии). Они являются продуцентами, создающими жизненную среду для гетеротрофов, потребляющих готовые органические вещества и неспособные к их синтезу из неорганических. Гетеротрофами являются животные и грибы. Эти потребители в свою очередь подразделяются на консументы -(растительноядные животные и хищники) и редуценты (грибы, микроорганизмы, разлагающие органическое вещество.) Популяции разных видов в экосистемах воздействуют друг на друга по принципу прямой и обратной связи. В экосистемах выделяют пищевые (трофические) цепи - через них происходит трансформация вещества и энергии. При переходе энергии от одного звена к другому до 80-90% ее теряется в виде теплоты, поэтому цепи обычно включают не более 4-5 звеньев, и продукция каждого последующего звена меньше предыдущего.
Совокупность всех организмов, объединенных единым типом питания образуют трофический уровень. В экосистеме реализуется правило пирамиды: продукция каждого последующего трофического уровня меньше предыдущего приблизительно в 10 раз. В состав пищи каждого вида могут входить другие разные виды, и каждый вид может служить пищей другим разным видам, т.е. трофические цепи переплетаются, образуя трофические сети. В экосистеме реализуются принципы устойчивости и равновесия:
принцип устойчивости: чем больше трофических уровней в экосистеме и чем они разнообразнее, тем более устойчива экосистема;
принцип равновесия: между видами в экосистеме существует равновесие, и отклонение от него в ту или другую сторону может привести к катастрофе.
Взаимосвязи в экосистемах могут быть взаимно отрицательными (конкуренция между видами, вытеснение одного другим), положительными для одного и отрицательными для другого (хищничество, паразитизм); взаимно положительными. Каждая экосистема динамична и структура ее подвижна. Смена одного биогеоценоза другим называется сукцессией. Она может быть длительной и постепенной, быстрой и катастрофической, но Чаще всего сукцессия необратима. Причины сукцессий разнообразны: изменения климата, внедрение новых видов, пожары, деятельность человека и т.д. В зависимости от факторов, их обусловивших, причины подразделяются на эндогенные (внутренние) и экзогенные (внешние).
Хозяйственная деятельность человека привела к резким изменениям всех компонентов биоценозов. На смену естественным биоценозам проходят искусственные - агробиоценозы, городские биоценозы. Агробиоценоз ( и городской биоценоз) - вторичный биогеоценоз, который может существовать только при постоянном возобновлении человеком.
7. Биосферный уровень
Биосфера - единство всех биогеоценозов, система, охватывающая все явления жизни на Земле. Этот термин ввел в 1875 г. геолог Э. Зюсс (), но широкое распространение он получил в 20-е годы ХХ века, когда было развито учение В.И. Вернадского о биосфере. Согласно Вернадскому, биосфера - те части земных оболочек (лито-, гидро- и атмосферы), которые на протяжении геологической истории подвергались влиянию живых организмов и несут следы их жизнедеятельности. Биосфера возникла в процессе формирования земной коры и в настоящее время занимает пространство приблизительно от 10 км под Землей до 33 км над ней. Следует отметить очень узкий диапазон физических условий существования жизни, и в определенном смысле уникальность среды, в которой возможна жизнь. Вместе с тем, Жизнь постепенно, медленно приспосабливаясь, захватила существенную часть Земли, и этот захват продолжается.
Биогеохимический подход Вернадского позволяет всю совокупность живых организмов рассматривать как определенный тип - живое вещество. Кроме него в составе биосферы есть неживое или косное вещество, а также сложное по своей природе биокосное вещество, включающее как живые организмы, так и видоизмененное ими неживое вещество (почвы, илы, природные воды). Важнейшей чертой биосферы является наличие биотических круговоротов вещества. В результате способности к преобразованиям энергии и обмену веществ, а также к размножению и расселению живые организмы вызывают биогенную миграцию атомов. При этом, как указывал Вернадский, биогенная миграция химических элементов в биосфере стремится к максимальному своему проявлению. Жизнедеятельность организмов - один из важнейших геологических факторов. Своеобразие этого фактора связана в первую очередь с эволюцией. «Благодаря эволюции видов, непрерывно идущей и никогда не прекращающейся, резко меняется отражение живого вещества на окружающей среде... Эволюция видов переходит в эволюцию биосферы» (В.И. Вернадский).
