Акустические системы связи кузнечиковых (orthoptera, tettigonioidea)

Характеристика коммуникационных сигналов кузнечиковых фауны России и сопредельных стран. Исследование специфики работы нервно-мышечного аппарата звуковых органов и морфологических особенностей звукоизлучающих структур кузнечиковых разных семейств.

Рубрика Биология и естествознание
Вид автореферат
Язык русский
Дата добавления 26.12.2017
Размер файла 71,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

У кузнечиковых (Tettigonioidea) трахеи переднегруди также играют важную роль в восприятии звука, но их специализация проходила в ином направлении. Одними из важнейших преобразований стало появление и увеличение трахейных мешков в грудном отделе, утративших реципрокный акустический контакт друг с другом. Данные апоморфные признаки обеспечили расширение диапазона воспринимаемых частот за счет повышения чувствительности к высокочастотным звукам. Один из отделов тимпанального органа - слуховой гребень - в процессе увеличения числа линейно расположенных сенсилл, начинает демонстрировать тонотопическую организацию, которая прослеживается и в проторакальном ганглии, где располагаются концевые разветвления аксонов слуховых рецепторов. В результате слуховые органы кузнечиковых, максимальное число рецепторов которых не превышает 50, приобретают редкую в животном мире способность воспринимать и анализировать как низкочастотные вибрации, так и ультразвуки, превышающие по частоте 120 кГц.

6. Морфо-функциональные характеристики центральных слуховых нейронов

Сравнение функциональных характеристик центральных слуховых нейронов Tettigonioidea свидетельствует о том, что предложенное ранее для Tettigonia cantans разделение клеток на три группы (А, В и С) по типу частотно-пороговых кривых (Жантиев, 1979, 1981) характерно для всех исследованных таксонов.

Общими для изученных видов являются нейроны типов А и С1. Клетки В1, В2, В3, С1 и С3 обнаружены только у Tettigoniidae и Phaneropteridae, С2 - у Tettigoniidae, а В4 - у представителей остальных исследованных семейств. Частотная настройка слуховых интернейронов обусловлена двумя основными факторами: связью с определенными группами рецепторов тимпанального органа (С-клетки) и тормозными воздействиями, формирующими зоны оптимальной чувствительности (В-элементы). Последний фактор определяет также тип реакции нейрона, его динамические и временные характеристики.

Уровень развития тормозных связей различен в разных семействах кузнечиковых. Этим, в частности, объясняются особенности частотной настройки В и С клеток, а также специфические свойства центральных нейронов Phaneropteridae, обеспечивающие детектирование коротких стимулов (CD) и позволяющие определять момент окончания действия звука (on-off- и off-элементы).

Сравнение полученных нами данных о слуховых интернейронах I грудного ганглия кузнечиков разных семейств свидетельствует как о далеко идущих аналогиях в морфо-функциональной организации слуховой системы, так и о существенной специализации нейронных сетей (в частности, у листовых кузнечиков).

К общим для Tettigonioidea всех изученных таксонов слуховым интернейронам, очевидно, следует отнести такие клетки, как ON и DN 2 (по нашей номенклатуре (Zhantiev, Korsunovskaya, 1990), которые имеют у разных видов не только сходное строение, но и функциональные характеристики: ON является тоническим широкополосным элементом с оптимумом в области доминирующих частот конспецифического сигнала, чувствительным к направлению прихода звука. DN 2, oчевидно, принадлежит к тому же классу нейронов, что и нисходящий низкочастотный нейрон DN, описанный у Mygalopsis marki (Romer, 1987). Однако, в отличие от DN, нейроны Isophya и Tettigonia дают крупную коллатераль в центральной зоне ганглия.

Основной специализацией морфо-функциональной организации слуховой системы, на наш взгляд, является высокая чувствительность интернейронов к изменению длительности стимула у Phaneropteridae. Она может проявляться как в разных значениях порогов реакции на раздражители разной продолжительности, так и в разных типах реакции (тоническая--on-off, тоническая--фазная и т.п.), числе импульсов в тонических ответах, наклоне и форме динамических кривых и т.д. Кроме того, Phaneropteridae обладают многочисленными нейронами разных морфологических типов, отмечающими окончание звуковой посылки, а также реагирующими только на короткие стимулы (CD). Клетка с реакциями, подобными CD Phaneropteridae, была зарегистрирована и у Tettigonia cantans. Тем не менее, эти нейроны, по крайней мере у Tettigoniidae, не являются многочисленными, и их значение в восприятии и опознании конспецифического сигнала, вероятно, не так велико, как у листовых кузнечиков. Одним из наиболее ярких примеров специализации слуховой системы Phaneropteridae является клетка TN 1 Ph. falcata. Морфологически она сходна с гигантским Т-образным нейроном Tettigoniidae (Жантиев, Корсуновская, 1983), но дает не фазные или тонические, а on-off-ответы.

Следует отметить, что нейроны, относящиеся к одному морфологическому классу, в разных семействах и даже у разных видов кузнечиков по функциональным свойствам могут сильно различаться, так как вес и соотношение возбуждающих и тормозных связей, очевидно, являются видоспецифическими признаками.

Данные о структуре центральных нейронов Ensifera, накопленные к настоящему времени, позволяют провести сравнение их морфо-функциональных характеристик. Так, сегментарные омега-нейроны найдены у всех исследованных Ensifera, однако, у сверчков, медведок (Grylloidea) и Cyphoderris (Haglidae, Gryllacridoidea) идентифицировано 2 пары этих нейронов, ON1 и ON2, различающихся у сверчков и Haglidae наличием у ON2 ответвлений в контралатеральную относительно тела сторону. Кроме того, у сверчков и медведок дендриты и аксоны доходят почти до основания 5-го нерва, у кузнечиков же ветвление этого нейрона ограничено центральной зоной I грудного ганглия. ON у Cyphoderris по морфологии занимает промежуточное положение между кузнечиковыми и сверчковыми, давая ответвления в латеральные области нейропиля. ON1 и ON2 медведок морфологически сходны, но у Scapteriscus borellii (но не у S.abbreviatus!) различаются по частотным характеристикам: одна из клеток помимо низкочастотных звуков воспринимает также ультразвуки (Mason et al., 1998). У всех исследованных групп прямокрылых ON являются широкополосными элементами, без существенного привыкания реагирующими на конспецифические призывные сигналы, точно отражающими их временную структуру.

Группа восходящих нейронов (AN) у кузнечиков включает по меньшей мере 5 нейронов (Stumpner, Molina, 2006). Оптимум их чувствительности расположен в высокочастотной области, но может быть смещен как в сторону низких, так и высоких частот, т.е. эти клетки относятся к типу А и разным группам типа В.

