Физиология и биофизика организма человека

Понятие о раздражимости и возбуждении. Процесс воздействия раздражителя на клетку, ткань, организм. Законы раздражения, параметры возбудимости. Действие постоянного тока на возбудимые ткани. Механизмы внешнего дыхания. Значение пищеварения и его виды.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 15.03.2015
Размер файла 259,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Нормальная последовательность сокращений отделов сердца обусловлена, особенностями проведения возбуждения по его проводящей системе. Возбуждение начинается в ведущем водителе ритма - синоатриалъном узле. От него, по межпредсердным ветвям пучка Бахмана, возбуждение со скоростью 0,9т 1,0 м/сек распространяется по миокарду предсердий. Начинается их систола. Одновременно от синусного узла возбуждение по межузловым путям Венкенбаха и Торелла достигает атриовентрикулярного узла. В нем скорость проведения резко снижается до 0,02-0,05 м/сек. Возникает атриовентрикулярная задержка Т.е. проведение импульсов к желудочкам задерживается на 0,02-0,04 сек. Благодаря этой задержке, кровь во время систолы предсердий поступает в еще на начавшие сокращаться желудочки. От атриовентрикулярного узла по «тучку Гиса, его ножкам и их ветвям возбуждение идет со скоростью 2-4 м/сек. Благодаря такой высокой скорости оно одновременно охватывает межжелудочковую перегородку и миокард обоих желудочков. Скорость проведения возбуждения по миокарду желудочков 0,8-0,9 м/сек.

Механизмы возбудимости, автоматии и сокращений кардиомиоцитов

возбуждение клетка дыхание пищеварение

Как и в других возбудимых клетках возникновение мембранного потенциала кардиомиоцитов обусловлено избирательной проницаемостью их мембраны для ионов калия. Его величина у сократительных кардиомиоцитов составляет 80-90 мВ, а у клеток синоатриального узла 60-65 мВ. Возбуждение кардиомиоцитов проявляется генерацией потенциалов действия, которые имеют своеобразную форму. В них выделяются следующие фазы:

1. Фаза деполяризации

2. Фаза быстрой начальной реполяризации

3. Фаза замедленной реполяризации

4. Фаза быстрой конечной реполяризации (рис).

Длительность ПД кардиомиоцитов составляет 200-400 мсек. Это во много раз больше, чем у нейронов или скелетных миоцитов. Амплитуда ЛД около 120 мВ. Фаза деполяризации связана с открыванием натриевых и кальциевых «анадод-мембраны, по которым эти ионы входят в цитоплазму. Фаза быстрой начальной реполяризации обусловлена инактивацией натриевых, а замедленной кальциевых каналов. Одновременно активируются калиевые каналы. Ионы калия выходят из кардиомиоцитов, развивается фаза быстрой конечной реполяризации.

Автоматия, т.е. генерация спонтанных ПД пейсмекерными клетками, обусловлена тем, что их мембранный потенциал не остается постоянным. В период диастолы в Р-клетках синоатриального узла происходит его медленное уменьшение. Это называется медленной диастолической деполяризацией МДД (рис). Когда ее величина достигает критического уровня, генерируется ПД, который по проводящей системе распространяется на все сердце. Возникает систола предсердий, а затем желудочков. Медленная диастолическая деполяризация связана с постепенным нарастанием натриевой проницаемости мембраны атипических кардиомиоцитов. Истинными пейсмекерами является лишь небольшая группа Р-клеток синоатриального узла. Остальные Р-клетки проводящей системы являются латентными водителями ритма. Пока спонтанные ПД поступают из синоатриального узла, латентные пейсмекеры подчиняются его ритму. Это называется усвоением ритма. Но как только проведение нарушается, в них начинают генерироваться собственные спонтанные ПД. Поэтому при некоторых заболеваниях возникает патологическая импульсация в клетках проводящей системы, миокарде предсердий и желудочков. Такие очаги автоматии называют эктопическими т.е. смещенными.

Сокращение кардиомиоцитов, как и других мышечных клеток является следствием генерации ПД. В них, как и скелетных миоцитах, имеется система трубочек саркоплазматического ретикулума, содержащих ионы кальция. При возникновении ПД эти ионы выходят из трубочек в саркоплазму. Начинается скольжение миофибрилл. Но в сокращении кардиомиоцитов принимают участие и ионы кальция, входящие в них в период генерации ПД. Они увеличивают длительность сокращения и обеспечивают пополнение запасов кальция в трубочках.

Соотношение побуждения, возбудимости и сокращения сердца. Нарушения ритма и функций проводящей системы сердца

В связи с тем, что сердечная мышца является функциональным синцитием, сердце отвечает на раздражение по закону «все или ничего». При исследовании возбудимости сердца в различные фазы сердечного цикла было установлено, что если нанести раздражение любой силы в период систолы, то его сокращения не возникает. Следовательно во время систолы сердце находится в фазе абсолютной рефрактерности. В период диастолы на пороговые раздражения сердце не реагирует. При нанесении сверхпорогового раздражения возникает его сокращение. Т.е. во время диастолы оно находится в фазе относительной рефрактерности. В начале общей паузы сердце находится в фазе экзальтации (рис). При сопоставлении фаз потенциала действия и возбудимости установлено, что фаза абсолютной рефрактерности совпадает с фазами деполяризации, быстрой начальной и замедленной реполяризации. Фазе относительной рефрактерности соответствует фаза быстрой конечной реполяризации. Продолжительность фазы абсолютной рефрактерности 0,25-0,3 сек, а относительной 0,03 сек. Благодаря большой длительности рефрактерных фаз сердце может сокращаться только в режиме одиночных сокращений. *,

В норме частота сердцебиений в покое зависит от возраста, пола, тренированности. У детей их частота больше, чем у взрослых. У женщин выше, чем у мужчин, а физически слабых людей больше, чем у тренированных.[При определенных состояниях наблюдаются изменения ритма работы сердца -аритмии. Это нарушения правильности чередования сердечных сокращений; К физиологическим аритмиям относится дыхательная. Это зависимость частоты сердцебиений от фаз дыхания. На вдохе они урежаются, а на выдохе учащаются. Обычно дыхательная аритмия наблюдается в юношеском возрасте и у спортсменов. Она связана с колебаниями активности центров вагуса придыхании.