Современное естествознание в ходе изучения взаимодействия биоценозов в биосфере вводит новое понятие - «коэволюция», означающее взаимное приспособление видов. Коэволюция является перспективной концепцией естественных и социальных наук, в которой решающую роль в существовании играет не борьба, а согласованность, сотрудничество различных видов, не связанных между собой генетически. В настоящее время интенсивно разрабатываются энергетическая, информационная и социальная концепции биосферы.
8. Развитие представлений о биологической эволюции
Классификация гипотез о возникновении жизни. В течение тысячелетий человечество пыталось ответить на вопрос о том, как возникла на Земле жизнь. Убедительный ответ на этот фундаментальный вопрос пока не найден Имеющиеся в настоящее время гипотезы можно разделить разбить на следующие группы:
ненаучные гипотезы: здесь, прежде всего, следует выделить гипотезу креационизма, согласно которой жизнь возникла в результате некоего сверхъестественного события в прошлом, например, божественное вмешательства; эта концепция находится за пределами возможности научной проверки, хотя имеет ряд сторонников и в настоящее время;
научные гипотезы: эти гипотезы в свою очередь подразделяются на гипотезы биогенного происхождения жизни (стационарного состояния, панспермии), и гипотезы абиогенного происхождения (спонтанного зарождения, биохимической эволюции).
Гипотеза стационарного состояния (вечности) жизни. Согласно данной гипотезе, биосфера всегда была присуща Земле. Изменялась лишь виды живых организмов, способные осуществлять разнообразные функции (окислительно-восстановительные, энергетические и др.), но не сами эти функции. Сторонником этой гипотезы был В.И. Вернадский. Согласно его точке зрения, живое вещество биосферы выполняет большое число (9) принципиально важных биогеохимических функций, которые должны были существовать в биосфере изначально и из-за их сложности не могли быть реализованы каким-либо одним видом. Поэтому с самого начала живое вещество биосферы должно было быть представлено совокупностью многих видов, принадлежащих разным классам организмов. Биосфера в основных своих чертах представляет собой один и тот же химический аппарат с самых древних геологических времен. Жизнь оставалась в течение геологического времени постоянной, менялась только ее форма.
Однако в свете идей глобальной эволюции Вселенной данная гипотеза в настоящее время признается несостоятельной.
Гипотеза панспермии. Эта гипотеза впервые выдвинута в работах Г.Рихтера и С.Аррениуса (1859 - 1927). Она не предлагает механизма возникновения жизни, выдвигая вместо него постулат о занесении примитивных живых организмов на Землю из космоса. Предполагается, что жизнь могла возникать неоднократно в различное время и в различных местах Вселенной. В 70-80-х гг. XX в. было обнаружено, что многие метеориты содержат самые разнообразные вещества, являющиеся предшественниками жизни. Кроме того, современная наука располагает данными, свидетельствующими о наличии значительных количеств органических веществ (формальдегида, муравьиной кислоты, ароматических углеводородов и др.) в космических газопылевых облаках. Учитывая, что последние составляют 20-30% всего галактического вещества, становятся понятными масштабы, в которых осуществляется органический синтез в межзвездном пространстве. Известно, что космическая пыль захватывается Землей в значительных количествах (десятки тонн в сутки). Этот процесс, имевший место и в условиях первичной Земли, мог способствовать занесению органических соединений на поверхность нашей планеты, где они могли осуществлять дальнейшее развитие в более мягких условиях, например, в. океанической воде.
Гипотеза спонтанного зарождения. Данная концепция получила распространение еще в Древнем Египте, Вавилоне, Китае и Греции. Согласно Аристотелю, определенные частицы вещества (например, гниющего мяса) содержат «животворное начало», способное в подходящих условиях создать живой организм. «Таковы факты - живое может возникать не только в результате спаривания животных, но и разложения почвы. Одни растения развиваются из семян, а другие самозарождаются под действием сил природы из разлагающейся земли...» Гипотеза спонтанного зарождения продолжала существовать и в эпоху Средневековья. Например, бельгийский врач и физиолог XVII в. И.Б. ван Гельмонт высказывал идею, что жизнь может возникать в процессе брожения и предлагал, в частности, следующий способ выведения животных: «Если заткнуть грязной рубашкой отверстие сосуда, в который насыпаны зерна пшеницы, то брожение, вызванное присутствием грязной рубашки, видоизмененное испарениями зерна, примерно через 21 день превратит пшеницу в мышей». В конце того же XVII в. итальянский врач Ф. Реди (1626 - 1698) провел более строгие эксперименты и сделал вывод о происхождении живого в подобных случаях только из предшествующих форм жизни. Окончательно теория самозарождения была опровергнута опытами основателя микробиологии Л. Пастера (1822 - 1895), и сегодня она представляет лишь исторический интерес.