Особенности частотных характеристик этих слуховых нейронов объясняются, по-видимому, тормозными влияниями, о наличии которых, в частности, свидетельствуют и динамические кривые колоколовидной формы. У сверчков также имеются клетки сходного строения, однако одна из них обладает повышенной чувствительностью к низко-, а другая - к высокочастотным звукам.

Нейрон, структура которого сходна со структурой TN2 сверчков, найден нами у Metrioptera roeselii, однако, у кузнечика эта клетка относится к классу спонтанно активных элементов, не отвечающих на звуковой стимул, но перестраивающих ритм своей импульсации под действием акустического раздражителя.

Группа Т-образных элементов хорошо представлена у всех прямокрылых, но гомологизировать нейроны кузнечиковых с какими-либо из клеток других Orthoptera, кроме, по-видимому, TN2 сверчков, до сих пор не удалось. Это, однако, не означает, что таких нейронов не будет найдено в дальнейшем.

Таким образом, основные принципы обработки информации, поступающей от механорецепторов, на уровне интернейронов I порядка, по-видимому, очень сходны у всех Ensifera. Так, в проторакальном ганглии, где оканчиваются слуховые афференты, имеются локальные нейроны, обеспечивающие реципрокное возбуждение и торможение; кроме того, информация от рецепторов направляется в ростральном и каудальном направлениях по восходящим, нисходящим и Т-образным волокнам. Последние, обладая большей протяженностью, по-видимому, служат для координации и(или) модуляции работы разных моторных систем, т.к. в каждом из ганглиев птероторакса дают коллатерали в область моторного нейропиля или прилегающую к нему зону. Некоторые из них являются мультимодальными элементами. Наибольшим морфологическим сходством обладают нейроны, ветвящиеся в так называемом «акустическом нейропиле» и, очевидно, образующие синаптические контакты со слуховыми афферентами (ON-, AN-, DN-клетки).

Ранее неоднократно высказывались предположения, что слух у длинноусых прямокрылых возник на базе совершенствования вибрационной чувствительности (см., например, Schaw, 1994). В пользу этой гипотезы свидетельствуют данные онтогенеза слуховых органов и строение тибиальных органов у длинноусых прямокрылых, лишенных типанальных мембран (Ander, 1939; Ball, Field, 1981; Lakes-Harlan et al., 1991). Очевидно, при возникновении чувствительности к звуку многие структурные элементы предкового виброанализатора приобрели дополнительную слуховую функцию. Как показали специальные исследования, бимодальностью обладают как слуховые рецепторы (в частности, у кузнечиков: Zhantiev, Korsunovskaya, 1998), так и многие интернейроны (кузнечиков: Kalmring et al., 1997; медведок: наши неопубликованные данные). Нельзя исключить также возможность, что чувствительность к звуку появилась у интернейронов иных систем. Многие элементы, реагирующие на звук, по-видимому, являются интернейронами высших порядков, ветвящимися в ассоциативном нейропиле ростральных или каудальных зон ганглия (напомним, что арборизация слуховых и виброчувствительных рецепторов наблюдается в центральной части чувствительного нейропиля соответствующего ганглия). Кроме того, у сверчков и кузнечиков найдены нейроны со сходной структурой, но функционально различные: у сверчков это высокочастотный слуховой интернейрон TN2, который у кузнечиков лишь перестраивает свою спонтанную активность под действием ритмически повторяющегося звукового стимула. Какой из систем принадлежат эти нейроны покажут дальнейшие морфологические исследования.

7. Реакции спонтанно активных интернейронов на звуковые сигналы

Результаты этологических экспериментов свидетельствуют о том, что насекомые, использующие звуковые сигналы для внутривидовой коммуникации, опознают их преимущественно по временным параметрам. Нейронные механизмы, обеспечивающие выделение из шума и распознавание этих сигналов остаются малоизученными. Для их объяснения предложены две основные гипотезы. Согласно первой, получившей название фильтрационной, опознание конспецифического сигнала осуществляется в результате детектирования его информативных элементов с помощью нейронов, избирательно реагирующих на определенные признаки звукового стимула. В соответствии с другой гипотезой, в ЦНС имеется группа ритмически активных нейронов, выполняющая роль эталона, с которым сравнивается воспринимаемая акустическая информация. Для проверки этого предположения нами была проанализирована спонтанная активность нейронов в ЦНС двух симпатрических видов кузнечиков (Tettigonia cantans и Metrioptera roeselii) и ее изменения при восприятии конспецифических и гетероспецифических сигналов (КС и ГС). Результаты этих экспериментов показали, что в грудном отделе ЦНС имеется группа ритмически активных нейронов, не отвечающих непосредственно на звук, но перестраивающих под его влиянием свою импульсацию. У изученных видов кузнечиков нам удалось выделить несколько типов спонтанной активности интернейронов. В частности, были выявлены клетки, разряжающиеся без выраженной периодичности. Гистограммы их межимпульсных интервалов (МИИ) унимодальны и асимметричны. Другие типы спонтанной активности характеризуются наличием более или менее выраженной ритмичности. Соответствующие гистограммы МИИ могут быть уни-, би- или мультимодальными. кузнечиковый звуковой россия

Унимодальные распределения МИИ со значительным эксцессом дают клетки, разряжающиеся ритмически со стабильным периодом повторения спайков (подобно пейсмейкерам) или с частотой, варьирующей в определенных пределах. В последнюю категорию попадают также клетки, спайки которых следуют друг за другом, подчиняясь волнообразному процессу, в результате чего повышение частоты импульсации чередуется с периодами ее понижения. Некоторые нейроны этого класса связаны с дыхательными движениями.

Большая часть зарегистрированных клеток как у T.cantans, так и у M.roeselii (при 19-22 °С), разряжалась с периодом около 40 мс, несколько реже встречались нейроны с пейсмейкерной активностью, их межимпульсные интервалы составляли 11-30 мс, остальные элементы разряжались с более длительными интервалами: моды соответствующих гистограмм МИИ у T.cantans составляли около 30, 40, 60-64, 72-76, 96, 148 и 160 мс. Доля нейронов, частота импульсации которых не превышала 2 имп./c, в наших опытах была ничтожно мала, и в настоящей работе такие клетки не рассматриваются.

Особую группу образуют нейроны, спонтанная импульсация которых представляет собой процесс, описываемый формулами дискретных распределений. На мультимодальных гистограммах МИИ наблюдается от 3 (у M.roeselii) до 8-12 (T.cantans) кратных пиков с периодом около 10, 20 и 40 мс.

