Акустические системы связи кузнечиковых (orthoptera, tettigonioidea)

Характеристика коммуникационных сигналов кузнечиковых фауны России и сопредельных стран. Исследование специфики работы нервно-мышечного аппарата звуковых органов и морфологических особенностей звукоизлучающих структур кузнечиковых разных семейств.

Рубрика Биология и естествознание
Вид автореферат
Язык русский
Дата добавления 26.12.2017
Размер файла 71,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Московский государственный университет имени М.В. Ломоносова

На правах рукописи

Автореферат

диссертации на соискание ученой степени доктора биологических наук

Акустические системы связи кузнечиковых (orthoptera, tettigonioidea)

03.00.09 - энтомология

Корсуновская Ольга Сергеевна

Москва-2009

Работа выполнена на кафедре энтомологии биологического факультета Московского государственного университета имени М.В.Ломоносова

Научный консультант: доктор биологических наук, профессор Жантиев Рустем Девлетович

Официальные оппоненты:

доктор биологических наук, профессор Никольский Александр Александрович (Российский университет дружбы народов)

доктор биологических наук Панов Алексей Алексеевич (Институт проблем экологии и эволюции имени А.Н.Северцова РАН)

доктор биологических наук, профессор Сергеев Михаил Георгиевич (Новосибирский государственный университет)

Ведущая организация: Зоологический институт РАН

Защита состоится 2009 г. в 15.30 на заседании диссертационного совета Д 501.001.20 при Московском государственном университете имени М.В. Ломоносова по адресу: 119991, Москва, ГСП-1, Ленинские горы, МГУ имени М.В. Ломоносова, биологический факультет, факс(495)939-43-09

С диссертацией можно ознакомиться в библиотеке биологического факультета МГУ имени М.В. Ломоносова.

Автореферат разослан 2009 г.

Ученый секретарь диссертационного совета, кандидат биологических наук Л.И. Барсова.

Общая характеристика работы

Актуальность проблемы. В течение последних десятилетий звуковая коммуникация насекомых является предметом интенсивных акустических, этологических и электрофизиологических исследований. Неослабевающий интерес к акустическим системам связи этих животных объясняется как желанием понять наиболее сложные формы их жизнедеятельности, так и необходимостью управлять поведением и контролировать численность хозяйственно важных видов.

Как известно, любая система связи включает источник информации, излучатель, канал связи, приемник и адресат. В акустических системах связи насекомых их функции соответственно выполняют звуковые нервные центры, звуковые органы, среда, в которой распространяется звук, слуховая система и отделы ЦНС, использующие акустическую информацию для управления поведением.

Звуковая сигнализация широко распространена в классе насекомых, с ее помощью регулируются внутри- и межпопуляционные отношения, в частности, обеспечивается встреча особей противоположного пола и репродуктивная изоляция близких видов. Важной особенностью насекомых является то, что их слуховая система состоит из меньшего числа элементов, чем у позвоночных животных, что, однако, не влияет на ее эффективность: насекомые успешно опознают биологически важные сигналы и определяют положение источника звука в пространстве. Все это делает насекомых чрезвычайно удобными объектами для изучения акуcтической коммуникации.

Результаты биоакустических исследований, суммированные в отечественных монографиях (Жантиев, 1981; Попов, 1985) и ряде зарубежных обзоров (см., например, Heller, 1988; Ragge, Reynolds, 1998; Robinson, Hall, 2002; Hennig et al., 2004), позволили значительно продвинуться в понимании механизмов передачи, приема и обработки информации в акустических системах связи насекомых. Однако большинство таких исследований выполняется на немногих модельных видах преимущественно прямокрылых. Это обстоятельство накладывает существенные ограничения на интерпретацию получаемых данных, т.к. неизвестно, насколько широко распространены те явления и закономерности, которые удается открыть при изучении этих случайно выбранных видов насекомых.

Для устранения затруднений подобного рода необходимо проведение комплексных исследований, затрагивающих все компоненты акустических систем связи у представителей ряда таксонов, причем желательно, чтобы исследуемые объекты были связаны родственными отношениями и занимали разные экологические ниши, т.к. только в этом случае можно достоверно судить об адаптивности отдельных звеньев коммуникационной системы и изменениях, претерпеваемых ими в процессе эволюции таксона.

В качестве объекта исследований мы выбрали кузнечиковых (Tettigonioidea). Это надсемейство длинноусых прямокрылых включает 11 семейств, объединяющих роды, которые встречаются во всех зоогеографических областях и занимают разные экологические ниши. Большинство кузнечиковых обладает совершенными слуховыми органами, позволяющими предполагать высокий уровень обработки акустической информации. Кроме того, эти насекомые, как правило, активны в ночное время, что исключает или ограничивает использование при коммуникации зрения.

Цель нашей работы заключалась в комплексном сравнительном исследовании акустических систем связи кузнечиковых для выяснения направления их специализации и путей эволюции.

Основным препятствием в сравнительном исследовании этих систем является неравномерная изученность их отдельных звеньев у представителей разных таксонов. Для восполнения этих пробелов были поставлены следующие задачи:

С помощью современной акустической аппаратуры зарегистрировать и проанализировать коммуникационные сигналы кузнечиковых фауны России и сопредельных стран. Провести сравнительный анализ разнообразия звуковых сигналов кузнечиковых мировой фауны.

Исследовать работу нервно-мышечного аппарата звуковых органов и морфологические особенности звукоизлучающих структур кузнечиковых разных семейств.

Получить данные о физиологических характеристиках слуховых и виброчувствительных органов и выяснить функциональную специализацию отдельных слуховых и виброчувствительных рецепторов. Исследовать влияние изменения температуры на временные и частотные характеристики рецепторов тимпанального органа.

Изучить функциональные свойства некоторых центральных слуховых нейронов; получить данные об их строении в грудных ганглиях.

Исследовать механизмы распознавания коммуникационных звуковых сигналов:

выявить информативные элементы в акустических сигналах разного типа у листовых кузнечиков (Phaneropteridae); систематизировать известные данные об информативных параметрах сигналов кузнечиков из других семейств;

исследовать реакции самок кузнечиковых, издающих длительные ритмические призывные сигналы (трели), на модели конспецифических звуков с изменяемыми параметрами;

получить данные о работе слуховой системы при восприятии коммуникационных сигналов и их моделей;

исследовать свойства спонтанно активных нейронов в ЦНС кузнечиковых, в том числе при изменении температуры. Выявить изменения их активности при воздействии кон- и гетероспецифических коммуникационных сигналов и их моделей (в том числе при изменении температуры);

разработать представления о функционировании нейронных сетей в процессе распознавания конспецифического призывного сигнала.