Гипотеза биохимической эволюции. Данную концепцию выдвинул в 20-х гг. XX века советский ученый А.И. Опарин (1894 - 1980). Он предположил, что в первичной атмосфере Земли, значительно отличавшейся от нынешней по химическому составу, мог происходить синтез всех необходимых для жизни веществ. Происхождение жизни связано с вероятным последовательным протеканием определенных химических реакций на поверхности первичной планеты. Физические и химические свойства воды (высокий дипольный момент, вязкость, теплоемкость и т.д.) и углерода (способность к восстановлению и образованию линейных соединений) определили то, что они оказались у колыбели жизни. Важнейшим положением в учении Опарина является идея химической эволюции, приведшей к образованию органических соединений из неорганических под воздействием мощных температурных, радиационных и других физических факторов, характерных для ранних стадий эволюции планеты. Эти сложные химические преобразования молекул не имели единичного и неповторимого характера, они могли протекать в неодинаковых условиях и на разных участках поверхности Земли. Согласно концепции Опарина, осуществившаяся затем биохимическая эволюция привела к образованию клеток из белков, при допущении возможности в определенных условиях спонтанного химического синтеза аминокислот и белковоподобных полимеров абиогенным путем. Согласно этим представлениям, первичная земная атмосфера состояла преимущественно из аммиака, метана, водяного пара и углекислого газа. Отсутствие кислорода (так как процесс фотосинтеза был невозможен) придавало ей восстановительные свойства. В таких условиях органические соединения могли синтезироваться и сохраняться на протяжении длительного времени, не подвергаясь окислению. Опарин полагал, что сложные органические вещества (белки, полисахариды и др.) могли возникать из более простых в условиях океана. Процессам полимеризации способствовало ультрафиолетовое облучение в отсутствие озонового экрана, а также интенсивные грозовые разряды. Постепенно накапливалось большое количество органических соединений, образовавших «первичный бульон», в котором могла возникнуть жизнь. Эта гипотеза получила подтверждение в экспериментах американского биохимика С. Миллера (р. 1930), проведенных в 1953 г.: через смесь газов, предположительно образовывавших первичную атмосферу, пропускались электрические разряды большой мощности. В результате удалось синтезировать ряд аминокислот, спиртов, простые сахара. Возможность подобного синтеза была доказана и в многочисленных экспериментах с использованием других соотношений исходных газов и видов источников энергии. В сходных опытах были получены простые гетероциклические азотистые основания. Таким образом, было показано, что основные органические вещества - мономеры, необходимые для возникновения биополимеров, - действительно могли возникнуть в условиях пребиотического (лишенного жизни) мира. Однако главный вопрос - механизм перехода от неживого к живому - гипотеза Опарина оставляет открытым. Одной из наиболее важных ступеней биохимической эволюции следует считать объединение способности к самовоспроизведению полинуклеотидов с каталитической активностью полипептидов (белков). Главная роль принадлежала белкам: они формировали коллоидные гидрофильные комплексы, слияние которых друг с другом приводило к их обособлению от водной среды (коацервации). Капли-коацерваты могли обмениваться веществом с окружающей средой и накапливать различные соединения. Различие химического состава коацерватов открывало возможности для биохимического естественного отбора. В самих коацерватах происходили дальнейшие химические превращения и возникала первая клеткоподобная структура. Рост размеров коацерватов и их деление могли привести к образованию копий коацерватов. Растущий и размножающийся делением коацерват рассматривался как прообраз живой клетки. В последующем, видимо, шел предбиологический отбор коацерватов, и могли возникнуть первые гетеротрофные организмы, использовавшие питательные вещества «первичного бульона».