При предъявлении КС наблюдались реакции следующих типов: ослабление или усиление импульсации; стабилизация или дестабилизация ритма; закономерное увеличение или уменьшение межимпульсных интервалов; фазовые перестройки, приводящие к синхронизации импульсов со звуковыми посылками (пульсами). ГС обычно не вызывали подобных изменений, если же они возникали, то были выражены слабее или имели противоположную направленность. Эти данные свидетельствуют о том, что слуховая система кузнечиков оказывает существенное влияние на ритмически активные нейроны, причем их реакция в значительной степени зависит от временной организации звуковых сигналов. Селективность этих реакций дает основание предполагать, что ритмически активные нейроны имеют непосредственное отношение к нейронным сетям, обеспечивающим распознавание звуковых сигналов.

Известно, что и уровень спонтанной активности интернейронов, и временные параметры звуковых сигналов самцов, и ответные реакции самок насекомых закономерно изменяются при изменении температуры. В связи с этим, естественно, возникает вопрос о взаимодействии или скоррелированности нейронных механизмов, управляющих этими процессами при колебаниях температуры. Мы попытались получить данные о влиянии температуры на спонтанную импульсацию некоторых интернейронов кузнечиков T.cantans и M.roeselii.

Нами было показано, что в ЦНС кузнечиков существуют спонтанно активные нейроны, разряжающиеся с частотой, близкой к частоте повторения пульсов в конспецифических сигналах. Оказалось, что частота импульсов у подобных нейронов (T.cantans) практически совпадает с частотой повторения пульсов в определенном диапазоне температур. При этом ритм импульсации оставался четким при высоких температурах, несмотря на предельное сокращение МИИ. Подобная стабилизация ритма импульсации при повышении температуры характерна для многих зарегистрированных нами нейронов и, по-видимому, связана с повышением уровня активности и скорости двигательных реакций насекомых. Можно предполагать, что нейроны, частота импульсации которых совпадает с ЧПП конспецифических сигналов, являются элементами нейронных сетей, обеспечивающих звуковую коммуникацию кузнечиков, а именно теми пейсмейкерами, которые участвуют в генерации и/или распознавании звуковых сигналов. В последнем случае такие нейроны должны быть важнейшими элементами моделей механизмов распознавания сигналов, основанных на предположении, что воспринимаемый сигнал сравнивается с ритмическим эталоном в ЦНС.

8. Кодирование акустической информации в слуховой системе и механизмы распознавания конспецифических сигналов

В основе обработки акустической информации слуховой системой лежат 2 процесса: описание признаков сенсорных стимулов и их классификация, на которой базируется оценка биологической значимости воспринимаемого сигнала. Кодирование акустической информации осуществляется на разных уровнях слуховой системы,

Первый этап обработки звукового сигнала протекает в тимпанальных органах, обладающих у подавляющего большинства исследованных видов кузнечиковых низкой избирательностью к сигналам симпатрических видов. Функцией слуховых органов является обнаружение конспецифических (КС) звуков и сигналов хищников и адекватное отражение информации о длительности и(или) ритмической структуре звуков. Благодаря частотной настройке слуховых органов кузнечики успешно дискриминируют низкочастотные шумы (в том числе звуки сверчков и цикад) и высокочастотные сигналы, которые издают кузнечиковые и хищники (в частности, летучие мыши). Периферические механизмы подавления импульсации при повышении интенсивности звука расширяет динамический диапазон рецепторов, повышает контраст в их реакциях и способствует повышению отношения сигнал/шум, что облегчает опознание КС и локализацию его источника. Основную роль в локализации источника звука играет направленная чувствительность слуховых органов. Вклад в формирование суммарной диаграммы направленности разных рецепторов неравноценен и меняется при приближении к источнику сигнала: первыми на звук реагируют наиболее чувствительные низкочастотные рецепторы с относительно слабой направленностью, затем, по мере приближения к источнику сигнала с шумовым спектром, включаются и начинают играть ведущую роль высокочастотные рецепторы, в реакциях которых наблюдаются максимальные интерауральные различия.

В I грудном ганглии акустическая информация поступает на входы слуховых интернейронов. Принципы ее кодирование в разных группах кузнечиковых сходны, но, в зависимости от типа ключевых видоспецифических признаков коммуникационного сигнала, в этом процессе ведущую роль у разных видов играют разные нервные элементы. У представителей Tettigoniidae, Conocephalidae и, по-видимому, многих Bradyporidae опознание КС ведется по ритмической организации сигнала, поэтому основную функцию в кодировании видоспецифической информации должны выполнять нейроны, отражающие частоту повторения пульсов (в частности высокочастотные тонические непривыкающие элементы типов А и В). Фазные нейроны главным образом передают информацию об изменениях в акустической среде и могут играть существенную роль в выделении полезного сигнала только у видов, звуки которых представляют собой короткие серии с низкой частотой повторения.

На уровне слуховых интернейронов также осуществляется пространственный анализ, позволяющий в дальнейшем определить направление на источник звука. Наличие интерсегментных и локальных возбуждающих и тормозных интернейронов с разными частотными характеристиками, типом реакции и уровнем привыкания способствует как адекватной передаче информации о сигнале в другие нервные центры, в том числе, очевидно, к элементам нервных сетей, управляющих моторикой, так и контрастированию реакций симметричных нейронов, приводящему к повышению интерауральных различий. Бимодальность многих слуховых интернейронов позволяет наряду с акустической информацией эффективно кодировать также информацию о вибрационных стимулах.

Наши исследования показали, что звуковые сигналы влияют не только на слуховые интернейроны, но и на другие элементы ЦНС, в частности на спонтанно активные нейроны. Последние реагируют на ритмические звуковые сигналы изменением уровня активности и(или) фазовыми перестройками и изменением ритма разрядов. Важной особенностью многих клеток является избирательность их реакций на КС и ГС. Таким образом, при восприятии ритмического звукового сигнала происходят перестройки в разных отделах ЦНС, обеспечивающих ритмическую активность многих систем.

Результаты этологических опытов, проведенных в нашей лаборатории на кузнечиках с ритмическими призывными сигналами, свидетельствуют о том, что периодические фазовые изменения ритма модельного сигнала ухудшают его опознание. Предполагается, что у исследованных видов процесс распознавания стимулируется любым звуком и осуществляется в течение приблизительно 150 мс; для запуска фонотаксиса требуется дополнительное время. У представителей Tettigonioidea, издающих нерегулярно повторяющиеся звуки (например, многих Phaneropteridae), опознание осуществляется по длительности сигнала. Поэтому в анализе КС ведущую роль играют элементы, кодирующие этот параметр стимула. У листовых кузнечиков в проторакальном ганглии были обнаружены нейроны-детекторы длительности звука, позволяющие помимо опознания КС дискриминировать и внутривидовые сигналы, а также элементы с on-off- и off-реакциями, причем в грудном отделе самки был обнаружен нейрон с задержкой off-ответа, соответствующей длительности конспецифической задержки звукового ответа самок.

