Применение реакции антиген-антитело в медицинской практике

Особенности применения реакции антиген-антитело в медицинской практике. Методы оценки состояния иммунной системы человека. Иммуномикробиологические исследования как вид микробиологического экспресс-анализа по выявлению специфических антител и антигенов.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 16.05.2018
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Применение реакции антиген-антитело в медицинской практике

1.Иммуномикробиологические исследования

Иммунологические методы применяют для решения многих задач:

1. Оценка состояния иммунной системы человека (иммунного статуса) по определению количественных и функциональных характеристик клеток иммунной системы и их продуктов.

2. Определение состава и характеристик тканей человека: групп крови, резус фактора, трансплантационных антигенов.

3. Диагностика инфекционных болезней и резистентности к ним по обнаружению и установлению титров антител (серодиагностика), выявлению антигенов возбудителей в организме, определению клеточных реакций на эти антигены.

4. Сероидентификация культур бактерий и вирусов, выделенных из организма человека и животных.

5. Выявление в организме человека и во внешней среде любых веществ, обладающих антигенными или гаптенными свойствами (гормоны, ферменты, яды, лекарства, наркотики и т.п.).

6. Выявление иммунопатологических состояний, аллергий, трансплантационных и противоопухолевых реакций.

В основе иммунологических методов лежат серологические реакции, для постановки которых используют сыворотку (serum), содержащую антитела (основаны на взаимодействии антигенов и антител) и клеточные реакции, базирующиеся на взаимодействии антигенов (аллергенов) с Т-клетками.

Иммуномикробиологические исследования - вид микробиологического экспресс-анализа по выявлению специфических антител и антигенов.

Процесс взаимодействия антигена и антитела в серологических реакциях протекает в две фазы:

1) специфическая - фаза взаимодействия, в которой происходит комплементарное соединение активных центров антител (паратопов) и эпитопов антигена. Обычно эта фаза длится несколько секунд или минут;

2) неспецифическая - фаза проявления, характеризуется внешними признаками образования иммунных комплексов. Эта фаза может развиваться от нескольких минут до нескольких часов.

Оптимальное специфическое взаимодействие антител с антигеном происходит в изотоническом растворе с рН, близким к нейтральному. Реакция антиген-антитело в системе in vitro может сопровождаться возникновением нескольких феноменов - агглютинации, преципитации, лизиса. Внешние проявления реакции зависят от физико-химических свойств антигена (размер частиц, физическое состояние), класса и вида антител (полные и неполные), а также условий опыта (консистенция среды, концентрация солей, рН, температура).

Поливалентность антигенов и антител обеспечивает возникновение видимых невооруженным глазом агрегатов. Это происходит в соответствии с теорией образования сетей, согласно которой к образовавшемуся комплексу антиген-антитело последовательно присоединяются другие молекулы антител и антигена. В результате формируются сетевые структуры, которые превращаются в агрегаты, выпадающие в осадок. Характер и выраженность реакции зависят от количественного соотношения антигенов и антител. Наиболее интенсивно реакции проявляются в том случае, если реагенты находятся в эквивалентном соотношении.

микробиологический иммунный антитело

Рис. 1. Схема взаимодействия антигена с антителами.

Необходимое условие образование решетки (сетей) - наличие более трех антигенных детерминант на каждую молекулу антигена и по два активных центра на каждую молекулу антитела. Молекулы антигена являются узлами решетки, а молекулы антител - связующими звеньями. Область оптимальных соотношений (зона эквивалентности) концентраций антигена и антител, когда в надосадочной жидкости после образования осадка не обнаруживаются ни свободные антигены, ни свободные антитела.

Агрегаты, способные выпадать в осадок, образуются при соединении антигенов с полными антителами. Неполные антитела (моновалентные) не вызывают образования сетевых структур и крупных агрегатов. Для выявления таких антител используют специальные методы, основанные на использовании антиглобулинов (см. реакцию Кумбса).

Серологические реакции, благодаря высокой специфичности и чувствительности, применяют для выявления и количественного определения антигенов и антител. Количество иммунореагентов в реакциях выражают титром - максимальным разведением сыворотки или антигена, при котором еще наблюдается реакция.

Серологические реакции в микробиологических и иммунологических лабораториях используют в двух целях:

1) для сероидентификации микроорганизмов, токсинов, антигена вообще с помощью известного антитела (иммунной диагностической сыворотки),

2) для серодиагностики - определения природы антитела в сыворотке крови больного при бактериальных, вирусных, реже других инфекционных заболеваниях с помощью известного антигена (диагностикума).Для определения родовой, видовой и типовой принадлежности антигена необходимы заведомо известные иммунные диагностические сыворотки. Их получают путем многократного введения животным (чаще кроликам) в нарастающих дозах убитых или живых микроорганизмов, продуктов их распада, обезвреженных или нативных токсинов. После определенного цикла иммунизации животных делают массивное кровопускание или тотальное обескровливание животного. Кровь, собранную в стерильную посуду, сначала помещают в термостат при температуре 37°С на 4 - 6 ч для ускорения свертывания, затем - в ледник на сутки. Полученную прозрачную сыворотку отсасывают в стерильную посуду, добавляют консерванты, определяют титр антител, проверяют на стерильность и разливают в ампулы.

Используются неадсорбированные и адсорбированные диагностические сыворотки. Неадсорбированные сыворотки обладают высокими титрами антител, но способны давать групповые (перекрестные) реакции. Адсорбированные сыворотки отличаются строгой специфичностью действия (реагируют только с гомологичным антигеном). Сыворотки, содержащие антитела только к одному определенному антигену называются монорецепторными.

Выпускают также сыворотки, меченные флюорохромами, ферментами, радиоизотопами, которые позволяют с высокой степенью точности обнаружить даже следы антигена.

В качестве антигенов (диагностикумы) в серологических реакциях применяют взвеси живых или убитых бактерий, продуктов их расщепления, токсины, вирусы. В ряде случаев используют экстракты или выделенные химическим путем антигены из микроорганизмов и тканей животных.

Все иммуномикробиологические методы можно разделить на 3 группы:

1) основанные на прямом взаимодействии антигена с антителом (феномены агглютинации, преципитации, гемагглютинации, иммобилизации и др.);

2) основанные на опосредованном взаимодействии антигена с антителом (реакции непрямой гемагглютинации, коагглютинации, латекс-агглютинации, угольной аггломерации, бентонит-агглютинации, связывания комплемента и др.);

3) с использованием меченых антител или антигенов (метод флюоресцирующих антител, иммуноферментный и радиоиммунный анализы и другие методы).