Данная гипотеза многими воспринималась критически. В частности, Ф.Хойл указывал на слишком малую вероятность протекания подобных процессов в таком сложном и целенаправленном порядке отмечая, что гипотеза эта «столь же нелепа, как и предположение о возможности сборки «Боинга-747» ураганам, пронесшимся над мусорной свалкой». По современным данным, Земля образовалась 4,5-4,6 млрд. лет назад, первые водоемы появились на ней 3,8-4 млрд. лет назад, а уже примерно 3,2 млрд. лет назад жизнь стала полностью контролировать земной цикл углеводорода. На основании таких подсчетов высказано предположение, что для возникновения жизни в первичном бульоне оказался бы недостаточен отрезок времени с момента формирования Земли и водоемов на ее поверхности. Действительно, это маловероятно, если рассматривать считать процессы, обусловившие возникновение жизни, происходящими в равновесной системе. Однако последние исследования показываются, что в сложных сильно неравновесных диссипативных системах многие процессы синергетически детерминированы. По-видимому, такие сильно неравновесные условия: высокая температура, ультрафиолетовое и рентгеновское облучение, бурные тектонические процессы, мощные электрические разряды в первичной бескислородной атмосфере, высокое атмосферное давление и т.д., - были свойственны ранней Земле. Органическое вещество Земли могло пополняться на поверхности планеты и за счет извержения вулканов. Подсчитано, что одно вулканическое извержение выбрасывает на поверхность до 1000 т органических соединений. Разные компоненты этих соединений, используя энергию излучения и разрядов, могли вступать между собой в реакции, образуя своеобразную оболочку из аминокислот, мочевины и других веществ, что могло способствовать возникновению живых существ в первичном океане. С этой точки зрения, возникновение жизни становится закономерным событием определенного этапа эволюции Земли как открытой сильно неравновесной системы.
В последние годы все больше сторонников находит несколько иная гипотеза биохимической эволюции, суть которой в том, что основоположниками жизни являлись не белки, а молекулы РНК. Нуклеиновые кислоты являются единственным типом биологических полимеров, макромолекулярная структура которых обеспечивает возможность копирования собственной линейной последовательности мономерных звеньев. Напомним, что РНК обладает целым рядом специфических свойств:
во-первых, и в химическом синтезе, и в биохимических реакциях рибонуклеотиды предшествуют дезоксирибонуклеотидам;
во-вторых, в самых древних процессах жизненного метаболизма широко представлены именно рибонуклеотиды;
в-третьих, репликация РНК может происходить без какого бы то ни было участия ДНК;
в-четвертых, обладая всеми теми же матричными и генетическими функциями, что и ДНК, РНК способна также к выполнению ряда функций, присущих белкам, включая катализ химических реакций.
Образование компонентов РНК - углеводных циклов рибозы и азотистых оснований, как уже было сказано, не вызывает принципиальных затруднений. Значительно труднее представить процесс образования из них непосредственно нуклеотидов, а затем и соединение последних в нуклеиновые кислоты. Тем не менее в рамках данной гипотезы развита возможная схема возникновения мира РНК, послужившего основой для синтеза белка, возникновения кооцерватов и клеток.
Здесь уместно вспомнить, что ряда неклеточных форм жизни - вирусов геном представлен молекулой РНК. К РНК-содержащим вирусам близка другая группа молекулярных паразитов -вироидов. Это патогенные РНК, не содержащие и не кодирующие никаких белков, но тоже способные к репликации в живых системах. Тем самым демонстрируется способность РНК не только кодировать белки, но и служить полноценным воспроизводящим генетическим материалом. Вирусы и вироиды часто рассматриваются как эволюционные реликты, и процесс репликации РНК без участия ДНК может отражать очень ранний этап эволюции жизни, когда ДНК еще не утвердилась в качестве специализированной формы хранения и воспроизведения генетической информации в поколениях клеток.
Теоретически можно представить и другие пути возникновения жизни. Например, при попадании воды с растворенными в ней аминокислотами на горячий субстрат (мелкие водоемы в застывающей лаве) мог осуществиться процесс полимеризации с образованием протобелковых структур (эксперименты К. Фолсома и Р. Фокса).