6. Выявить эволюционные тенденции в развитии акустических систем связи.

Научная новизна. С помощью современной аппаратуры проведен сравнительный анализ сигналов 109 видов (для 64 видов - впервые). В результате исследования мышечной активности установлено, что при издавании внутривидовых сигналов или разных компонентов призывного сигнала происходит перестройка работы нервно-мышечного аппарата звуковых органов, приводящая к изменению не только ритмической структуры, но и амплитудно-частотных спектров излучаемого звука. Описаны и проанализированы новые типы сигналов - прекопуляционные и протеста у листовых кузнечиков (Phaneropteridae) и территориальные - у Decticinae (Tettigoniidae). Для 18 видов из 4 семейств получены частотно-пороговые характеристики тимпанальных органов. Регистрация активности одиночных рецепторов в подколенном и тимпанальном органах позволила изучить их функциональную специализацию. Показано, что рецепторы обоих органов реагируют на низкочастотные вибрации, но различаются по чувствительности и зонам оптимума. Установлено, что рецепторы промежуточного органа работают в диапазоне 1-15 кГц, их оптимальные частоты составляют 5-7 кГц. Впервые получены данные, свидетельствующие о тонотопической организации слухового гребня: оптимальные частоты сенсилл минимальны в проксимальной зоне этого органа и возрастают к его дистальному концу. Выявлено подавление импульсации слуховых рецепторов при некоторых значениях стимула. Показано, что нагревание тимпанального органа приводит к повышению чувствительности рецепторов, снижению амплитуды импульсов, сокращению их длительности, повышению чувствительности, увеличению мгновенной частоты разряда и числа импульсов в ответах, а также сокращению латентных периодов реакции. У всех изученных клеток оптимальная частота при этом не изменялась, хотя диапазон воспринимаемых частот расширялся. Получены данные о роли трахейной системы в восприятии звука у кузнечиков из подсем. Zichyinae. Проанализированы возможные пути эволюции слуховых органов в подотряде Ensifera.

Исследованы функциональные характеристики центральных слуховых нейронов кузнечиков 4 семейств, некоторые клетки идентифицированы морфологически. Показано, что во всех исследованных семействах имеются широкополосные, высокочастотные и низкочастотные элементы. У листовых кузнечиков выявлены и изучены нейроны с реакциями on-off- и off-типа, а также «детекторы щелчков». Проанализированы процессы, протекающие в I грудном ганглии при обработке видоспецифической акустической информации у нескольких видов кузнечиковых. С помощью перерезок нервной цепочки на разных уровнях показано, что у листовых кузнечиков III грудной ганглий не участвует в опознании конспецифического сигнала.

Впервые получены электрофизиологические данные, свидетельствующие о том, что в ЦНС имеются ритмически активные нейроны, не отвечающие непосредственно на звук, но перестраивающие под его влиянием свою импульсацию. Выявлена селективность их реакций на кон- и гетероспецифические сигналы: первые вызывали ослабление или усиление импульсации; стабилизацию или дестабилизацию ритма; закономерное увеличение или уменьшение межимпульсных интервалов; фазовые перестройки, приводящие к синхронизации импульсов со звуковыми посылками (пульсами). При стимуляции гетероспецифическими сигналами такие изменения обычно не наблюдались, либо они были выражены слабее или имели противоположную направленность. Предполагается, что ритмически активные нейроны, селективно реагирующие на кон- и гектероспецифические звуки, имеют непосредственное отношение к нейронным сетям, обеспечивающим распознавание звуковых сигналов

Эксперименты по изучению влияния изменений температуры на ритмическую спонтанную активность интернейронов показали, что подъем температуры может вызывать обратимые стабилизацию и дестабилизацию ритма, возрастание частоты импульсов и некоторые другие перестройки ритма. Небольшое количество нейронов не реагировало на изменения температуры. Показано, что при изменении температуры в ЦНС имеют место сложные комплексные перестройки в работе нейронных сетей, очевидно, позволяющие сохранить оптимальный уровень обменных процессов и адекватное поведение насекомого.

В результате этологических исследований листовых кузнечиков получены данные, свидетельствующие о том, что видоспецифическая информация кодируется не только длительностью и несущей частотой сигнала (пульса) (Isophya, Leptophyes), но и его внутренней структурой (Phaneroptera, Tylopsis). У нескольких видов Isophya и Euconocercus iris обнаружена функциональная специализация отдельных компонентов призывных сигналов.

У видов с ритмическими призывными сигналами периодические фазовые изменения ритма модельного сигнала затрудняют его опознание. Предполагается, что у исследованных видов процесс распознавания стимулируется любым звуком и осуществляется в течение приблизительно 150 мс, дополнительное время требуется для запуска фонотаксиса. Накопленные к настоящему времени данные о распознавании КС у разных видов кузнечиковых и сверчков позволяют считать, что наиболее адекватно этот процесс описывает резонансная гипотеза.

На основании сравнительного анализа выделено 3 типа акустических систем связи кузнечиковых и выявлены факторы, приводящие к формированию у Tettigonioidea той или иной акустической системы.

Практическое значение. Результаты работы могут быть использованы для разработки методов управления поведением кузнечиковых, имеющих хозяйственное значение, а также для решения таксономических задач. Материалы диссертации включены в учебное пособие «Руководство по физиологии органов чувств насекомых» (изд-во МГУ, 1977, 1986) и руководство «Comprehensive Insect physiology, biochemistry and pharmacology» (Pergamon Press, 1984), «Comparative physiology of sensory systems» (Cambridge, 1984); “Sensors and sensing in biology and engineering” (Springer, 2003) и используются в двух лекционных курсах на биологическом факультете МГУ.

Основные научные положения, выносимые на защиту

1. У кузнечиковых существует два типа акустической сигнализации: «быстрый» и «медленный», различающиеся по частоте и ритму повторения звуковых посылок, информативным параметрам сигнала, участию самок в сигнализации, помехоустойчивости сигнала, энергетическим затратам при стридуляции и демаскирующему эффекту издаваемых звуков.

2. Факторами эволюции временных параметров звуков Tettigonioidea, по-видимому, являются необходимость повышения помехоустойчивости сигнала в акустической среде и влияние хищников, приводящее к снижению акустической активности насекомых и возникновению апериодических и(или) очень коротких сигналов. Разнообразие частотных характеристик звуковых сигналов определяется физическими свойствами звукоизлучающих и звуковоспринимающих систем. Эволюция сигнала направлена на выработку спектральных характеристик, обеспечивающих его распространение с минимальными потерями и искажениями в канале связи.