2.Реакции агглютинации

В этих реакциях принимают участие антигены в виде частиц (микробные клетки, эритроциты и другие корпускулярные антигены), которые склеиваются антителами и выпадают в осадок.Для постановки реакции агглютинации (РА) необходимы три компонента: 1) антиген (агглютиноген); 2) антитело (агглютинин) и 3) электролит (изотонический раствор натрия хлорида).

Ориентировочная реакция агглютинации (РА)

Ориентировочная, или пластинчатая, РА ставится на предметном стекле при комнатной температуре. Для этого пастеровской пипеткой на стекло наносят раздельно каплю сыворотки в разведении 1:10 - 1:20 и контрольную каплю изотонического раствора натрия хлорида. В ту и другую бактериологической петлей вносят колонии или суточную культуру бактерий (каплю диагностикума) и тщательно перемешивают их. Реакции учитывают через несколько минут визуально, иногда с помощью лупы (х5). При положительной РА в капле с сывороткой отмечаютпоявление крупных и мелких хлопьев, при отрицательной - сыворотка остается равномерно мутной.

Рис. 2. Ориентировочная реакция агглютинации.
Реакция непрямой (пассивной) гемагглютинации (РНГА, РПГА)
Реакция ставится: 1) для обнаружения полисахаридов, белков, экстрактов бактерий и других высокодисперстных веществ, риккетсий и вирусов, комплексы которых с агглютининами в обычных РА увидеть не удается, или 2) для выявления антител в сыворотках больных к этим высокодисперстным веществам и мельчайшим микроорганизмам.
Под непрямой, или пассивной, агглютинацией понимают реакцию, в которой антитела взаимодействуют с антигенами, предварительно адсорбированными на инертных частицах (латекс, целлюлоза, полистерол, оксид бария и др. или эритроциты барана, I(0)-группы крови человека)В реакции пассивной гемагглютинации (РПГА) в качестве носителя используют эритроциты. Нагруженные антигеном эритроциты склеиваются в присутствии специфических антител к данному антигену и выпадают в осадок. Сенсибилизированные антигеном эритроциты используют в РПГА как эритроцитарный диагностикум для обнаружения антител (серодиагностика). Если нагрузить эритроциты антителами (эритроцитарный антительный диагностикум), то можно применять для выявления антигенов.

Рис. 3. Схема РПГА: эритроциты (1), нагруженные антигеном (3), связываются специфическими антителами (4).
Постановка. В лунках полистироловых планшетов готовят ряд последовательных разведений сыворотки. В предпоследнюю лунку вносят - 0,5 мл заведомо положительной сыворотки и в последнюю 0,5 мл физиологического раствора (контроли). Затем во все лунки добавляют по 0,1 мл разведенного эритроцитарного диагностикума, встряхивают и помещают в термостат на 2 ч.
Учет. В положительном случае эритроциты оседают на дне лунки в виде ровного слоя клеток со складчатым или зазубренным краем (перевернутый зонтик), в отрицательном - оседают в виде пуговки или колечка.

Рис.4. Учет РНГА (РПГА).
3.Реакции преципитации
Реакции преципитации (РП) основаны на фенoмене образования видимого осадка (преципитата) или общего помутнения среды после взаимодействия растворимых либо находящихся в коллоидном дисперсном состоянии Аг с АТ. РП ставят в специальных узких пробирках. В качестве реагентов используют гипериммунные преципитирующие сыворотки с высокими титрами АТ к гомологичным Аг. РП позволяет быстро (в течение нескольких секунд) выявлять незначительные количества Аг (можно выявить антиген в таких малых количествах, которые не обнаруживаются химическим путем). Они очень чувствительны, и их применяют для тонкого иммунохимического анализа, выявляющего отдельные компоненты в смеси антигена.

Рис. 5. Схемы реакций преципитации в пробирке (А) и агаре (Б)

Реакция кольцепреципитации Асколи

Постановка. В узкую пробирку диаметром 0,5 см с неразведенной преципитирующей сывороткой в количестве 0,3-0,5 мл, держа ее в наклонном положении, пастеровской пипеткой медленно по стенке наслаивается такой же объем антигена. Пробирку осторожно, чтобы не смешать жидкости, ставят вертикально. При правильном наслоении преципитиногена на сыворотку четко обозначается граница между двумя слоями жидкости. Постановка реакции обязательно сопровождается контролями сыворотки и антигена.

Учет. Результаты реакции учитывают в зависимости от вида антигена и антител через 5-10 мин, 1-2 ч или через 20-24 ч. В случае положительной реакции в пробирке на границе между сывороткой и исследуемым экстрактом появляется преципитат в виде кольца белого цвета.

4.Реакция связывания комплемента (РСК)

РСК широко используют для лабораторной диагностики венерических болезней, риккетсиозов, вирусных инфекций. Реакция протекает в две фазы. Первая фаза - взаимодействие антигена и антител при обязательном участии комплемента. Вторая - выявление результатов реакции при помощи индикаторной гемолитической системы (эритроциты барана и гемолитическая сыворотка). Разрушение эритроцитов гемолитической сывороткой происходит только в случае присоединения комплемента к гемолитической системе. Если же комплемент адсорбировался ранее на комплексе антиген-антитело, то гемолиз эритроцитов не наступает.

При наличии в исследуемой сыворотке антител, комплементарных антигену, образующийся комплекс антиген-антитело связывает (адсорбирует) на себе комплемент. При добавлении гемолитической системы гемолиза не происходит (задержка гемолиза), т.к. весь комплемент израсходован на специфическую связь комплекса антиген-антитело, а эритроциты остались неизменными.

При отсутствии в сыворотке антител, комплементарных антигену, специфический комплекс антиген-антитело не образуется и комплемент остается не связанным. Поэтому при добавлении гемолитической системы комплемент присоединяется к ней. Результатом реакции в данном случае будет гемолиз эритроцитов - в пробирках образуется так называемая «лаковая» кровь.

Рис. 6. Схема РСК: а - индикаторная система (эритроциты барана и антитела к ним) в присутствии комплемента определяется в виде гемолиза; б - с сывороткой больного диагностикум (Аг) образует иммунные комплексы и активирует комплемент, результат - задержка гемолиза; в - в сыворотке здорового человека антител нет, комплемент активируется индикаторной системой, результат - гемолиз.

5.Реакции с применением меченных АТ И АГ

Реакции с использованием меченных антител и антигенов составляют основу методов экспресс-диагностики инфекционных заболеваний, так как выявляют минимальное содержание Аг и Ат в исследуемых образцах. В качестве меток могут быть использованы различные ферменты, красители флюорохромы и изотопы.

Реакция иммунофлюоресценции (РИФ)

Данный метод является экспрессным и высокочувствительным. Существуют две его разновидности.