Опыты с перерезками коннективов на разных уровнях брюшной нервной цепочки у листовых кузнечиков показали, что головные ганглии необходимы для запуска звукового ответа, но фоноответ самки регистрируется даже при резком сокращении объема восходящей и нисходящей информации, поступающей из I грудного ганглия. Таким образом, опознание КС является результатом сложного взаимодействия головных и грудных ганглиев.

Накопленные к настоящему времени этологические и физиологические данные о распознавании КС у разных видов кузнечиков и сверчков позволяют считать, что наиболее адекватно этот процесс описывает резонансная гипотеза, разработанная Р.Д.Жантиевым (1979, 1981). Согласно этим представлениям опознание осуществляется при фазовой подстройке эндогенного эталонного ритма к экзогенному ритму ответной импульсации (виды с ритмическими сигналами), либо при совпадении длительностей эталонного разряда и ответной импульсации, отражающей длительность КС (виды с апериодическими сигналами).

Заключение

Анализ полученных данных позволяет сделать некоторые предположения относительно развития акустических систем связи. Каждая такая система эволюционирует как единое целое, но без сомнения, в первую очередь происходят изменения звуковой сигнализации, приводящие к адаптивным перестройкам других звеньев коммуникационной системы.

Комплексное изучение звуковой коммуникации кузнечиковых нескольких семейств позволяет провести сравнение отдельных компонентов акустических систем связи и проследить пути их специализации.

Исследование физических характеристик звуковых сигналов Tettigonioidea показало, что видоспецифической временной структурой обладают почти исключительно призывные сигналы. В каждой группе кузнечиковых имеются виды, издающие призывный сигнал в виде трели, и виды, звуки которых обладают сложной временной организацией с несколькими ритмическими уровнями.

Усложнение акустического сигнала у кузнечиковых, как, впрочем, и у других насекомых, шло по пути развития иерархии ритмических уровней. Простейшей ритмической организацией обладает трель, следующая ступень развития временной структуры - появление сигналов, издаваемых в виде периодически повторяющихся серий. В этом случае на ритм повторения пульсов накладывается ритм повторения серий, и, наконец, последовательность фраз из однотипных серий представляет собой сигнал с тремя ритмическими уровнями.

Исследования активности мотонейронов, а также моторных центров, управляющих их работой, показали, что в основе двигательных актов (дыхания, локомоции, стридуляции и др.) лежит эндогенная ритмическая активность специализированных элементов - осцилляторов, или пейсмейкеров. Один осциллятор может «обслуживать» генераторы, ритма, управляющие работой разных систем или органов (Тыщенко, 1969; Miller, 1974). Стридуляция прямокрылых не составляет в данном случае исключения, однако, в разных таксонах в основе исходного ритма лежат ритмы разных форм локомоции. Если у кузнечиковых и сверчковых эмиссия звука осуществляется с помощью крылового аппарата и, несомненно, возникла на базе полета, то у саранчовых в этом процессе, очевидно, участвовали центры, управляющие ходьбой.

Анализ осциллограмм звуков прямокрылых позволяет предположить, что усложнение временной организации акустического сигнала происходит в результате усложнения генератора ритма за счет включения в его состав дополнительных осцилляторов с другими временными параметрами. Иными словами, на ритм полета может наложиться ритм дыхания (это предположение неоднократно высказывалось; см., например, Kutsch, 1969) и т.п. Следовательно, иерархия ритмических уровней в сигналах отражает иерархию осцилляторов.

Особый случай представляют собой виды, в сигналах которых чередуются несколько ритмических элементов (Polysarcus spp. (Phaneropteridae), Conocephalus spр. (Conocephalidae), Gampsocleis spp., Platycleis spp. (Tettigoniidae). Эти звуки, очевидно, возникают в результате деятельности генератора ритма, включающуго несколько осцилляторов одного иерархического уровня.

Наряду с усложнением временной организации сигнала во многих таксонах наблюдается противоположная тенденция, а именно, регрессивные изменения во временном паттерне, приводящие к появлению сигналов с одним ритмическим уровнем, в основе которого лежит ритм более высокого порядка - не пульсов, а серий. В этом случае сигнал представлен однопульсовыми сериями.

Эволюцию временного паттерна звукового сигнала кузнечиковых можно представить себе следующим образом. Исходным типом, по-видимому, является непрерывный полифункциональный сигнал (например, трель). Появление генераторов ритма звукового центра, включающих несколько взаимосвязанных осцилляторов одного иерархического уровня, приводит к возникновению звуков со сложной временной структурой, отдельные компоненты которой несут разную функциональную нагрузку. Автономизация таких пейсмейкеров в звуковых центрах может привести к появлению нескольких внутривидовых сигналов. Прогрессивная эволюция звукового центра, приводящая к усложнению временного паттерна сигнала, у кузнечиковых, очевидно, происходит в результате совместной эволюции симпатрических видов. Наряду с этим процессом под действием внутрипопуляционных отношений может наблюдаться увеличение числа пейсмейкеров одного иерархического уровня и их последующая автономизация, возможно, приводящая к появлению нескольких внутривидовых сигналов. Оптимизация же частотных параметров коммуникационных сигналов, очевидно, направлена на снижение потерь при распространении звука в канале связи.

Сравнение комплексов внутривидовых сигналов кузнечиковых и их акустического поведения свидетельствует о трех тенденциях в их развитии.

Первая, характерная для хищных кузнечиков из сем. Tettigoniidae и Conocephalidae связана с совершенствованием территориального поведения и приводит к расширению акустического репертуара за счет появления территориальных сигналов, звуков агрессии и протеста; в этих семействах стридулируют только самцы.

Вторая тенденция в становлении комплекса внутривидовых сигналов, обусловленная развитием защитных механизмов, нашла свое выражение в звуковой коммуникации у открытоживущих растительноядных геофилов из сем. Bradyporidae. Их акустический репертуар включает длительные призывные сигналы, высокий демаскирующий эффект которых компенсируется специфическими защитными адаптациями, главными из которых являются автогеморрагия и способность особей обоего пола издавать сигналы протеста.

Третье, на наш взгляд, наиболее интересное направление эволюции акустической сигнализации Tettigonioidea прослеживается у растительноядных Phaneropteridae, неотропических Pseudophyllidae и фитофильных Bradyporidae (Ephippigerinae). Оно обусловлено давлением хищников и совершенствованием брачного поведения.