3. Основную роль при опознании конспецифических звуков играют их амплитудно-временные параметры: у видов с ритмическими сигналами - преимущественно частота повторения пульсов или серий, у видов с апериодическими сигналами - длительность пульса, его внутренняя структура, длительность задержки звукового ответа самки. Частотные параметры используются при опознании конспецифических сигналов преимущественно при низкой интенсивности звука.

4. Для тимпанального органа характерна тонотопическая организация слухового гребня: повышение оптимальных частот хордотональных сенсилл по мере уменьшения их размеров от проксимального к дистальному концу. Рецепторы промежуточного органа реагируют на низкочастотные высокоамплитудные звуки.

5. Для слуховых рецепторов некоторых кузнечиковых характерно периферическое подавление импульсации, аналогичное латеральному торможению рецепторов других сенсорных систем, что способствует контрастированию признаков воспринимаемого стимула и повышению соотношения сигнал/шум.

6. Все рецепторы тимпанального органа воспринимают как звуки, так и низкочастотные вибрации; от сенсилл специализированного виброчувствительного подколенного органа они отличаются оптимальными частотами и порогами реакции.

7. Механизмы обработки акустической информации в центральных отделах слуховой системы у всех Tettigonioidea в целом сходны, но ведущую роль в процессе распознавания конспецифических звуков у разных видов играют разные элементы в зависимости от того, какие параметры сигнала являются информативными. У некоторых листовых кузнечиков в I грудном ганглии происходит дискриминация внутривидовых сигналов. Нейроны III грудного ганглия не участвуют в распознавании звуковых сигналов.

8. Звуковые сигналы помимо центральных слуховых нейронов влияют также на интернейроны других модальностей, в частности на спонтанно активные нейроны. Последние реагируют на ритмические звуковые сигналы изменением уровня активности и(или) фазовыми перестройками и изменением ритма разрядов. Многим клеткам свойственна селективность реакций при предъявлении кон- и гетероспецифических сигналов.

9. Опознание конспецифического сигнала, по-видимому, осуществляется при фазовой подстройке эндогенного эталонного ритма к экзогенному ритму воспринимаемого сигнала (у видов с ритмическими сигналами), либо при совпадении длительностей эталонного разряда и ответной импульсации, отражающей длительность конспецифического сигнала (у видов с апериодическими сигналами).

10. У кузнечиковых имеется 3 типа акустических систем связи, различающиеся по числу и характеру звуковых сигналов, принципам кодирования видоспецифической информации, механизмам обработки акустической информации в слуховой системе и некоторым другим признакам.

11. Акустические системы связи эволюционируют как единое целое, но темпы эволюции их отдельных компонентов различны. В развитии акустических систем связи кузнечиковых разных таксонов прослеживаются параллелизмы и конвергенции, однако комплексный анализ этих систем позволяет, опираясь на более консервативные элементы, находить исходный тип акустической системы и определять причины адаптивных перестроек.

Апробация работы. Материалы диссертации представлены на 3-м Всесоюзном совещании (1983) и 4-й Всероссийской конференции (2007) по поведению животных, съездах ВЭО (РЭО) (1998, 2002, 2004, 2007), на 24-25 Нейробиологических конференциях в Геттингене (1996-1997), международном симпозиуме "Коммуникация насекомых. Современные методы защиты растений" (Харьков, 1994), на международных конференциях «Простые нервные системы» (1997, 2003, 2007) на Советско-Германском симпозиуме "Sensory system and communication in Arthropods» (Ленинград, 1989), на 9-й Международной конференции «Insect sound and vibration” (1994, Сеггау, Австрия), на симпозиуме по международной программе «Fauna Europaea» (2002, Будапешт), на конференции «Современные проблемы биологической эволюции» (2007, Москва).

Публикации. По теме диссертации опубликовано 46 работ (из них 18 - в журналах из списка ВАК).

Структура и объем работы. Работа состоит из введения, 8 глав, заключения, выводов и приложений. Диссертация изложена на 355 с., включает 160 рисунков. Список литературы содержит 258 источников.

Материал и методы

При выполнении работы использовали 109 видов кузнечиков, относящихся к 5 семействам: Tettigoniidae, Conocephalidae, Phaneropteridae, Mecopodidae и Bradyporidae (использована система надсемейства, предложенная Кеваном (Kevan, 1982).

Запись сигналов на магнитную ленту производили с помощью микрофонов 4135 фирмы Bruel and Kjaer или MK 301 фирмы RFT (0,01-100 кГц) и усовершенствованного магнитофона «Юпитер-202 Стерео» (0,06-70 кГц). Временные характеристики звуков регистрировали на фотопленке с помощью фоторегистратора ФОР-2 с экрана осциллографа или звуки оцифровывали с помощью АЦП L-305 и программы «Осциллограф» фирмы L-card и обрабатывали в дальнейшем с помощью программ Turbolab или Cool Edit Pro. Частотный анализ проводили с помощью указанных программ или анализатора спектра С4-34. Акустическое поведение изучали в естественных условиях и в лаборатории, предъявляя насекомым записанные на магнитную ленту конспецифические сигналы или их цифровые записи, а также их модели с изменяемыми параметрами. Исследование строения звукового аппарата проводили с помощью сканирующего электронного микроскопа S405A фирмы Hitachi. Мышечную активность регистрировали в крыловых мышцах прямого действия, вживляя электроды в метэпистерн или метэпимер и один из тергитов брюшка. Импульсацию рецепторов и центральных слуховых нейронов исследовали с помощью стальных крючковидных электродов или стеклянных микроэлектродов, заполненных 1,5 моль раствором NaCl, CoCl2 или Lucifer yellow в LiCl (сопротивление кончика 15-40 мОм). После окончания электрофизиологического опыта в течение 10--40 мин. осуществляли аппликацию красителя в клетку, пропуская через электрод положительный или отрицательный ток 4--8 нА.

Установка для регистрации биопотенциалов состояла из катодного повторителя и усилителя, сконструированных в лаборатории, осциллографов С1-16, С1-68, магнитофона и компьютера. Для автоматической обработки данных электрофизиологических опытов использовали анализатор импульсов АИ-1024 и компьютерную программу MiniAnalysis. Стимулирующая аппаратура состояла из звукового генератора, электронного ключа, излучателей фирм Gruendig (ФРГ) и Super Tweeter Radio Shaek (Южная Корея), громкоговорителя 4ГД-28, вибратора, изготовленного в лаборатории и затем прокалиброванного на каф. акустики МГУ им. М.В.Ломоносова с помощью оптоэлектронного устройства и виброизмерительного стола 11073 фирмы Bruel and Kjaer, либо виброустановки АЕ 101 фирмы RFT. При исследовании реакций на коммуникационные звуковые сигналы на расстоянии 0.2--2 м от препарата в небольших садках помещали поющего самца и отвечающую ему самку. Все электрофизиологические и часть поведенческих опытов проводили в звукозаглушенной камере при контролируемой температуре. Результаты экспериментов обрабатывали статистически с помощью пакетов программ Statistica, Origin и Statgraphics.