При прямом методе к исследуемой взвеси микробов, фиксированной на стекле, добавляют сыворотку, меченную флуорохромом. Образующийся комплекс антиген-антитело при освещении ультрафиолетовыми (сине-фиолетовыми) лучами дает ярко-зеленое свечение.

При непрямом РИФ используют обычные диагностические сыворотки против какого-либо вида микробов. Добавление этой сыворотки к испытуемой взвеси микробов вызывает образование комплекса антиген-антитело. Этот комплекс выявляется с помощью универсальной флюоресцирующей сыворотки, содержащей антитела к гаммаглобулиновой фракции крови того вида животного, от которого была получена диагностическая сыворотка.

Светящийся комплекс выявляют при люминесцентной микроскопии.

Рис. 7. Реакция иммунофлюоресценции (схема).
Иммуноферментный анализ (ИФА)
В основе иммуноферментного анализа лежит известная иммунная реакция антигена и антитела. Один из этих реагентов является определяемым веществом, а другой - узнающим, обладающим известной стандартной специфичностью (избирательностью) по отношению к определяемому веществу.
Для выявления образовавшихся иммунных комплексов (антиген-антитело) используется фермент, которым предварительно метится узнающий компонент (антиген или антитело). Сам фермент, естественно, не виден, поэтому визуализация присутствия вещества, определяемого методом ИФА, достигается применением посредника - хромогена. Это особое химическое соединение, которое хорошо растворимо в воде, и раствор которого бесцветен. Превращение бесцветного хромогена в цветное вещество хромофор происходит под действием фермента, для которого хромоген является субстратом.
Рис. 8. Иммуноферментный анализ (схема).
Аутоантигены - вещества, обладающие способностью вызывать иммунные реакции в организме, из которого они получены. Их содержат мозг, хрусталик глаза, сперматозоиды, паращитовидные железы, гомогенаты семенной железы, кожи, почек, печени и других тканей. Так как в обычных условиях аутоантигены не приходят в соприкосновение с иммунными системами организма, антитела к подобным клеткам и тканям не образуются. Однако при повреждении этих тканей аутоантигены могут всасываться и вызывать образование антител, оказывающих повреждающее действие на соответствующие клетки. Аутоантигены могут возникать также из клеток некоторых органов и тканей под влиянием охлаждения, медикаментозного воздействия, вирусных инфекций, бактериальных белков и токсинов, например стрептококков, стафилококков, микобактерии туберкулеза, и других факторов. Они образуются в этом случае вследствие нарушения видовой специфичности собственных антигенов организма.
Антитела, будучи сложными гликопротеидными молекулами, сами по себе также являются антигенами. В их составе различают три типа антигенных детерминантов (элитипов): изотипы, аллотипы и идиотипы.
Изотипы -- детерминанты, по которым различаются классы и подклассы тяжелых цепей и варианты каппа- и лямбда- легких цепей.
Аллотипы -- детерминанты, кодируемые аллелями данного иммуноглобулинового гена.
Идиотипы - антигенные детерминанты, образуемые активными центрами молекул антител.
На долю класса IgG приходится около 75% общего количества всех иммуноглобулинов сыворотки крови человека.
IgM -- иммуноглобулины класса М
На поверхности зрелых В-лимфоцитов молекулы IgM располагаются в виде мономеров. Однако в сыворотке они существуют в форме пентамеров: молекула IgM состоит из пяти структурных единиц, аналогичных IgG, которые соединены между собой дисульфидными связями и J-цепью. Пять мономерных субъединиц в молекуле располагаются радиально, их Fc-фрагменты обращены к центру, а Fab-фрагменты - кнаружи
Тяжелая цепь IgM (м-цепь) состоит из 576 аминокислотных остатков, 124 из них образуют вариабельный домен, а 452 - четыре константных домена. Эта тяжелая цепь не имеет шарнирной области, ее роль выполняет домен С^Нг, обладающий некоторой конформационной лабильностью. J-цепь (от англ. join -- соединять) представляет собой особый полипептид, необходимый для полимеризации IgM и IgA. Он имеет молекулярную массу 15 кД и состоит из 129 аминокислотных остатков и одного сложного углеводного компонента. Синтез J-цепи кодируется особым геном, расположенным в хромосоме, не содержащей генов иммуноглобулинов.
IgA -- иммуноглобулины класса А
Иммуноглобулин А может иметь одну из трех форм: обычную, димерную или тримерную. В организме имеется два вида молекул IgA - сывороточные и секреторные. Сывороточные IgA составляют 10-15% всех иммуноглобулинов. Секреторные IgA (IgAs), которые находятся в слюне, слизи, пищеварительных соках, секретах слизистой носа, в молозиве и обеспечивают местный иммунитет всех слизистых оболочек, состоят из двух Ig-мономеров, J-цепи и гликопротеина, или секреторного компонента (рис. 66).
У человека имеется два изотипа этого иммуноглобулина - IgAl и IgA2, причем в сыворотке преобладает подкласс IgAl, а в экстраваскулярных секретах несколько больше содержится изотипа IgA2. Все а-цепи состоят из одного вариабельного домена, трех С-доменов и шарнирной области, домены Са2 и СаЗ содержат по одной добавочной дисульфиднои связи, которых нет у других классов иммуноглобулинов. Секреторный компонент вырабатывается эпителиальными клетками слизистых оболочек и присоединяется к молекуле IgA в момент прохождения последней через эпителиальные клетки. Секреторный компонент повышает устойчивость молекул IgAs к действию протеолитических ферментов. Иммуноглобулины А обладают следующими свойствами: 1) препятствуют связыванию антигенов со слизистыми оболочками; 2) осуществляют транспорт полимерных иммунных комплексов, содержащих IgA; 3) в процессе транспорта через эпителиальные клетки они нейтрализуют находящиеся в них вирусы. Значение иммуноглобулинов класса А в обеспечении местного иммунитета исключительно велико, так как общая площадь поверхности слизистой оболочки составляет несколько сот квадратных метров. Через нее происходит интенсивное экзогенное воздействие на иммунную систему. Но и сама слизистая активно участвует в формировании иммунитета. В ней содержится большое количество антителообразующих клеток. Лимфоциты слизистой оболочки синтезируют различные интерлейкины (IL-2, IL-4, IL-6), у-интерферон. Клетки кишечного эпителия индуцируют пролиферацию супрессорных СО8-лимфоцитов, а респираторного -- хелперных С04-лимфоцитов.
IgE -- иммуноглобулины класса Е
Антитела этого класса содержатся в сыворотке крови в очень незначительных количествах. Молекулярная масса IgE составляет 190 кД, они содержат около 12% углеводов. Тяжелая цепь (е-цепь) состоит из 550 аминокислотных остатков, имеет один вариабельный и четыре константных домена. Основная роль антител этого класса заключается в том, что они своими Fc-фрагментами прикрепляются к мастоцитам и базофилам и опосредуют реакции гиперчувствительности немедленного типа.
IgD -- иммуноглобулины класса D
IgD наряду с IgM являются главными мембранными рецепторами зрелых В-лимфоцитов. Тяжелая цепь (б-цепь) состоит из вариабельного и трех константных доменов. Константная область 5-цепи человека построена из 383 аминокислотных остатков, следовательно, ее домены длиннее С-доменов у-и а-цепей, но короче С-доменов Ј- и ц.-цепей. Шарнирная область дельта-цепи - самая длинная, она состоит из 64 аминокислотных остатков, локализация углеводов в дельта-цепи также необычна. Все это, возможно, имеет большое значение для функции IgD.
6.Аллергия