Наиболее важной особенностью звуков Phaneropteridae и Bradyporidae является их сравнительно низкая частота повторения (от одной в несколько минут до 60 в минуту). Адаптивное значение этого урежения сигнала определяется необходимостью снизить демаскирующий эффект звука. Будучи беззащитными малоподвижными фитофагами, эти кузнечики, по-видимому, могут в какой-то мере оградить себя от хищников и паразитов только за счет урежения и десинхронизации сигналов. В этом случае звуковые посылки будут поступать в непредсказуемые моменты времени из нескольких точек пространства, что максимально осложняет процесс локализации источника звука.

Второе преимущество урежения сигнала связано с сокращением энергетическеих затрат. Однако эта модификация сигнала имеет и два существенных недостатка: снижение помехоустойчивости (и как следствие - сокращение дальности связи) и сокращение числа ритмических уровней сигнала ведущее к ограничению его информационной емкости. Иначе говоря, урежение сигнала затрудняет его локализацию не только хищникам, но и конспецифическим особям и делает маловероятным использование частоты повторения серий для опознания сигнала. С физиологической же точки зрения увеличение интервалов между звуковыми стимулами сокращает возможности временной суммации в ЦНС насекомых.

Для компенсации этих недостатков в акустической системе связи развивается целый ряд новых приспособлений, важнейшим из которых является вовлечение в процесс сигнализации самок. Установление «диалога» между лоцирующим и лоцируемым объектами резко повышает надежность связи и позволяет вводить новые информативные элементы, такие, например, как величина задержки ответов самки.

Другая компенсирующая адаптация связана с усложнением серий. При значительной скважности сигнала самки кузнечиковых должны опознать его по немногим и даже одиночным предъявлениям. В этом случае серия является единственным носителем всей видоспецифической информации.

У большинства кузнечиков сем. Tettigoniidae, Conocephalidae и сверчковых (Grylloidea) серии, как правило, состоят из нескольких пульсов, что обеспечивает широкие возможности для кодирования видоспецифической информации. У большинства же рассматриваемых нами видов Phaneropteridae серии представлены только одним или двумя пульсами. Дополнительные щелчки не используются для распознавания конспецифических сигналов самцов, поэтому носителем видоспецифической информации является сам пульс.

Таким образом, акустическая система связи кузнечиков сем. Phaneropteridae и подсем. Ephippigerinae (Bradyporidae) обладает комплексом специфических черт, отличающих ее от аналогичных систем представителей многих других таксонов. Проведя соответствующе сравнение, мы пришли к выводу, что два типа акустической системы сигнализации, условно названные нами «быстрым» и «медленным», различаются по следующим основным свойствам (Жантиев, Корсуновская, 1986):

Быстрая система

Медленная система

1. Высокая частота повторения серий

1. Низкая частота повторения серий

2. Стабильная ритмика, 2-3 ритмических уровня

2. Аритмичность, обычно один ритмический уровень

3. Сигналы распознаются главным образом по ритмической организации

3. Сигналы распознаются преимущественно по длительности и внутренней структуре пульса

4. Самки не участвуют в сигнализации или издают только сигнал протеста

4. У многих видов самки участвуют в сигнализации

5. Высокая помехоустойчивость

5. Низкая помехоустойчивость

6. Высокие энергетические затраты

6. Низкие энергетические затраты

7. Высокий демаскирующий эффект

7. Низкий демаскирующий эффект

Медленная сигнализация, несомненно, развивается из быстрой. Начальный этап этих преобразований мы, по-видимому, можем наблюдать у неотропических Pseudophyllidae. Для них характерна низкая частота повторения и длительность звуковых сигналов, нередко сочетающихся с тремуляцией. У некоторых видов акустические сигналы почти полностью замещены вибрационными. Данные особенности сигнализации и поведения этих кузнечиков можно рассматривать как форму защиты от хищников - летучих мышей, которые охотятся на насекомых, пеленгуя их звуковые сигналы (Belwood, Morris, 1987; Heller, 1995). Наиболее полное выражение «медленная система» сигнализации нашла у многих видов Phaneropteridae и Bradyporidae. «Быстрая система» характерна для подавляющего большинства Tettigoniidae и Conocephalidae, но во всех этих таксонах имеются промежуточные и уклоняющиеся виды, поэтому можно предполагать, что тенденция к переходу от быстрой к медленной системе сигнализации развивается независимо в разных группах длинноусых прямокрылых.

Существенные различия в механизмах кодирования видоспецифической информации в призывных сигналах кузнечиковых с быстрой и медленной акустическими системами позволяет предполагать, что и приемные отделы слуховой системы у этих групп Tettigonioidea обладают некоторыми особенностями, поэтому мы провели сравнение их периферических и центральных отделов. Его результаты свидетельствуют о том, что тимпанальные органы кузнечиковых имеют общий для надсемейства план строения и, несмотря на разное число сенсилл в слуховом гребне у разных видов, обеспечивают амплитудный, частотный и временной анализ звука в широких пределах. Однако были выявлены и различия в обработке акустической информации у кузнечиковых с быстрой и медленной системами акустической сигнализации. Так, у Phaneropteridae, в отличие от Tettigoniidae, Conocephalidae и Bradyporidae, имеются высокоспециализированные элементы, расширяющие возможности обработки временных параметров звуковой посылки, - нейроны с on-off- и оff-реакциями и детекторы щелчков. У листовых кузнечиков on-off-реакции на звук были обнаружены даже у слуховых рецепторов (но лишь при высокой интенсивности стимула).

Таким образом, результаты исследования основных компонентов акустических систем связи кузнечиковых позволяют выделить три основных типа этих систем. Первые два, которые мы назвали теттигониоидным и деракантоидным, характерны для Tettigonioidea с быстрым типом сигнализации, а третий, фанероптероидный, - для кузнечиковых с медленными акустическими системами.

Нетрудно заметить, что все звенья акустических систем связи тесно взаимосвязаны и, несомненно, каждая такая система эволюционирует как единое целое, хотя темпы эволюции ее отдельных компонентов различны. Так, большое разнообразие во временной структуре призывных звуковых сигналов даже в пределах одного рода (см., например, роды Platycleis и Poecilimon) свидетельствует о высокой пластичности отделов ЦНС, управляющих стридуляцией. В то же время слуховые органы и центральные отделы слуховой системы, возникшие на основе виброчувствительной системы, не подверглись существенным перестройкам. Рецепторы тимпанального органа сохранили способность воспринимать вибрации, хотя коммуникационная роль последних весьма ограниченна. Механизмы обработки акустической информации в ЦНС оказались сходными во всех исследованных семействах: частотный анализ звука осуществляется нейронами трех типов, обработка временных и амплимтудных характеристик обеспечивается фазными и тоническими клетками, и лишь в одном семействе - Phaneropteridae - наблюдается расширение функциональных возможностей слуховой системы за счет появления элементов, отмечающих конец стимула и выделяющих сигналы определенной длительности.