В настоящей работе для описания ритмической структуры звуковых сигналов кузнечиковых используется терминология, предложенная Жантиевым (1981): пульс - элементарная звуковая посылка, возникающая при смещении подвижных элементов стридуляционного органа в одном направлении (у кузнечиковых - при сведении надкрылий); интерпульс - звук, возникающий при раздвигании надкрылий; трели - непрерывные сигналы неопределенной длительности, состоящие из пульсов, чередующихся с постоянным интервалом; серии - периодически повторяющиеся группы пульсов; фразы - периодически повторяющиеся группы серий или комплексные сигналы с иным временным рисунком.

1. Акустическое поведение

У большинства кузнечиковых звуки продуцируют только самцы. Анализ собственных и литературных данных показал, что они издают следующие типы сигналов: призывные, территориальные, агрессии, прекопуляционные (копуляционные), протеста и маскирующие. В некоторых семействах звуковым аппаратом обладают и самки, но в этом случае они, за редким исключением, издают только ответные звуки и(или) сигналы протеста.

Результаты сравнительного анализа свидетельствуют о том, что наиболее простой акустической системой обладают Tettigoniidae (например, Tettigoniinae, Onconotinae). Они издают только призывный сигнал. Системы акустической сигнализации более высокого уровня обнаружены у некоторых Conocephalidae (призывный сигнал, звуки агрессии и протеста), Phaneropteridae (комплексные призывные, прекопуляционные и ответные звуки) и Bradyporidae (призывные, ответные звуки, сигналы протеста). Максимальное число сигналов у одного вида в подавляющем большинстве случаев не превышает 3.

Акустическое поведение, приводящее к встрече особей противоположного пола, может быть сведено к 5 схемам. Первая свойственна кузнечиковым, у которых звуки продуцируют только самцы. У этих насекомых поиск полового партнера осуществляет самка. Остальные формы поведения наблюдаются только у Phaneropteridae и некоторых Bradyporidae. У Tylopsis lilifolia, Phaneroptera nana, Isophya spp самка начинает двигаться к самцу с расстояния 10-30 м, издавая ответныe щелчки; когда расстояние между ними сокращается до 1-10 м, самец выходит ей навстречу. У Isophya modesta rossica самка обычно проходит большую часть пути, не издавая звуков, и начинает отвечать только с расстояния 1 м, после чего самец выходит ей навстречу. У Leptophyes в поиске полового партнера участвует только самец, ориентируясь по ответным щелчкам неподвижной самки. У американских листовых кузнечиков Montezumina modesta самец и отвечающая ему самка начинают движение друг к другу одновременно. Наконец, у видов иберийского рода Platystolus самец издает призывный сигнал, самка отвечает ему и начинает движение. После того, как расстояние между ними сократится, самец начинает издавать специальные подтверждающие сигналы и выходит навстречу самке. Caedicia sp.

У многих видов кузнечиковых наблюдается акустическое взаимодействие самцов, проявляющееся в синхронизации или чередовании (альтернации) издаваемых ими звуковых посылок. Предполагается, что такой характер стридуляции имеет адаптивное значение: в частности, снижаются энергетические затраты поющих самцов, уменьшается риск нападения хищников, повышается вероятность восприятия конспецифического сигнала самками и др.

На акустическое поведение оказывают влияние хищники. Так, в семействах Phaneropteridae, Pseudophyllidae и Bradyporidae (Ephippigerinae) развивается особый, «медленный», тип сигнализации, при котором снижается акустическая активность самцов, а в семействах Phaneropteridae и Bradyporidae способность издавать звуки (ответные) приобретают самки, в результате чего повышается надежность акустической связи и снижается риск нападения хищников, находящих жертву по звуку. В некоторых семействах к звуковой сигнализации добавляется вибрационная (тремуляция), которая выполняет функцию призывных и(или) ответных сигналов, что также снижает демаскирующий эффект звуков.

2. Механизмы звукоизлучения

Кузнечики издают звуки с помощью стридуляционного аппарата, расположенного на надкрыльях. У самцов на вентральной поверхности верхнего надкрылья имеется pars stridens, а медиальный край нижнего преобразован в plectrum. У некоторых видов (например, у Anadrymadusa robusta) в звукоизлучении участвуют структуры замыкательного аппарата: медиальное поле нижнего надкрылья, покрытое зубчиками, и подвернутый медиальный край верхнего надкрылья. У самок кузнечиков из сем. Phaneropteridae, Pseudophyllidae и Bradyporidae (часть), издающих звуковые сигналы, стридуляционный аппарат не гомологичен звуковым органам самцов: pars stridens располагается на дорсальной поверхности нижнего надкрылья, а plectrum - на вентральной поверхности другого надкрылья (Nickle, Carlysle, 1975). На нижнем надкрылье располагается прозрачная ячейка - так называемое «зеркальце», выполняющее роль резонатора.

Звуковые органы кузнечиковых приводятся в движение двумя группами мышц - открывателями и закрывателями. Проведенное нами исследование электромиограмм крыловой мускулатуры прямого действия у 8 видов Tettigoniidae и Phaneropteridae показало, что наряду с простейшей схемой работы крылового нервно-мышечного аппарата (полное однократное раскрывание, чередующееся с полным однократным закрыванием) существует большое число ее усложнений. Так, раскрывание и закрывание надкрылий может происходить в 2 или несколько этапов (Schizonotinus, Polysarcus и др.), сокращение мышц-открывателей и закрывателей может осуществляться до начала звука (Isophya modesta rossica), разные компоненты сигнала издаются с помощью разных групп мышц (у Isophya - прямого и непрямого действия). Звук издается либо только при открывании надкрылий (например, Phaneroptera), либо лишь при их закрывании (большинство листовых кузнечиков подсем. Odonturinae), либо как при открывании, так и при закрывании надкрылий (например, р.р. Tettigonia, Metrioptera).

Мышечная активность, сопровождающая ответные сигналы самок листовых кузнечиков (Isophya, Leptophyes), сходна с таковой самцов. Амплитуда мышечных сокращений и, соответственно, движений надкрылий, а также интенсивность звукового сигнала зависят от уровня мотивации самок.