Аллергия (от греч. allos - иной, ergon - действую) - иммунная реакция организма на какие-либо вещества антигенной или гаптенной природы, сопровождающаяся повреждением структуры и функции клеток, тканей и органов.
Понятие “аллергия” было предложено в 1906 г. австрийским патологом и педиатром Клемансом Пирке для определения состояния измененной реактивности, которое он наблюдал у детей при сывороточной болезни и инфекционных заболеваниях. Говоря об аллергическом состоянии организма, часто употребляют термины гиперчувствительность, или повышенная чувствительность, подразумевая способность организма болезненно реагировать на безвредные для большинства индивидов вещества (пыльца трав и деревьев, цитрусовые и др.).
Общими особенностями, объединяющими все аллергические болезни, являются:
1) этиологическая роль различных аллергенов;
2) иммунологический механизм развития;
3) повреждающее действие комплекса АГАТ или АГ-сенсибилизированных лимфоцитов на клетки и ткани организма. Важно подчеркнуть, что сама сенсибилизация (иммунизация) заболевания не вызывает - лишь повторный контакт с тем же антигеном может привести к нежелательному эффекту. В конечном счете развивается не защита от антигена (долгое время иммунный ответ считали только защитным механизмом), а, напротив, повреждение; вместо защитной реакции возникает какая-то другая, извращенная реакция - аллергия.
7.Этиология аллергических заболевания
Причиной аллергических заболеваний является аллерген, условиями их возникновения - определенные особенности внешней среды и состояние реактивности организма.
Аллергенами называют вещества, вызывающие развитие аллергической реакции. Они могут быть антигенами, с многочисленными антигенными детерминантами, и биологически активными веществами, представляющими смесь антигенов (пыльца трав, частицы эпидермиса). Аллергены обладают чужеродностью и часто - макромолекулярностью, хотя гаптены тоже могут обладать аллергенными свойствами, становясь антигенами только после соединения с белками тканей организма (метаболиты лекарств, простые химические вещества - йод, бром, хром, никель). При этом образуются так называемые комплексные антигены, специфичность которых определяется специфичностью гаптена. По химической структуре аллергены являются белками, белково-полисахаридными комплексами (сывороточные, тканевые, бактериальные аллергены) или могут быть полисахаридами или соединениями полисахаридов с липоидами (аллерген домашней пыли, бактериальные аллергены).
Классификация аллергенов. Различают аллергены:
- бытовые (неорганические и органические вещества микробного, растительного и животного происхождения: домашняя пыль, шерсть и перхоть домашних животных, пух домашних птиц, постельные клещи, моющие средства);
- грибковые (микроаллергены: кандиды, трихофиты, эпидермофиты, актиномицеты);
- животного происхождения (эпидермальные, яды перепончатокрылых, клещи, материалы из шерсти животных, корм для рыб);
- лекарственные (вакцины, сыворотки, инсулин, препараты мышьяка, йода, ртути, антибиотики, сульфаниламиды, витамины);
- микробные (возбудители туберкулеза, токсоплазмоза, бруцеллеза, вирусы кори, гриппа, герпеса, инфекционного гепатита);
- пищевые (коровье молоко, белки куриных яиц, мясо, рыба, ракообразные, цитрусовые, кофе, орехи, мед);
- растительные (пыльца, сок растений). Возможность возникновения аллергического заболевания у данного индивидуума определяется характером, свойствами и количеством антигена, путем его поступления в организм, а также особенностями реактивности организма. Антигены, являющиеся слабыми иммуногенами и находящиеся в окружающей среде в небольших количествах (пыльца растений, домашняя пыль), попадая в организм, также могут вызвать развитие аллергического заболевания.
С другой стороны, у многих людей, получавших пенициллин, обнаруживаются антитела различных классов иммуноглобулинов к пенициллину, однако аллергические реакции на пенициллин развиваются только у некоторых из них. Указанные факторы связывают с особенностями реактивности организма.
Аллергическая реактивность (аллергическая конституция) в значительной мере определяется наследственными особенностями организма. Свыше 80 % детей с аллергией в возрасте до 10 лет имеют отягощенный семейный анамнез. В родословных больных бронхиальной астмой (наиболее тяжелое аллергическое заболевание) наследственное предрасположение к аллергии составляет более 50 %. Однако аллергические заболевания не относятся к группе наследственных болезней, передаваемых непосредственно от родителей к потомству; передается только предрасположенность к аллергии. Исследования аллергических проявлений у однояйцевых близнецов показали, что реализация аллергической предрасположенности в заболевание строго зависит от факторов внешней среды и их природы. Особенно чувствителен к развитию аллергического процесса организм в детском возрасте.
К факторам внешней среды (или социальным факторам), способствующим аллергизации населения, относятся:
1) широкая обязательная вакцинация населения против многих инфекционных заболеваний (оспа, дифтерия, коклюш и т. д.). Известно, что коклюшная вакцина повышает чувствительность тканей к гистамину, вызывает блокаду бета-адренергических рецепторов в бронхиальной ткани, играет роль адъюванта для синтеза аллергических антител;
2) широкое применение сывороток в лечебных целях, которые сами могут являться аллергенами;
3) значительный рост простых и сложных химических веществ, потенциальных аллергенов, окружающих человека. Это - лекарства, препараты бытовой химии, пестициды и гербициды в сельском хозяйстве, воздух и вода, загрязненные промышленными отходами. Считается, что в среднем аллергические заболевания охватывают около 10% населения земного шара.
Не всегда понятно, через какие конкретные механизмы реализуются в болезнь наследственная предрасположенность к аллергии и социальные факторы. Существенными являются следующие: 1) повышенная проницаемость кожных или слизистых барьеров, ведущая к поступлению в организм антигенов, которые в обычных условиях либо не поступают, либо поступление их ограничено. В формировании этого механизма значительна роль воспалительных процессов верхних дыхательных путей, воспалительных заболеваний кишечника, дисбактериоза кишечника; 2) особый характер иммунного ответа на антиген, ведущий к выработке преимущественно аллергических антител.
8.Классификация аллергических реакций
Среди многочисленных классификаций аллергических реакций, возникновение которых было связано с многообразием проявлений аллергии у человека и животных, наибольшее распространение получила классификация, предложенная Р. Куком в 1930 г., согласно которой все аллергические реакции разделяются на две большие группы: реакции немедленного и реакции замедленного типа. В основу классификации положено время появления реакции после повторного контакта с аллергеном. Реакции немедленного типа развиваются через 15- 20 мин, замедленного - через 24-48 ч. К реакциям немедленного типа относятся анафилактический шок, атопическая форма бронхиальной астмы, поллинозы, отек Квинке, аллергическая крапивница, сывороточная болезнь, феномен Овери и др. К реакциям замедленного типа относятся аллергический контактный дерматит, реакция отторжения трансплантата, поствакцинальный энцефаломиелит, тиреоидит Хашимото. Гиперчувствительность замедленного типа сопровождает туберкулез, бруцеллез, сифилис, грибковые заболевания, протозойные инфекции и др. Понятие об аллергических реакциях немедленного и замедленного типа, возникшее в клинике, не отражает всего разнообразия проявлений и механизмов развития аллергии. В настоящее время широкое распространение получила классификация, предложенная П. Джеллом и Р. Кумбсом в 1969 г. и основанная на патогенетическом принципе. Согласно этой классификации в зависимости от механизма иммунной реакции выделяют четыре основных типа аллергических реакций.