Трудности решения проблемы возникновения жизни. В настоящее время ни одна из перечисленных выше концепций не может претендовать на праве называться полномасштабной научной теорией. «...Более чем 30 лет экспериментов …в области химической и молекулярной эволюции привели скорее к лучшему пониманию обширности проблемы происхождения жизни на земле, чем к ее решению» (К.Доуз). Одним из самых загадочных является факт абсолютной хиральной чистоты: наличия у живых существ только L-изомеров аминокислот и только D-изомеров нуклеиновых кислот. Хиральность как особое свойство живых объектов отмечал еще Л. Пастером. Это свойство могло возникнуть только вследствие утраты предбиологической средой первичной зеркальной симметрии. Неживой природе присуща тенденция к рацемации - равному содержанию в растворах двух типов изомеров. Именно такие смеси и получались в опытах С. Миллера и других исследователей. Но рацемический полинуклеотид не в состоянии реплицироваться (самовоспроизводиться) и у него нет спиральной организации. Опыты последних лет показали, что только в хирально чистых растворах мог возникнуть процесс саморепликации. Неясно также, почему некоторые редкие в земной, коре элементы (молибден, магний) стали играть более значительную роль в биологическом обмене, чем обычные элементы (например, кремний). Подобные вопросы еще ждут своего объяснения. Но научно достоверной остается принципиальная возможность возникновения жизни из неорганических веществ в результате воздействия физических факторов среды и предбиологического отбора.
Подобные документы
Главная особенность организации живых материй. Процесс эволюции живых и неживых систем. Законы, лежащие в основе возникновения всех форм жизни по Дарвину. Молекулярно-генетический уровень живых организмов. Прогрессия размножения, естестенный отбор.
реферат [15,0 K], добавлен 24.04.2015Объекты биологического познания и структура биологических наук. Гипотезы возникновения жизни и генетического кода. Концепции начала и эволюции жизни. Системная иерархия организации живых организмов и их сообществ. Экология и взаимоотношения живых существ.
реферат [52,9 K], добавлен 07.01.2010Электромагнитные взаимодействия как определяющий уровень организации материи. Сущность живого, его основные признаки. Структурные уровни организации живой материи. Предмет биологии, ее структура и этапы развития. Основные гипотезы происхождения жизни.
лекция [28,4 K], добавлен 18.01.2012Симметрия - фундаментальная особенность природы, охватывающая все формы движения и организации материи: понятие, принципы и методологическая роль в науке. Функциональная биосимметрика: преобразование живых систем; круговая таблица генетического кода.
реферат [195,8 K], добавлен 18.01.2011Первая классификация живых организмов, предложенная Карлом Линнеем. Три этапа Великих биологических объединений. Концепция эволюции органического мира Жан-Батиста Ламарка. Основные предпосылки возникновения теории Дарвина. Понятие естественного отбора.
реферат [762,6 K], добавлен 06.09.2013Этапы зарождения жизни на Земле, появления первых прокариотических и эукаротических организмов. Процесс эволюции эукариотов от одноклеточного до многоклеточного строения тела. Основные свойства и проявления жизни, закономерности изменения энтропии.
реферат [750,4 K], добавлен 24.07.2009Этапы эволюции первейших земных организмов, их свойства и порядок деления клеток. Дискретные модели циклов жизни. Индивидуальное развитие клеток прокариотов и его этапы. Рекуррентная модель старения Маккендрика фон Фёрстера, процессы отбора в ней.
реферат [1,5 M], добавлен 30.08.2009Виды адаптации живых организмов к окружающей среде. Маскировочная, покровительственная и предупреждающая окраска. Особенности поведения и строения тела животных для приспособления к образу жизни. Мимикрия и забота о потомстве. Физиологические адаптации.
презентация [1,7 M], добавлен 20.12.2010Законы сохранения массы и энергии в макроскопических процессах. Самоорганизация химических систем и энергетика химических процессов. Особенности биологического уровня организации материи. Загрязнение окружающей среды: атмосфера, вода, почва, пища.
контрольная работа [35,7 K], добавлен 11.11.2010Исследование процесса становления первичных экосистем. Характеристика первичного "бульона" и эобионтов. Оценка уровня и характер взаимодействия организмов на ранних этапах эволюции жизни. Эволюция ферментных систем и функционирование механизма отбора.
реферат [25,7 K], добавлен 12.02.2011