Как мы видим, выделенные нами типы акустических систем связи характерны для определенных таксономических группировок. Это, однако, не означает, что все представители изученных таксонов обладают акустическими системами связи строго определенного типа. Напротив, вследствие исключительной пластичности некоторых звеньев акустических систем, во многих семействах можно найти их модификации, свойственные представителям других таксонов. Как выше указывалось, тенденция к урежению сигналов независимо развивается в семействах Tettigoniidae и Bradyporidae, но эти изменения не затрагивают другие компоненты акустических систем. Среди листовых кузнечиков выделяются виды рода Polysarcus, издающие трелеподобные сигналы, но такая демаскировка стала возможной в связи с наличием защитных механизмов (автогеморрагии) и не повлекла за собой изменений в слуховой системе. Самки некоторых Poecilimon утратили способность издавать звуки, однако это явление возникло сравнительно недавно и затронуло только часть видов рода.

Таким образом, в эволюции акустических систем связи прослеживаются параллелизмы, приводящие в отдельных случаях к конвергенциям. Однако комплексный анализ акустических систем связи позволяет, опираясь на более консервативные элементы системы, находить исходный тип акустической системы и определять причины адаптивных перестроек.

Выводы

Подавляющее большинство кузнечиковых (Тettigonioidea) издает звуки с помощью звукового аппарата фрикционного типа, расположенного на надкрыльях (тегминального). Как правило, способностью издавать звуки обладают только самцы, но у представителей сем. Bradyporidae, Phaneropteridae и некоторых других стридулируют также и самки. Звуковой аппарат самок гомологичен (Bradyporidae, Zichyinae) или негомологичен (другие таксоны кузнечиковых) таковому самцов.

Самцы кузнечиковых издают акустические сигналы следующих типов: призывный, прекопуляционный, территориальный, маскирующий, ответный и протеста. Стридулирующие самки в большинстве случаев способны продуцировать лишь ответные звуки и сигналы протеста. У одного вида число акустических сигналов обычно не превышает трех.

Регистрация мышечной активности во время стридуляции у кузнечиков разных таксонов показала, что при издавании разных внутривидовых сигналов или разных компонентов призывного сигнала происходит перестройка работы нервно-мышечного аппарата звуковых органов, приводящая к изменению не только ритмической структуры, но и спектра излучаемого звука.

Кузнечиковые издают призывные звуки в виде периодически повторяющихся пульсов, серий, трелей и фраз. Сигналы со сложным временным рисунком зарегистрированы у представителей всех исследованных таксонов, но для многих видов Phaneropteridae, Pseudophyllidae и Bradyporidae (Ephippigerinae) характерны апериодические звуки или сигналы с одним ритмическим уровнем.

5. У кузнечиковых существует два типа акустической сигнализации: «быстрый» и «медленный». Они различаются по частоте и ритму повторения звуковых посылок, информативным параметрам сигнала, участию самок в сигнализации, помехоустойчивости сигнала, энергетическим затратам при стридуляции и демаскирующему эффекту издаваемых звуков.

6. Факторами эволюции временных параметров звуков Tettigonioidea, по-видимому, являются необходимость повышения помехоустойчивости сигнала в акустической среде и влияние хищников, приводящее к снижению акустической активности насекомых и возникновению апериодических и(или) очень коротких сигналов. Разнообразие частотных характеристик звуковых сигналов определяется физическими свойствами звукоизлучающих и звуковоспринимающих систем. Эволюция сигнала направлена на выработку спектральных характеристик, обеспечивающих его распространение с минимальными потерями и искажениями в канале связи.

7. Звуковые сигналы кузнечиковых можно использовать для решения таксономических проблем. Временной рисунок сигнала (нередко также и его частотный спектр) является одним из самых надежных критериев для различения видов и подвидов. Для таксонов высшего ранга использование физических параметров звуков в качестве дифференциального критерия затруднительно, т.к. звуковая сигнализация, очевидно, является в большей мере субъектом эволюции акустического сообщества, а не таксона.

8. Результаты этологических экспериментов, проведенных на представителях семейств Conocephalidae, Tettigoniidae и Phaneropteridae, показали, что основную роль при опознании конспецифических звуков играют амплитудно-временные параметры сигнала: частота повторения пульсов в трелях и сериях, частота повторения серий, реже - число пульсов и длительность межпульсовых интервалов. У видов с апериодическими сигналами основным компонентом, по которому ведется распознавание, является длительность пульса, его внутренняя структура, длительность задержки звукового ответа самки на призывный сигнал (некоторые Phaneropteridae).

9. Диапазон частот, воспринимаемых тимпанальными органами кузнечиковых, составляет 60-70 кГц (Phaneropteridae, Bradyporidae) или превышает 100 кГц (Tettigoniidae, Conocephaiidae). Максимальная чувствительность этих органов у большинства изученных видов наблюдается в области доминирующих частот конспецифических сигналов.

10. Впервые выявлена тонотопическая организация слухового гребня: обнаружено повышение оптимальных частот хордотональных сенсилл по мере уменьшения их размеров от проксимального к дистальному концу слухового гребня. Рецепторы промежуточного органа реагируют на низкочастотные высокоамплитудные звуки.

11. У слуховых рецепторов кузнечиков сем. Tettigoniidae и Phaneropteridae при высоком уровне стимула обнаружено периферическое подавление импульсации, аналогичное латеральному торможению рецепторов других сенсорных систем. Это явление способствует контрастированию признаков воспринимаемого стимула и повышению соотношения сигнал/шум.

12. Установлено, что все рецепторы тимпанального органа воспринимают также вибрационные стимулы; от сенсилл специализированного виброчувствительного подколенного органа они отличаются оптимальными частотами и порогами реакции. Таким образом, слуховые органы Tettigonioidea, максимальное число рецепторов которых не превышает 50, обладают редкой в животном мире способностью воспринимать и анализировать как низкочастотные вибрации, так и ультразвуки, превышающие по частоте 120 кГц.

13. Центральные слуховые нейроны кузнечиковых делятся на сегментарные и интерсегментные. Выделено 3 типа частотно-пороговых характеристик слуховых интернейронов, общих для кузнечиковых всех исследованных таксонов, - широкополосные, высокочастотные и низкочастотные. У всех кузнечиковых обнаружены интернейроны, дающие фазные и тонические ответы, а у Phaneropteridae, кроме того, клетки с реакциями on-off- и off-типа, а также "детекторы щелчков".