I тип, к которому относятся аллергические реакции немедленного типа, включает 2 подвида:
1) реагиновый, связанный с выработкой антител IgE-класса и лежащий в основе атопических заболеваний;
2) анафилактический, обусловленный в основном IgG4-антителами и наблюдающийся при анафилактическом шоке.
II тип - цитотоксический, связан с образованием IgG (кроме IgG4)- и IgM-антител к детерминантам, имеющимся на собственных клетках. По этому типу протекают некоторые гематологические заболевания, например аутоиммунная гемолитическая анемия, миастения и др.
III тип - иммунокомплексный, связан с образованием комплексов аллергенов и аутоаллергенов с IgG- или IgM-антителами и с повреждающим действием этих комплексов на ткани организма. По этому типу развиваются, например, сывороточная болезнь, анафилактический шок и др.
IV тип - клеточно-опосредованный (другое название - гиперчувствительность замедленного типа, ГЗТ), связан с образованием сенсибилизированных лимфоцитов (Т-эффекторов). По этому типу развиваются: аллергический контактный дерматит, реакция отторжения трансплантата и др.
Этот механизм участвует как компонент и в инфекционно-аллергических заболеваниях, таких, как туберкулез, проказа, бруцеллез, сифилис и др. При многих аллергических заболеваниях возможно одновременно обнаружить патогенетические механизмы различных типов аллергии. Например, при атопической бронхиальной астме и анафилактическом шоке участвуют механизмы I и III типов, при аутоиммунных заболеваниях - реакции II и IV типов и т. д. Однако для патогенетически обоснованной терапии всегда важно установить ведущий механизм.
9.Общий патогенез аллергических реакции
Независимо от того, к какому типу относится аллергическая реакция, в ее развитии можно выделить три стадии.
I. Стадия иммунных реакций (иммунологическая). Начинается с первого контакта организма с аллергеном и заключается в образовании в организме аллергических антител (или сенсибилизированных лимфоцитов) и их накоплении. В результате организм становится сенсибилизированным или повышенно чувствительным к специфическому аллергену. При повторном попадании в организм специфического аллергена происходит образование комплексов АГ-АТ (или АГ-сенсибилизированный лимфоцит), которые и обусловливают следующую стадию аллергической реакции.
II. Стадия биохимических реакций (патохимическая). Суть ее состоит в выделении готовых и образовании новых биологически активных веществ (медиаторов аллергии) в результате сложных биохимических процессов, запускаемых комплексами АГ-АТ или АГ-сенсибилизированным лимфоцитом.
III. Стадия клинических проявлений (патофизиологическая). Представляет ответную реакцию клеток, органов и тканей организма на образовавшиеся в предыдущей стадии медиаторы.
Аллергические реакции I типа (реагиновый тип аллергии)
В основе аллергических реакций I типа лежит выработка в организме IgE-антител, т. е. IgE-ответ - главное звено развития аллергической реакции 1 типа.
IgE-антитела значительно отличаются по своим свойствам от других антител. Прежде всего они обладают цитотропностью (цитофильностью). Считают, что присущее им свойство прикрепляться к клеткам и фиксироваться в тканях связано с приобретенными в филогенезе дополнительными 110 аминокислотами на Fc-фрагменте молекулы. Концентрация IgE-антител в сыворотке крови потому и низка, что синтезируемые в региональных лимфоузлах молекулы IgE в меньшей степени попадают в кровоток, так как в основном фиксируются в окружающих тканях. Разрушение или инактивация этого участка Fc-фрагмента нагреванием (до 56° С) приводит к потере цитотропных свойств этих антител, т. е. они термолабильны.
Фиксация антител клетками происходит при помощи рецептора, встроенного в мембрану клеток. Самой высокой способностью связывать IgE-антитела обладают рецепторы для IgE, найденные на тучных клетках и базофилах крови, поэтому эти клетки получили название клетки-мишени I порядка. На одном базофиле может фиксироваться от 3000 до 300000 молекул IgE. Рецептор для IgE обнаружен также на макрофагах, моноцитах, эозинофилах, тромбоцитах и лимфоцитах, однако их связывающая способность ниже. Эти клетки получили название клетки-мишени II порядка.
Связывание IgE на клетках - зависимый от времени процесс. Оптимальная сенсибилизация может наступить через 24-48 ч. Фиксированные антитела могут долго находиться на клетках, поэтому аллергическая реакция может быть вызвана спустя неделю и больше. Особенностью IgE-антител является также трудность их обнаружения, так как они не участвуют в серологических реакциях.
В патогенезе аллергических реакций I типа выделяют следующие стадии:
I. Стадия иммунных реакций. Как уже было сказано выше, IgE-ответ является главным звеном развития аллергической реакции I типа. Поэтому специальное рассмотрение накопленных в самое последнее время сведений о клеточных и гуморальных реакциях, участвующих в процессе синтеза IgE и регуляции IgE+ответа, необходимо для понимания механизмов развития аллергии;
Как и при других формах иммунного ответа, IgE-ответ определяется уровнем активности лимфоцитов и макрофагов.
Введение антигена (1-й сигнал) активирует макрофаги и вызывает в них секрецию факторов (интерферон, интерлейкины), стимулирующих Т-клетки, которые несут FcE-рецептор. Т-лимфоциты, активированные макрофагальным фактором, синтезируют IgE-связывающий фактор (СФ) - низкомолекулярные гликопротеины. По активности и структурным особенностям различают IgE-СФ-усиливающие (м.м. 10-15 кД) и тормозящие IgE-ответ (м.м. 30-50 кД). Соотношение факторов, модулирующих процесс гликолизирования, определяет характер биологической активности синтезируемых IgE-СФ, которые избирательно усиливают либо угнетают IgE-ответ.
Клетками-мишенями для IgE-СФ служат В-клетки, несущие на своей мембране молекулы секреторного IgE. Связывание с мембранным IgE молекул IgE-УСФ запускает процесс синтеза и секреции в В-лимфоцитах, тогда как IgE-ТСФ способствует потере связанных с мембраной молекул IgE. Эти факторы, наряду с интерлейкинами (и особенно ИЛ-4, которому принадлежит особая роль в синтезе IgE-AT), находятся под пристальным вниманием исследователей. Угнетение или усиление IgE-ответа зависит также от соотношения активности Т-хелперной и Т-супрессорной систем. Причем Т-супрессоры синтеза IgE занимают центральное место в регуляции синтеза IgE. Эта субпопуляция не принимает участия в регуляции синтеза антител других классов. При атопии отмечается недостаточность функций Т-супрессоров IgE-ответа, т. е. синтез IgE растормаживается. Различия между IgE-ответом и другими видами иммунных реакций объясняются большой ролью изотипспецифических механизмов в регуляции синтеза IgE. При совместном действии всех указанных механизмов происходит синтез антител класса Е.