3. Акустические характеристики звуковых сигналов

В течение последних десятилетий были зарегистрированы акустические сигналы не только многих палеарктических Tettigonioidea (Жантиев, 1981; Жантиев, Корсуновская, 1986; Heller, 1988; Ragge, Reynolds, 1998; Korsunovskaya et al., 2002; Zhantiev et al., 2005 и др.), но и звуки кузнечиковых, населяющих Американский континент, Юго-Восточную Азию и Австралию (Morris et al., 1989, 1994; Ingrisch, 1998; Naskrecki, 2000; Walker, Moore, 2001 и др.). Кроме того, были предложены схемы эволюции звуковой сигнализации в отдельных таксонах (Barbitistini - Heller, 1986 1990; Pycnogastrinae - Pfau, 1996; Drymadusini - Korsunovskaya et al., 2002) и сделаны первые попытки связать эволюцию звуковой сигнализации с процессом видообразования (Heller, 2006). Таким образом, в настоящее время накоплен значительный материал, позволяющий провести сравнительный анализ разнообразия звуковых сигналов в разных таксонах кузнечиковых мировой фауны, оценить временные и частотные характеристики акустических сигналов в качестве таксономических признаков на видовом и надвидовом уровне, а также разработать представления о путях эволюции звуковой сигнализации в разных семействах Tettigonioidea, выявить параллелизмы и конвергенции, попытаться объяснить причины консерватизма и диверсификации временных параметров звуковых сигналов у кузнечиковых разных таксонов и выявить факторы, влияющие на формирование комплекса внутривидовых сигналов. Для решения этих задач мы проанализировали собственные и литературные данные о звуковой коммуникации кузнечиков разных семейств. Ниже приведен краткий обзор звуковой сигнализации кузнечиковых.

У представителей сем. Bradyporidae наблюдается 2 типа звуковой коммуникации. Первый характерен для пустынных Zichyinae, Hetrodinae и степных Bradyporinae и Pycnogastrinae. Репертуар акустических сигналов кузнечиков подсемейства Zichyinae включает по меньшей мере призывные звуки и звуки протеста, последние продуцируют как самцы, так и самки (у Deracantha - самки способны издавать и спонтанные сигналы, аналогичные призывным сигналам самцов). Звуковые органы особей обоего пола гомологичны и развиты в равной степени. Наиболее интересные примеры звуковой коммуникации (второй тип) дают средиземноморские роды Bradyporidae, объединенные в подсем. Ephippigerinae. В иберийском роде Platystolus наблюдается усложнение акустического поведения, а именно: появление новых типов сигналов - ответного самки, при восприятии звуков самца; подтверждающих звуков самца, свидетельствующих о восприятии ответа самки, и копуляционного сигнала самца. У многих видов зарегистрировано также спонтанное пение самок, по временной структуре аналогичное призывному сигналу, которое вызывает подтверждающий сигнал самца.

Самцы кузнечиков сем. Conocephalidae издают трели с постоянной амплитудой пульсов; трели с периодическими флуктуациями амплитуды; последовательность коротких трелей; трелеподобные последовательности 2-пульсовых серий; трели из чередующихся фрагментов с разной частотой повторения пульсов; серии; комплексные сигналы: а) трели, чередующиеся с последовательностью из отдельных пульсов; б) трели, чередующиеся с серией(ями); в) последовательность пульсов, чередующаяся с фразой из нескольких серий; г) повторяющиеся фразы, состоящие из двух фрагментов: последовательности отдельных пульсов и трели; д) трелеподобные последовательности чередующихся серий и пульсов; е) чередующиеся последовательности пульсов, щелчков, трелей и фрагментов, состоящих из серий. Частотные параметры призывных сигналов разнообразны. Так, в Таиланде, разные виды кузнечиков подсем. Agraeciinae издают звуки, у которых доминирующие частоты в спектрах составляют от 4 до 80 кГц (Ingrisch, 1998).

Сем. Tettigoniidae включает несколько подсемейств и триб, статус и положение которых в системе является предметом дискуссий. В нашей работе основное внимание мы уделили звуковой сигнализации палеарктических видов кузнечиков, поскольку они наиболее полно изучены. Звуки издают только самцы. В подсем. Onconotinae, Tettigoniinae и Saginae призывные сигналы обладают сравнительно простым амплитудно-временным рисунком: это длительные или короткие трели, либо последовательность серий. В подсем. Decticinae, напротив, наблюдается значительное разнообразие и усложнение ритмической организации сигнала. Так, у некоторых видов трибы Drymadusini призывные звуки включают до 3 ритмических уровней, а в роде Platycleis прослеживается тенденция к усложнению сигнала за счет включения элементов с иной ритмической структурой, причем в некоторых случаях эти компоненты сигнала могут издаваться автономно, выполняя функции территориальных сигналов или звуков протеста. Частотные характеристики звуков, издаваемых кузнечиками сем. Tettiginiidae характеризуются большим разнообразием. Спектры, за редким исключением, широкополосные, с максимумами в звуковом и ультразвуковом диапазонах.

Сем. Phaneropteridae, или листовые кузнечики, включает около 2000 видов, распространенных как в тропиках, так и в умеренных широтах. Акустическое поведение большинства видов характеризуется следующим: 1. В сигнализации у многих видов участвуют самки, издающие ответные сигналы. Их звуковые органы в разных родах различаются по строению и не гомологичны стридуляционным органам самцов. 2. Самцы издают только призывный сигнал (как, например, у Poecilimon, Isophya, Leptophyes), либо способны продуцировать также прекопуляционные звуки (Phaneroptera, Tylopsis), сигналы, отражающие антагонистические ваимоотношения с соседями (предположительно территориальные (Phaneroptera) или агрессии (Euconocercus), звуки протеста (Polysarcus). 3. Для большинства видов характерна сравнительно низкая акустическая активность, которая преимущественно выражается в больших паузах между звуковыми посылками (до нескольких минут). 4. Если призывный сигнал состоит из нескольких частей, звуковой ответ самки запускается триггерным компонентом, часто заключительными щелчками или концом второго пульса. 5. Для установления устойчивого акустического контакта между потенциальными брачными партнерами ответ самки должен быть воспринят самцом в определенном видоспецифическом временном интервале после его собственного сигнала.

Наиболее стабильными характеристиками обладают только призывные сигналы.

Частотные спектры звуков листовых кузнечиков Палеарктики, как правило, узкие, доминирующие частоты у большинства видов лежат в ультразвуковом диапазоне, причем наблюдается отрицательная корреляция между размерами насекомого и значением доминирующей частоты. В спектрах же призывных звуков североамериканских листовых кузнечиков доминирующие частоты не превышают 15-18 кГц (Dolichopetala, Inscudderia, Insara), но в большинстве случаев они значительно ниже (Walker, Moore, 2001).