14. Принципы обработки акустической информации в грудном отделе ЦНС у всех Tettigonioidea сходны, но ведущую роль в процессе распознавания конспецифических звуков у разных видов играют разные элементы в зависимости от того, какие параметры сигнала являются информативными. У некоторых листовых кузнечиков в I грудном ганглии происходит дискриминация внутривидовых сигналов. Нейроны III грудного ганглия не участвуют в распознавании звуковых сигналов.

15. Звуковые сигналы помимо центральных слуховых нейронов влияют также на интернейроны других модальностей, в частности на спонтанно активные нейроны. Последние реагируют на ритмические звуковые сигналы изменением уровня активности и(или) фазовыми перестройками и изменением ритма разрядов. Многим клеткам свойственна селективность реакций при предъявлении кон- и гетероспецифических сигналов.

16. Полученные к настоящему времени этологические и физиологические данные о распознавании конспецифического сигнала у разных видов кузнечиковых и сверчковых позволяют считать, что наиболее адекватно этот процесс описывает резонансная гипотеза, согласно которой опознание осуществляется при фазовой подстройке эндогенного эталонного ритма к экзогенному ритму воспринимаемого сигнала (у видов с ритмическими сигналами), либо при совпадении длительностей эталонного разряда и ответной импульсации, отражающей длительность конспецифического сигнала (у видов с апериодическими сигналами).

17. У кузнечиковых выделено 3 типа акустических систем связи, различающиеся по числу и характеру звуковых сигналов, принципам кодирования видоспецифической информации, механизмам обработки акустической информации в слуховой системе и некоторым другим признакам.

18. Акустические системы связи эволюционируют как единое целое, но темпы эволюции их отдельных компонентов различны - наиболее лабильны центры, управляющие стридуляцией, слуховая система, напротив, отличается значительным консерватизмом и подвергается адаптивной перестройке только в одном семействе (Phaneropteridae). В развитии акустических систем связи кузнечиковых разных таксонов прослеживаются параллелизмы и конвергенции, однако комплексный анализ этих систем позволяет, опираясь на более консервативные элементы, находить исходный тип акустической системы и определять причины адаптивных перестроек.

Приложения

В приложениях приведены осциллограммы звуковых сигналов (приложение А); амплитудно-частотные спектры (приложение Б) и электронограммы стридуляционных жилок кузнечиковых (приложение В).

Список работ, опубликованных по теме диссертации

1. Звуковая сигнализация и некоторые характеристики слуховой системы медведок (Orthoptera, Gryllotalpidae) / Р.Д.Жантиев, О.С.Корсуновская // Зоол. ж. 1973. Т. 52. С. 1789-1801

2. Реакция на звук нисходящих нейронов в шейных коннективах сверчка Gryllus bimaculatus DeGeer (Orthoptera, Gryllidae) / Р.Д.Жантиев, О.С.Корсуновская // Энтомол.обозр. 1977. Т. 56. С. 248-257.

3. Морфофункциональная организация тимпанальных органов кузнечика Tettigonia cantans (Orthoptera, Tettigoniidae) / Р.Д.Жантиев, О.С.Корсуновская // Зоол. ж. 1978. Т. 57. С. 1012-1016

4. Звуковая сигнализация стеблевого сверчка Oecanthus pellucens Scop. (Orthoptera, Oecanthidae) / О.С.Корсуновская // Вестн. Мос. Ун-та. Сер. 6. Биология. 1978. № 4. С. 48-51.

5. Насекомые. Каталог отечественных записей голосов животных (1967-1980) / Е.М.Юмакова, О.С.Корсуновская // под.ред. Б.Н.Вепринцева, Пущино, 1981. Ч. 3. 48 c.

6. Звуки и слух Magrettia mutica (Orthoptera, Stenopelmatidae) / Р.Д.Жантиев, И.Н.Калинкина, О.С.Корсуновская // Зоол. ж. 1982. Т. 61. С. 1431-1434.

7. Частотные характеристики слуховых рецепторов сверчка Gryllus bimaculatus DeGeer (Orthoptera, Gryllidae) / В.СЧуканов, О.С.Корсуновская, Р.Д.Жантиев // Энтомол. обозр. 1982. Т. 61. С. 3-7.

8. Структура и функция двух слуховых интернейронов кузнечика Tettigonia cantans Fuess. (Orthoptera, Tettigoniidae) / Р.Д.Жантиев, О.С.Корсуновская // Энтомол, обозр. 1983. Т. 62. С. 462--469.

9. Механизмы распознавания звуковых сигналов у листовых кузнечиков / Р.Д.Жантиев, О.С.Корсуновская // Поведение животных в сообществах. Материалы 3-й Всес. конф. по поведению животных. Т. 2. М.: Наука. 1983. С. 14-15.

10. Звуковая коммуникация листовых кузнечиков (Tettigoniidae, Phaneropterinae) европейской части СССР / Р.Д.Жантиев, O.C.Корсуновская //Зоол. ж. 1986. Т. 65. С. 1151--1163.

11. Акустическая коммуникация кузнечиковых (Orthoptera, Tettigonioidea) / О.С.Корсуновская // Автореф. … дисс. канд. биол. наук. М. 1987. - 24 с.

12. Sound communication of Phaneropteridae (Orthoptera) / R.D.Zhantiev, O.S.Korsunovskaya // Sensory system and communication in Arthropods. Advances in life sciences. Basel etc.: Birkhauser Verlag. 1990. P. 403-406.

13. Auditory interneurons in mole crickets (Orthoptera: Gryllotalpidae) / R.D.Zhantiev, O.S.Korsunovskaya // Sensory system and communication in Arthropods. Advances in life sciences. Basel etc.: Birkhauser Verlag. 1990. P. 407-411.

14. Слуховые интернейроны листовых кузнечиков (Orthoptera, Phaneropteridae)/ О.С.Корсуновская, Р.Д.Жантиев // Энтомол. обозр. 1992. Т. 71. С. 721-730

15. Акустическая коммуникация пустынных кузнечиков (Bradyporidae, Deracanthinae) / Р.Д.Жантиев, О.С.Корсуновская // Тез. докл. межд. симп. "Коммуникация насекомых. Современные методы защиты растений" (22-25.3.1994). Харьков. С.44-46.

16. Acoustic communication in desert bushcrickets (Orthoptera, Bradyporidae)/ O.S.Korsunovskaya, R.D.Zhantiev // 9th Int. meeting on insect sound and vibration, Seggau, 22-25 Sept. 1994. P. 50

17. Акустическая коммуникация пустынных кузнечиков (Bradyporidae, Deracanthinae) / Р.Д.Жантиев, О.С.Корсуновская, С.Д.Бызов // Зоол. ж. 1995. Т. 74. С. 58-72.