Итак, первичное попадание аллергена в организм запускает через кооперацию макрофагов, Т- и В-лимфоцитов сложные и до конца не ясные механизмы синтеза IgE-антител, фиксирующихся на клетках-мишенях. Повторная встреча организма с этим аллергеном приводит к образованию комплекса АГ-АТ, причем через фиксированные молекулы IgE и сам комплекс тоже окажется фиксированным на клетках. Если аллерген оказался связанным хотя бы с двумя соседними молекулами IgE , то этого оказывается достаточным для нарушения структуры мембран клеток-мишеней и их активации. Начинается II стадия аллергической реакции.
II. Стадия биохимических реакций. В этой стадии основная роль принадлежит тучным клеткам и базофилам, т. е. клеткам-мишеням I порядка. Тучные клетки - это клетки соединительной ткани. Они обнаруживаются преимущественно в коже, дыхательных путях, в подслизистой оболочке сосудов, по ходу кровеносных сосудов и нервных волокон. Тучные клетки имеют большие размеры (10-30 мкм в диаметре) и содержат гранулы диаметром 0,2- 0,5 мкм, окруженные перигранулярной мембраной. Базофилы выявляются только в крови. Гранулы тучных клеток и базофилов содержат медиаторы: гистамин, гепарин, фактор хемотаксиса эозинофилов аллергии (ФХЭ-А), фактор хемотаксиса нейтрофилов аллергии (ФХН-А), IgE .
Образование комплекса АГ-АТ на поверхности тучной клетки (или базофила) приводит к стягиванию белков-рецепторов для IgE, клетка активируется и секретирует медиаторы. Максимальная активация клетки достигается связыванием нескольких сотен и даже тысяч рецепторов.
В результате присоединения аллергена рецепторы приобретают энзиматическую активность и запускается каскад биохимических реакций. Увеличивается проницаемость клеточной мембраны для ионов кальция. Последние стимулируют эндомембранную проэстеразу, которая переходит в эстеразу и переводит в активную форму фосфолипазу Д, гидролизующую мембранные фосфолипиды. Гидролиз фосфолипидов способствует разрыхлению и истончению мембраны, что облегчает слияние цитоплазматической мембраны с перигранулярной, и разрыву цитоплазматической мембраны с выходом содержимого гранул (и, следовательно, медиаторов) наружу, происходит экзоцитоз гранул. При этом важную роль играют процессы, связанные с энергетическим обменом, особенно гликолиз. Энергетический запас имеет значение как для синтеза медиаторов, так и для выхода медиаторов через внутриклеточную транспортную систему.
По мере развития процесса гранулы перемещаются на клеточную поверхность. Для проявления внутриклеточной подвижности определенное значение имеют микроканальцы и микрофиламенты. Энергия и ионы кальция необходимы для перехода микроканальцев в функционирующую форму, в то время как повышение уровня циклического аденозинмонофосфата (цАМФ) или снижение циклического гуанозинмонофосфата (цГМФ) дает обратный эффект. Энергия требуется также для освобождения гистамина из рыхлой связи с гепарином под влиянием обмена на ионы Na+, К+, Са2+ внеклеточной жидкости. По окончании реакции АГ-АТ клетка остается жизнеспособной.
Кроме выхода медиаторов, уже имеющихся в гранулах тучных клеток и базофилов, в этих клетках происходит быстрый синтез новых медиаторов. Источником их являются продукты распада липидов: фактор активации тромбоцитов (ФАТ), простагландины, тромбоксаны и лейкотриены (последние объединяются под названием медленно реагирующей субстанции анафилаксии - МРС-А).
Следует отметить, что дегрануляция тучных клеток и базофилов может происходить и под влиянием неиммунологических активаторов, т. е. активирующих клетки не через IgE-рецепторы. Это - АКТГ, вещество Р, соматостатин, нейротензин, химотрипсин, АТФ. Таким свойством обладают продукты активации клеток, вторично вовлекаемых в аллергическую реакцию, - катионный белок нейтрофилов, пероксидаза, свободные радикалы и др. Некоторые медикаменты также могут активировать тучные клетки и базофилы, например морфин, кодеин, рентгеноконтрастные вещества.
В результате выделения из тучных клеток и базофилов факторов хемотаксиса нейтрофилов и эозинофилов последние скапливаются вокруг клеток-мишеней I порядка и происходит их кооперация. Нейтрофилы и эозинофилы активируются и тоже высвобождают биологически активные вещества и ферменты. Часть из них является также медиаторами повреждения (например, ФАТ, лейкотриены и др.), а часть- ферментами, разрушающими определенные медиаторы повреждения (указаны пунктирной линией). Так, арилсульфатазы из эозинофилов вызывают разрушение МРС-А, гистаминаза - разрушение гистамина. Образующиеся простагландины группы Е снижают высвобождение медиаторов из тучных клеток и базофилов.
III. Стадия клинических проявлений. В результате действия медиаторов развивается повышение проницаемости микроциркуляторного русла, что сопровождается выходом жидкости из сосудов с развитием отека и серозного воспаления. При локализации процессов на слизистых оболочках возникает гиперсекреция. В органах дыхания развивается бронхоспазм, который наряду с отеком стенки бронхиол и гиперсекрецией мокроты обусловливает резкое затруднение дыхания. Все эти эффекты клинически проявляются в виде приступов бронхиальной астмы, ринита, конъюнктивита, крапивницы (волдырь + + гиперемия), кожного зуда, местного отека, диареи и др. В связи с тем, что одним из медиаторов является ФХЭ-А, очень часто немедленный тип аллергии сопровождается увеличением количества эозинофилов в крови, мокроте, серозном экссудате.
В развитии аллергических реакций I типа выделяют раннюю и позднюю стадии. Ранняя стадия появляется в течение первых 10-20 мин в виде характерных вздутий (пузырей). В ней преобладает влияние первичных медиаторов.
Поздняя стадия аллергической реакции наблюдается через 2-6 ч после контакта с аллергеном и в основном связана с действием вторичных медиаторов. Она развивается к моменту исчезновения эритемы и волдыря, характеризуется отеком, краснотой, уплотнением кожи, которое рассасывается в течение 24-48 ч с последующим образованием петехий. Морфологически поздняя стадия характеризуется наличием дегранулированных тучных клеток, периваскулярной инфильтрации эозинофилами, нейтрофилами, лимфоцитами.
Окончанию стадии клинических проявлений способствуют следующие обстоятельства:
1) в ходе III стадии удаляется повреждающее начало - аллерген. Антитела и комплемент обеспечивают инактивацию и удаление аллергена. Активируется цитотоксическое действие макрофагов, стимулируется выделение энзимов, супероксидного радикала и других медиаторов, что очень важно для защиты против гельминтов;
2) благодаря в первую очередь ферментам эозинофилов устраняются повреждающие медиаторы аллергической реакции.
Аллергические реакции II типа (цитотоксический тип аллергии)
Цитотоксическим его называют потому, что образовавшиеся к антигенам клеток антитела соединяются с клетками и вызывают их повреждение и даже лизис (цитолитическое действие).
В создание учения о цитотоксинах значительный вклад внесли выдающиеся русские ученые И. И. Мечников, Е. С. Лондон, А. А. Богомолец, Г. П. Сахаров. Свою первую работу о так называемых клеточных ядах (цитотоксинах) И. И. Мечников опубликовал еще в 1901 г.
Причиной цитотоксических реакций является возникновение в организме клеток с измененными компонентами клеточной мембраны. Большую роль в процессе приобретения клетками аутоаллергенных свойств играет действие на клетки различных химических веществ, чаще лекарств, попадающих в организм. Они могут изменять антигенную структуру клеточных мембран за счет: конформационных изменений присущих клетке антигенов, повреждения мембраны и появления новых антигенов; образования комплексных аллергенов с мембраной, в которых химическое вещество играет роль гаптена (например, 2-метилдофа-гипотензивный препарат). По одному из указанных механизмов может развиться аутоиммунная гемолитическая анемия.