Тропическое сем. Pseudophyllidae включает наиболее крупных представителей класса насекомых. Их акустическая сигнализация изучена еще недостаточно. Временная структура изученных призывных сигналов разнообразна: они могут издаваться в виде коротких (до 3 с) трелей, ритмически повторяющихся одиночных пульсов или серий. Шумовые или узкополосные частотные спектры звуков Pseudophyllidae занимают низкочастотный или ультразвуковой диапазон. У Pseudophyllidae описаны сигналы с доминирующей частотой, составляющей 600 Гц и 106 кГц.

Звуковая сигнализация кузнечиков сем. Mecopodidae, распространенных в тропическом поясе Старого и Нового света, изучена слабо несмотря на острую потребность в биоакустических исследованиях данного таксона, которая объясняется тем, что многие роды включают большое количество видов-двойников, хорошо различающихся, однако, по временному рисунку призывного сигнала. В настоящее время опубликованы данные о звуках лишь нескольких видов рода Mecopoda. Анализ звуков 5 индийских видов-двойников показал, что они хорошо различаются по временному рисунку, но обладают сходными спектрами (Nityananda, Balakrishnan, 2006). Наши данные о сигналах 4 видов Mecopoda из Юго-восточной Азии свидетельствует о том, что призывные звуки этих насекомых существенно различаются также по спектральному составу.

В настоящее время имеются данные о призывных звуках лишь нескольких видов небольших сем. Meconematidae, Tympanophoridae и Phasmodidae. В частности известно, что некоторые кузнечики первого семейства утратили способность стридулировать и в брачном поведении используют ударные сигналы (Meconema thalassinum), немногие ииследованные виды Tympanophora издают звуки в виде 1-, 2- и 3-пульсовых серий с доминирующими частотами около 7 кГц, а представители австралийского подсем. Zaprochilinae издают чрезвычайно короткие ультразвуковые пульсы (менее 1 мс, доминирующая частота у разных видов - 40, 50 или 70 кГц).

Проведенный нами анализ физических характеристик известных звуковых сигналов кузнечиковых свидетельствует о большом разнообразии как временных, так и частотных параметров звуков. Видоспецифическими характеристиками обладают преимущественно призывные звуки. Физические параметры издаваемых кузнечиками сигналов лежат в широком диапазоне. Так, доминирующая частота может не превышать нескольких сот Гц (195 Гц у Acanthoplus diadematus) или достигать почти 130 кГц (Arachnoscelis sp., Meconematidae). Длительность пульсов у разных видов также колеблется от долей миллисекунды (Zaprochilinae, Phasmodidae) до значений, превышающих секунду (например, Isophya spp., Phaneropteridae). Частота же повторения пульсов у Neoconocephalus palustris из семейства Conocephalidae достигает 270 с-1! Звуки с наиболее сложной временной структурой издают представители родов Conocephalus (Conocephalidae), Polysarcus и Amblycorypha (Phaneropteridae).

Исходным типом звуковых сигналов кузнечиковых является трель - сигнал с одним ритмическим уровнем. Усложнение временного паттерна (чередование элементов с разными длительностью, ритмом повторения или добавление ритмических элементов высших порядков) связано с включением в состав нервного звукового центра дополнительных осцилляторов, часто образующих иерархическую структуру.

Сопоставление временных характеристик звуков симпатрических видов, населяющих один биотоп, позволило выявить градиент в распределении некоторых из этих параметров. Эти данные послужили основой для разработки концепции «акустической ниши» (Жантиев, 1979, 1981), согласно которой симпатрические виды делят акустический канал связи, издавая сигналы с неперекрывающимися (или лишь частично перекрывающимися) значениями временных, а иногда частотных параметров. Благодаря этому повышается эффективность передачи акустической информации.

Эволюция временных параметров звуков Tettigonioidea, по-видимому, протекает под действием двух основных факторов. Первым из них является необходимость повышения помехоустойчивости сигнала в акустической среде, используемой также другими членами акустического сообщества, - преимущественно симпатрическими видами кузнечиковых. В этом случае, очевидно, временной паттерн сигнала является продуктом коэволюции временных рисунков сигналов всех членов сообщества. Вторым фактором эволюции в некоторых семействах кузнечиковых (например, у Phaneropteridae и Pseudophyllidae) является влияние хищников, приводящее к снижению акустической активности насекомых и возникновению апериодических и(или) очень коротких сигналов.

Разнообразие частотных характеристик звуковых сигналов кузнечиковых определяется физическими свойствами звукоизлучающих и звуковоспринимающих систем, а также, по-видимому, особенностями акустической среды. Эволюция сигнала направлена на выработку таких спектральных характеристик, которые обеспечивают его распространение с минимальными потерями и искажениями в канале связи.

Звуковые сигналы прямокрылых, и кузнечиковых в частности, с успехом используются для решения таксономических проблем. Временной рисунок сигнала (а часто и его частотный спектр) является одним из самых надежных критериев для различения видов и подвидов. Для таксонов высшего ранга использование физических параметров звуков в качестве дифференциального критерия затруднительно, т.к. звуковая сигнализация, очевидно, является в большей мере субъектом эволюции акустического сообщества, а не таксона.

4. Кодирование видоспецифической информации в звуковых сигналах

Исследование физических параметров звуковых сигналов кузнечиковых свидетельствует о том, что видоспецифическими признаками обладают в подавляющем большинстве только призывные звуки. Опыты, в которых исследовали реакции на конспецифические сигналы самок кузнечиков из сем. Tettigoniidae, Conocephalidae и Phaneropteridae (Bailey, Robinson, 1976; Morris et al., 1975; Жантиев, Дубровин, 1977; Жантиев, 1981; Жантиев, Корсуновская, 1986; Schul, 1998), показали, что кодирование видоспецифической информации в звуковых сигналах у исследованных видов существенно различаются. Так, оказалось, что у Ruspolia и Metrioptera параметром, необходимым и достаточным для опознания сигнала, является частота повторения пульсов. У многих листовых кузнечиков видоспецифическая информация кодируется длительностью звуковой посылки, а при низком уровне звука и частотой ее заполнения, причем для опознания сигнала (и запуска фонотаксиса) самке достаточно предъявления одного пульса. Нами было показано, что у изофий разные компоненты сигнала вызывают разные поведенческие реакции. Результаты опытов, проведенных нами с другими представителями листовых кузнечиков, свидетельствуют о том, что информативным параметром может быть также внутренняя структура пульса (Phaneroptera, Tylopsis). Длительность задержки звукового ответа самки видоспецифична; у видов с короткими сигналами ответ самки задерживается относительно начала пульса, а у издающих длительные сигналы - относительно его конца.