18. Responses of auditory interneurons to conspecific and heterospecific acoustic signals in freely moving crickets Gryllus bimaculatus Deg. / R.D.Zhantiev, V.S.Chukanov, O.S.Korsunovskaya, M.V.Fyodorova // Proc. of the 24th Goettingen Neurobiology Conf. 1996. V. 2

19. Suppression of primary auditory neurons in bushcrickets (Orthoptera, Tettigoniidae) / R.Zhantiev, O.Korsunovskaya // Proc. of the 25th Goettingen Neurobiology Conf. 1997. P. 324

20. Реакции слуховых интернейронов на коммуникационные звуковые сигналы у свободноподвижного сверчка Gryllus bimaculatus Deg. (Orthoptera, Gryllidae) / Р.Д.Жантиев, О.С.Корсуновская, М.В.Федорова, В.С.Чуканов // Вестник МГУ. Сер. Биология. 1997. № 1. С. 37-41.

21. Suppression of responses of auditory receptors in bushcrickets (Orthoptera, Tettigoniidae) / R.Zhantiev, O.Korsunovskaya // Abstracts of the 5th east european conference of the International society for invertebrate neurobiology "Simpler nervous systems", Sept. 9-12,1997, Moscow. 1997. P.99

22. Подавление импульсной активности рецепторов тимпанального органа кузнечиков (Orthoptera, Tettigoniidae) / Р.Д.Жантиев, О.С.Корсуновская // Сенсорные системы. 1997. Т. 11. С. 118-127.

23. Check-list of European Orthoptera / K.-G.Heller, O.S.Korsunovskaya, D.R.Ragge, V.Yu.Vedenina, F.Willemse, R.D.Zhantiev, L.I.Frantsevich // Articulata, 1998, Beih. 7. S. 1-61.

24. Торможение ответов на звук рецепторов тимпанального органа кузнечиков (Orthoptera, Tettigonioidea) / Р.Д.Жантиев, О.С.Корсуновская // Сб. научн. тр. «Проблемы энтомологии в России». Т. 1. 1998. С. 156-157.

25. Ответы слуховых интернейронов на коммуникационные звуковые сигналы у свободноподвижных сверчков Gryllus bimaculatus Deg. (Orthoptera, Gryllidae) / Р.Д.Жантиев, В.С.Чуканов, О.С.Корсуновская, М.В.Федорова // Сб. научн. тр. «Проблемы энтомологии в России». Т. 2. 1998. С. 205.

26. Культивирование прямокрылых насекомых в лабораторных условиях / О.С.Корсуновская // Беспозвоночные животные в коллекции зоопарков. М: Правительство Москвы, ЕРАЗА, Московский зоопарк. 2002. С.

27. Влияние звуковых сигналов на спонтанную активность интернейронов кузнечиков (Orthoptera, Tettigoniidae) / Р.Д.Жантиев, О.С.Корсуновская, В.С.Чуканов // Ж. эвол. биохим. физиол. 2004. Т. 40. С. 531-538.

28. Эволюция акустических сигналов кузнечиков трибы Drymadusini (Orthoptera, Tettigoniidae) / О.С.Корсуновская, Р.Д.Жантиев, В.Ю.Савицкий // Тез. докл. XII съезда РЭО. СПб. 2002. С. 179-180.

29. Влияние звуковых сигналов на ритмическую активность интернейронов кузнечиков (Orthoptera, Tettigoniidae) / Р.Д.Жантиев, О.С.Корсуновская, В.С.Чуканов // Тез. докл. XII съезда РЭО. СПб. 2002. С. 120-121.


Подобные документы

  • Общая характеристика двигательной активности животных. Ознакомление со строением системы тканей и органов - опорно-двигательным аппаратом. Описание основных функций скелета животного. Изучение особенностей нервно-мышечной части двигательного аппарата.

    реферат [1,2 M], добавлен 26.10.2015

  • Характеристика анатомо-физиологических и нервно-психических особенностей развития подростков. Изучение теорий подросткового возраста. Параметры и формула полового развития девочек и мальчиков. Нервно-психологическое состояние в подростковом возрасте.

    презентация [280,4 K], добавлен 27.10.2014

  • Исследование расположения и функций мозжечка, отдела головного мозга позвоночных, отвечающего за координацию движений, регуляцию равновесия и мышечного тонуса. Описания процесса обработки нервных сигналов, поступающих от органов чувств, их корректировки.

    презентация [2,9 M], добавлен 25.11.2011

  • Происхождение домашней кошки, ее предки, приспособляемость к окружающей среде. Дыхательная система собак. Использование ими разных звуковых сигналов в общении. Направления развития выжившей в условиях естественного отбора потомков группы Pseudaelurus.

    контрольная работа [25,4 K], добавлен 26.11.2013

  • Описание аппарата Гольджи: структура и функции. Анализ деятельности аппарата Гольджи в клетке. Сущность и особенности фибриллярных структур. Сортировка белков и передача сигнала. Общая характеристика молекулярного механизма функционирования аппарата.

    реферат [371,7 K], добавлен 13.12.2008

  • Характеристика насекомых России, особенностей инвентаризации фауны дневных чешуекрылых Костромской области. Особенности жизнедеятельности насекомых. Исследование жужелицы, как биоиндикатора в агроценозах. Размерно-весовые показатели дождевых червей.

    реферат [22,7 K], добавлен 12.04.2010

  • Сравнительный анализ аппарата органов и системы органов. Перечисление аппаратов органов. Сравнительный анализ продолговатого и спинного мозга. Зародышевые листки с описанием всех органов, являющихся их производными. Строение паренхиматозных органов.

    контрольная работа [27,7 K], добавлен 25.12.2011

  • Отдел цианобактерии: строение клетки, питание, размножение. Грибы-паразиты, вызывающие болезни растений из группы низших растений. Анализ особенностей строения вегетативных и генеративных органов семейства розанные. Формула цветка. Основные представители.

    контрольная работа [310,7 K], добавлен 23.08.2016

  • Характеристика особенностей строения и процессов жизнедеятельности класса земноводных: семейств углозубых, хвостатых, дальневосточных тритонов, лягушкозубых, саламандровых, бесхвостых, круглоязычных, жерлянок, чесночниц, крестовок, квашк, лягушек.

    реферат [857,6 K], добавлен 21.04.2010

  • Изучение органов нервной системы как целостной морфологической совокупности взаимосвязанных нервных структур, обеспечивающих деятельность всех систем организма. Строение механизмов зрительного анализатора, органов обоняния, вкуса, слуха и равновесия.

    реферат [23,5 K], добавлен 21.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.