Повреждающее действие на клетку могут оказывать лизосомальные ферменты фагоцитирующих клеток, бактериальные энзимы, вирусы. Поэтому многие паразитарные, бактериальные и вирусные инфекционные заболевания сопровождаются образованием аутоантител к различным клеткам тканей и развитием гемолитической анемии, тромбоцитопении и др.
Патогенез цитотоксических аллергических реакций включает следующие стадии:
I. Иммунологическую стадию. В ответ на появление аутоаллергенов начинается выработка аутоантител IgG- и IgM-классов. Они обладают способностью фиксировать комплемент и вызывать его активацию. Часть антител обладает опсонизирующими свойствами (усиливающими фагоцитоз) и обычно не фиксирует комплемент. В ряде случаев после соединения с клеткой происходят конформационные изменения в области Fc-фрагмента антитела, к которому затем могут присоединяться К-клетки (киллеры). На этом механизме остановимся подробнее.
Общее свойство киллерных клеток - это наличие у них мембранного рецептора для Fc-фрагмента IgG-AT и способность к цитотоксическому действию (так называемая антителозависимая клеточная цитотоксичность), т. е. они способны к уничтожению только тех измененных клеток, которые покрыты антителами. К таким эффекторным клеткам относят: гранулоциты, макрофаги, тромбоциты, клетки из лимфоидной ткани без характерных маркеров Т- и В-клеток и называемые К-клетками. Механизм лизиса у всех этих клеток одинаков.
Антитела (IgG) участвуют в К-клеточном лизисе Fab- и Fc-фрагментами. Считается, что антитела служат “мостиком” между эффекторной клеткой и клеткой-мишенью.
В результате всех этих реакций во II патохимическую стадию появляются медиаторы, иные, чем в реакциях реагинового типа.
1. Основным медиатором комплемент-опосредованной цитотоксичности являются активированные по классическому пути (через комплекс АГ-АТ) компоненты комплемента: С4в2а3в; За,С5а; С567; С5678; С56789. В результате в мембране клетки образуется гидрофильный канал, через который начинают проходить вода и соли.
2. Во время поглощения опсонизированных клеток фагоциты выделяют ряд лизосомальных ферментов, которые могут играть роль медиаторов повреждения.
3. В ходе реализации антителозависимой клеточной цитотоксичности также принимает участие секретируемый гранулоцитами крови супероксидный анион-радикал.
III. Патофизиологическую стадию. Конечным звеном комплемент- и антителозависимой цитотоксичности являются повреждение и гибель клеток с последующим удалением их путем фагоцитоза.
О метаболических процессах, необходимых для лизиса, известно очень мало, но установлено, что эффекторные клетки должны быть живыми. Клетка-мишень является совершенно пассивным партнером в акте лизиса, и ее роль заключается лишь в экспозиции антигена. После контакта с эффекторной клеткой клетка-мишень гибнет, эффекторная клетка выживает и может взаимодействовать с другими мишенями. Гибель клетки-мишени обусловлена тем, что в поверхности мембран клетки образуются цилиндрические поры диаметром от 5 до 16 нм. С появлением таких трансмембранных каналов возникает осмотический ток (вход в клетку воды) и клетка гибнет.
Цитотоксический тип играет важную роль в системе иммунитета, когда в качестве антигена выступают чужеродные для данного организма клетки, например, микробы, простейшие, опухолевые или отработавшие свой срок клетки организма. Однако в условиях, когда нормальные клетки организма под влиянием воздействия приобретают аутоантигенность, этот защитный механизм становится патогенным и реакция из иммунной переходит в аллергическую, приводя к повреждению и разрушению клеток тканей.
В клинике цитотоксический тип реакции может быть одним из проявлений лекарственной аллергии в виде лейкопении, тромбоцитопении, гемолитической анемии и др. Этот же механизм включается и при попадании в организм гомологичных антигенов, например, при переливании крови в виде аллергических гемотрансфузионных реакций (на многократное переливание крови), при гемолитической болезни новорожденных.
Действие цитотоксических антител не всегда заканчивается повреждением клеток. При этом имеет важное значение их количество. При малом количестве антител вместо повреждения можно получить феномен стимуляции. Например, с длительным стимулирующим действием естественно образовавшихся аутоантител к щитовидной железе связывают некоторые формы тиреотоксикоза.
Аллергические реакции III типа (реакции иммунных комплексов)
Повреждение при этом типе аллергической реакции вызывается иммунными комплексами АГ-АТ. Вследствие постоянного контакта человека с какими-либо антигенами происходят иммунные реакции с образованием комплексов АГ-АТ, так как в его организме постоянно происходят реакции с образованием комплекса АГ-АТ. Эти реакции являются выражением защитной функции иммунитета и не сопровождаются повреждением. Однако при определенных условиях комплекс АГ-АТ может вызывать повреждение и развитие заболевания. Концепция о том, что иммунные комплексы (ИК) могут играть роль в патологии, была высказана еще в 1905 г. Пирке и Шиком. С тех пор группа заболеваний, в развитии которых основная роль принадлежит ИК, получила название болезни иммунных комплексов.
Причиной иммунокомплексных заболеваний являются экзо- и эндоантигены и аллергены. Среди них: лекарственные препараты (пенициллин, сульфаниламиды и др.), антитоксические сыворотки, гомологичные гамма-глобулины, пищевые продукты (молоко, яичные белки и др.), ингаляционные аллергены (домашняя пыль, грибы и др.), бактериальные и вирусные антигены, ДНК, антигены клеточных мембран и др. Важно, что антиген имеет растворимую форму.
В патогенезе реакций иммунных комплексов различаются следующие стадии:
I. Иммунологическая стадия. В ответ на появление аллергена или антигена начинается синтез антител, преимущественно IgG- и IgM-классов. Эти антитела называют также преципитирующими за их способность образовывать преципитат при соединении с соответствующими антигенами.
При соединении AT с АГ образуются ИК. Они могут образовываться местно, в тканях либо в кровотоке, что в значительной мере определяется путями поступления или местом образования антигенов (аллергенов). Патогенное значение ИК определяется их функциональными свойствами и локализацией вызываемых ими реакций.
От количества и соотношения молекул АГ и AT зависят величина комплекса и структура решетки. Так, крупнорешетчатые комплексы, образованные в избытке AT, быстро удаляются из кровотока ретикулоэндотелиальной системой. Преципитированные, нерастворимые ИК, образованные в эквивалентном соотношении, обычно легко удаляются при помощи фагоцитоза и не вызывают повреждения за исключением случаев их высокой концентрации или образования в мембранах с фильтрующей функцией (в гломерулах, сосудистой оболочке глазного яблока). Небольшие комплексы, образованные в большом избытке антигена, циркулируют длительное время, но обладают слабой повреждающей активностью. Повреждающее действие обычно оказывают комплексы растворимые, образованные в небольшом избытке антигена, м.м. 900000- 1000000 Д. Они плохо фагоцитируются и долго находятся в организме.