Сравнение результатов исследования фонотаксиса кузнечиков разных таксонов свидетельствует о том, что у видов из сем. Tettigoniidae и Conocephalidae опознавание конспецифического сигнала ведется по частоте повторения пульсов, реже - частоте повторения серий, числу пульсов и длительности межпульсовых интервалов (у немногих видов - также по доминирующей частоте спектра), а у листовых кузнечиков, издающих аритмичные сигналы или звуки с низкой частотой повторения, - по длительности и внутренней структуре пульса. Для запуска фонотаксиса достаточно одного, ведущего, параметра, однако условия распознавания при этом ухудшаются. Самцы листовых кузнечиков oпознают конспецифических самок по величине задержки их звукового ответа.

Сравнение кодирования видоспецифической информации в призывном сигнале у кузнечиковых и сверчковых показало, что в основе дискриминации кон- и гетероспецифических сигналов у представителей Ensifera в целом лежат сходные механизмы. Опознание конспецифических звуков является динамическим процессом. По мере приближения к источнику сигнала, по-видимому, используются разные параметры и(или) меняется их значение для распознавания.

5. Морфо-функциональная организация слуховых и виброчувствительных тибиальных органов

У Tettigonioidea в передних голенях расположены два крупных хордотональных органа: субгенуальный, или подколенный, и тимпанальный, имеющие общий для кузнечиковых план строения.

Регистрация активности рецепторов субгенуального органа показала, что его сенсиллы реагируют на низкочастотные вибрации. Минимальные пороговые ускорения в зоне оптимума (0,8-1 кГц) составляют 2,3х10-2 - 1,2х10-1 м/c2. Кроме того, эти рецепторы возбуждаются и низкочастотными звуками интенсивностью >90 дБ (Жантиев, 1971).

С 1960 г. известно, что слуховые органы кузнечиковых (T.viridissima) воспринимают звуковые колебания в диапазоне от 1 до 100 кГц (Autrum, 1960). Позже на различных видах Tettigoniidae было показано, что в тимпанальном органе существует специализация отделов: промежуточный орган воспринимает низкочастотные звуки (1-15 кГц, оптимум 5-7 кГц), а слуховой гребень является высокочувствительным приемником высокочастотных сигналов (оптимум 12-30 кГц) (Жантиев, 1971).

Проведенная нами регистрация активности одиночных сенсилл непосредственно в тимпанальном органе подтвердила данные о специализации промежуточного органа и слухового гребня и, кроме того, позволила получить данные, свидетельствующие о тонотопической организации последнего. Оказалось, что оптимальные частоты сенсилл возрастают от проксимального к дистальному концу слухового гребня.

Сравнение реакций рецепторов двух отделов тимпанального органа показало, что они различаются по частотно-пороговым характеристикам, чувствительности и зависимости импульсации от интенсивности стимула: оптимальные частоты одиночных сенсилл промежуточного органа составляют 5-7 кГц, пороговая интенсивность, как правило, превышает 60 дБ, а время нарастания импульсации в ответах в несколько раз меньше, чем у рецепторов слухового гребня.

Анализ динамических характеристик слуховых рецепторов у 11 видов кузнечиков из сем. Tettigoniidae и Phaneropteridae, показал, что в некоторых случаях происходит падение импульсации при высоких уровнях звукового давления (более 80 дБ). Такое подавление активности обычно коррелирует с возрастанием латентного периода реакции или последействия, появлением пауз, on-off- или off-ответов. Подавление импульсной активности при средних интенсивностях звука наблюдалось при использовании двухтоновых стимулов. Подавление импульсации не является следствием эфферентных воздействий, так как перерезка тимпанального нерва не устраняла этих эффектов. Аксоны слуховых рецепторов не образуют контактов в тимпанальном нерве, поэтому предполагается, что существует взаимодействие соседних сенсилл в слуховом гребне. Адаптивное значение описанных нами явлений остается не вполне ясным, но можно предположить, что оно аналогично свойственному многим сенсорным системам латеральному торможению, благодаря которому контрастируются признаки воспринимаемого стимула. Так, подавление реакций рецепторов на определенные сочетания частот может способствовать выделению конспецифического сигнала из шумов - в частности, звуков других насекомых, обитающих в том же биотопе. С другой стороны, закономерное изменение рисунка разряда и, в частности, появление on-off-ответов рецепторов наводит на мысль, что по крайней мере у Phaneropteridae, детектирование временных параметров конспецифических сигналов начинается не в грудных ганглиях, а уже на уровне рецепторов.

Как известно, изменения температуры оказывают заметное влияние на функциональные характеристики рецепторов насекомых. Имеется также единичное сообщение о зависимотсти от температуры частотных характеристик рецепторов тимпанального органа у саранчи. Для выяснения, насколько существенно влияет температура на восприятие звуковых стимулов у кузнечиковых мы провели исследование реакций одиночных слуховых рецепторов интактного тимпанального органа у нескольких видов Tettigoniidae и Phaneropteridae. Нагревание тимпанального органа до 30-32С приводит к повышению чувствительности рецепторов. У всех изученных клеток оптимальная частота при этом не изменялась, хотя диапазон воспринимаемых частот расширялся. Частотно-пороговая кривая рецептора могла, не меняя формы, смещаться вниз по шкале ординат, либо пороги на разных частотах снижались неравномерно: так, у одного из рецепторов при нагревании от 23 до 28С максимальная разница в порогах реакции (14 дБ) регистрировалась только на оптимальной частоте (16 кГц). Таким образом, полученные нами данные свидетельствуют об отсутствии изменений в частотной настройке рецепторов тимпанального органа при изменении температуры. Как и у всех исследованных рецепторов, у слуховых рецепторов кузнечиков при повышении температуры наблюдались снижение амплитуды импульсов, сокращение их длительности, повышение чувствительности, увеличение мгновенной частоты разряда и числа импульсов в ответах, а также сокращение латентных периодов реакции. Константность частотной настройки слуховых рецепторов кузнечиков в разных температурных условиях, по-видимому, можно рассматривать как адаптивный признак, так как спектр коммуникационных сигналов, согласно нашим и литературным данным, слабо зависит от температуры, и повышение оптимальных частот слуховых органов с ростом темппературы, если бы таковое наблюдалось в действительности, привело бы к рассогласованию характеристик приемного и передающего звеньев акустической системы связи и, как следствие, к ухудшению условий восприятия звукового сигнала

Вибрации, играющие очень важную роль в жизнедеятельности кузнечиковых, воспринимаются специализированными виброчувствительными рецепторами - кампаниформными сенсиллами, сенсиллами субгенуального органа и зачаточного слухового гребня лишенных слуховых органов средних и задних ног. Кроме того, нами было обнаружено, что к вибрациям чувствительны также слуховые рецепторы тимпанального органа, причем даже дистальные высокочастотные сенсиллы. Рецепторы подколенного органа дают V-образные частотно-пороговые кривые при изменении частоты стимула и его амплитуды, выраженной в единицах ускорения, скорости и смещения, а у слуховых рецепторов частотно-пороговые кривые такой формы зарегистрированы, только если амплитуда стимула выражена в единицах смещения.