Подобные документы

  • Методы определения аффинности антител. Способы расчета констант комплексообразования реакции антиген—антитело, ее кинетические закономерности. Сущность метода равновесного диализа. Экспериментальные методы и определения кинетических констант реакции.

    контрольная работа [744,7 K], добавлен 19.09.2009

  • Молекула антитела с двумя идентичными антиген-связывающими участками. Функциональные свойства, строение антител и их многообразие. Проблема получения индивидуальных антител. Роль специфических последовательностей ДНК. Механизмы экспрессии генов антител.

    курсовая работа [174,8 K], добавлен 25.05.2009

  • Описание химического состава плодов и овощей. Роль обмена веществ и энергии в жизни живых существ. Биологическое значение цикла Кребса. Микро- и макроэволюция как две стороны единого эволюционного процесса. Определение понятий "антиген", "антитело".

    контрольная работа [24,2 K], добавлен 13.10.2010

  • Характеристика и формы антигенов, их специфические свойства. Антигенная активность и иммунологическая толерантность. Синтетические полипептиды как аналоги белковых антигенов. Оценка информационной "емкости" иммунной системы в филогенезе и онтогенезе.

    реферат [3,8 M], добавлен 06.09.2009

  • Специфическое взаимодействие антитела с антигенами, роль силы гидрофобного взаимодействия. Степень соответствия между антигенной детерминантой и антигенсвязывающей областью активного центра антитела. Взаимодействие антигена с субпопуляцией антител.

    контрольная работа [254,3 K], добавлен 19.09.2009

  • Особенности использования антител иммунной системой для идентификации и нейтрализации чужеродных объектов. Анализ антигенсвязывающей и эффекторной функций антител. Обзор строения и структуры генов иммуноглобулинов. Процесс возникновения точечных мутаций.

    реферат [829,2 K], добавлен 24.02.2013

  • Двойная радиальная иммунодиффузия по Ухтерлони: принци, проведение, определение титра, применение. Простая линейная иммунодиффузия по Удену. Простая радиальная иммунодиффузия по Манчини. Нефелометрия. Иммунодот и иммуноспот. Области применения методов.

    курсовая работа [21,3 K], добавлен 21.12.2007

  • Антигены как полимеры органической природы, генетически чужеродные для макроорганизма, при попадании в последний вызывающие иммунные реакции, направленные на его устранение. Их типы и характерные свойства. Анализ динамики поступления и выведения.

    презентация [2,3 M], добавлен 13.09.2015

  • Исследование иммунной системы человека. Изучение особенностей формирования неспецифического иммунитета. Анализ естественной, врожденной и приобретенной форм иммунитета. Описания функций клеток памяти и эффекторов, системы комплемента, структуры антигена.

    презентация [4,0 M], добавлен 13.12.2012

  • Степень избирательности связи "антиген – антитело" и перспектива создания аффинных хроматографических колонок для очистки белков. Понятие аффинных иммуносорбентов. Поиск антигена после электрофореза смеси белков. Радиоактивные изотопы в биологии.

    реферат [82,0 K], добавлен 13.12.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.