Информация о частотных параметрах стимула передается по разным, хотя и частично перекрывающимся каналам: так, на низкочастотные колебания (около 100 Гц) реагируют все изученные ножные хордотональные сенсиллы, на вибрации частотой 300-600 Гц первыми реагируют рецепторы подколенного органа, а высокочастотные вибрации наиболее эффективно обнаруживаются с помощью сенсилл тимпанального органа, оптимальные частоты которых составляют 600-1600 Гц. Таким образом, наличие нескольких групп рецепторов с разными частотными характеристиками расширяет диапазон воспринимаемых вибраций и позволяет более точно оценивать поступающую извне информацию как об опасности, так и о потенциальном половом партнере, издающем наряду со звуковыми также вибрационные сигналы.

Сравнительный анализ морфо-функциональной организации ножных хордотональных органов у представителей Ensifera разных семейств позволяет сделать предположения о путях их эволюционного развития. Первоначальным направлением, по-видимому, являлось совершенствование вибрационной чувствительности, а затем, в связи с появлением тимпанальных мембран, - возникновение и совершенствование восприятия звуковых стимулов. На первом этапе (см. Troglophilus, Gryllacridoidea) в голенях всех ног располагаются только виброчувствительные подколенный и промежуточный органы. Трахейная система в грудном отделе представлена несколькими неспециализированными трахеями, отходящими от дыхалец, и продольными стволами, соединенными поперечными анастомозами. В дальнейшем происходит увеличение числа сенсилл в обоих органах и появляется слуховой гребень с линейно расположенными, лежащими на ножной трахее сенсиллами, что, по-видимому, способствует более дифференцированному восприятию вибраций. Возникновение слуха у прямокрылых - восприятия колебаний, передающихся по воздуху - связано с появлением тимпанальных мембран. Слуховые органы Cyphoderris (Gryllacridoidea), по-видимому, находятся на этом этапе развития. Они еще не обладают направленной чувствительностью, тимпанальные мембраны имеют сравнительно большую толщину, слуховые рецепторы реагируют только на низкочастотные звуки, а трахейная система не играет никакой роли в восприятии звука. Однако, как показали наши исследования, у Lezina mutica (Gryllacridoidea) наблюдаются модификации в строении трахейной системы первого грудного сегмента - широкий анастомоз, соединяющий симметричные продольные стволы. Наличие этой специализации указывает на формирование нового направления эволюции слуха у Ensifera, нашедшего на поздних этапах эволюции наиболее полное выражение у Grylloidea. Эксперименты, проведенные на сверчках (Жантиев и др., 1975), показали, что контакт симметричных трахей облегчает локализацию источника звука, участвуя в формировании направленности тимпанальных органов и способствуя повышению отношения сигнал/шум. Слуховая система приобретает 2 дополнительных входа - переднегрудные дыхальца.


Подобные документы

  • Общая характеристика двигательной активности животных. Ознакомление со строением системы тканей и органов - опорно-двигательным аппаратом. Описание основных функций скелета животного. Изучение особенностей нервно-мышечной части двигательного аппарата.

    реферат [1,2 M], добавлен 26.10.2015

  • Характеристика анатомо-физиологических и нервно-психических особенностей развития подростков. Изучение теорий подросткового возраста. Параметры и формула полового развития девочек и мальчиков. Нервно-психологическое состояние в подростковом возрасте.

    презентация [280,4 K], добавлен 27.10.2014

  • Исследование расположения и функций мозжечка, отдела головного мозга позвоночных, отвечающего за координацию движений, регуляцию равновесия и мышечного тонуса. Описания процесса обработки нервных сигналов, поступающих от органов чувств, их корректировки.

    презентация [2,9 M], добавлен 25.11.2011

  • Происхождение домашней кошки, ее предки, приспособляемость к окружающей среде. Дыхательная система собак. Использование ими разных звуковых сигналов в общении. Направления развития выжившей в условиях естественного отбора потомков группы Pseudaelurus.

    контрольная работа [25,4 K], добавлен 26.11.2013

  • Описание аппарата Гольджи: структура и функции. Анализ деятельности аппарата Гольджи в клетке. Сущность и особенности фибриллярных структур. Сортировка белков и передача сигнала. Общая характеристика молекулярного механизма функционирования аппарата.

    реферат [371,7 K], добавлен 13.12.2008

  • Характеристика насекомых России, особенностей инвентаризации фауны дневных чешуекрылых Костромской области. Особенности жизнедеятельности насекомых. Исследование жужелицы, как биоиндикатора в агроценозах. Размерно-весовые показатели дождевых червей.

    реферат [22,7 K], добавлен 12.04.2010

  • Сравнительный анализ аппарата органов и системы органов. Перечисление аппаратов органов. Сравнительный анализ продолговатого и спинного мозга. Зародышевые листки с описанием всех органов, являющихся их производными. Строение паренхиматозных органов.

    контрольная работа [27,7 K], добавлен 25.12.2011

  • Отдел цианобактерии: строение клетки, питание, размножение. Грибы-паразиты, вызывающие болезни растений из группы низших растений. Анализ особенностей строения вегетативных и генеративных органов семейства розанные. Формула цветка. Основные представители.

    контрольная работа [310,7 K], добавлен 23.08.2016

  • Характеристика особенностей строения и процессов жизнедеятельности класса земноводных: семейств углозубых, хвостатых, дальневосточных тритонов, лягушкозубых, саламандровых, бесхвостых, круглоязычных, жерлянок, чесночниц, крестовок, квашк, лягушек.

    реферат [857,6 K], добавлен 21.04.2010

  • Изучение органов нервной системы как целостной морфологической совокупности взаимосвязанных нервных структур, обеспечивающих деятельность всех систем организма. Строение механизмов зрительного анализатора, органов обоняния, вкуса, слуха и равновесия.

    реферат [23,5 K], добавлен 21.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.