Если на сердце, находящееся в фазе относительной рефрактерности, нанести сверхпороговое раздражение, то возникнет внеочередное сокращение - экстрасистола. Амплитуда экстрасистолы будет зависеть от того, в какой момент згой фазы нанесено раздражение. Чем оно ближе к концу относительной рефрактерности, тем больше ее величина. После экстрасистолы следует более длительный, чем обычно период покоя сердца. Он называется компенсаторной паузой. Она возникает вследствие того, что очередной потенциал действия, генерирующийся в синоатриальном узле, поступает к мышце сердца в период ее рефрактерности обусловленный экстрасистолой (рис). У человека экстрасистолы возникают вследствие поступлений внеочередных импульсов из.эктопических очагов автоматии. Ими могут быть скопления Р-клеток в миокарде предсердий, атриовентрикуляряом узле, пучке Гиса, волокнах Пуркинье желудочков. Поэтому выделяют предсердные, атриовентрикулярные и желудочковые экстрасистолы. При предсердных и атриовентрикулярных экстрасистолах возникает неполная компенсаторная пауза, которая немного длительнее обычного сердечного цикла При желудочковых полная компенсаторная пауза В последнем случае нарушается и ритм пульса Экстрасистолы могут возникать у здоровых людей при эмоциональном напряжении, курении, злоупотреблении алкоголем. Но чаще это проявление патологических изменений в* проводящей системе. В тяжелых случаях возникают множественные очаги возбуждения. Развивается фибрилляция предсердий и желудочков. Это асинхронные сокращения отдельных групп кардиомиоцитов. В результате фибрилляции желудочков наблюдаются тяжелые нарушения гемодинамики и смерть. Для выведения из этого состояния применяется дефибрилляция. Другая группа изменений проводящей системы - блокады. Это нарушения проведения возбуждения. При патологии сердечной мышцы наблюдаются синоаурикулярные, атриовентрикулярные блокады, блокады пучка Гиса и его ножек. Их делят на полные и неполные. Например, при полной атриовентрикулярной блокаде ни один импульс из синоатриального узла не проходит к атриовентрикулярному. Поэтому предсердия сокращаются: в нормальном синусном ритме, а к желудочкам идут импульсы от центра автоматии .2-го порядка, т.е. атриовентрикулярного узла. Вследствие этого желудочки сокращаются в атриовентрикулярном ритме. Происходит рассогласование ритмов предсердий и желудочков. При неполной АВ блокаде уменьшается скорость проведения возбуждения от СА узла до желудочков или до них доходит лишь часть импульсов. Например, из 2-х или 3-х импульсов будет доходить один.

Механизмы регуляции сердечной деятельности

Приспособление сердечной деятельности к изменяющимся потребностям организма осуществляется с помощью механизмов миогенной, нервной и гуморальной регуляции.

Механизмами миогенной регуляции являются гетерометрический и гомеометрический. Гетерометрический механизм заключается в увеличении силы сердечных сокращений по мере растяжения сердечной мышцы. Первым эту зависимость обнаружил Старлинг, который сформулировал закон сердца: чем больше мышца сердца растягивается в диастолу, тем сильнее ее сокращение в период систолы. Следовательно, чем больше крови поступает в камеры сердца в диастолу, тем сильнее сокращение мышцы и количество выбрасываемой крови в систолу. Однако закон Старлинга соблюдается лишь при умеренном растяжении сердечной мышцы. При ее перерастяжении сила сокращении, а следовательно систолический объем крови падают. В состоянии покоя систолический объем крови, т.е. ее количество выбрасываемое из желудочков, составляет 60-70 мл. Но это лишь половина крови находящейся в желудочках. Остающаяся кровь называется резервным объемом. При физической нагрузке увеличивается венозный приток к сердцу, сила его сокращений. Поэтому систолический объем возрастает до 120-150 мл. Гетерометрический механизм наиболее чувствителен и включается раньше других. Увеличение силы сокращений сердца наблюдается при увеличении объема циркулирующей .крови всего на 1%. Рефлекторные механизмы активируются лишь при возрастании ОЦК на 5-10%. Гомеометрические механизмы не связаны с растяжением миокарда. Наиболее важным из них является эффект Анрепа. Он состоит в том, что при увеличении давления в аорте систолический объем первоначально снижается. Затем сила сокращений и систолический выброс растут. Миогенные механизмы регуляции обеспечивают приспособление кровообращения к относительно кратковременным нагрузкам. При длительном повышении нагрузки возникает рабочая гипертрофия миокарда: увеличиваются длина и диаметр мышечных волокон. Например у спортсменов вес сердца может возрастать в 1,5-2 раза. При постоянной перегрузке одного отдела сердца также возникает его гипертрофия. Например гипертрофия левого желудочка развивается при гипертонической болезни.

Нервная регуляция сердечной деятельности осуществляется симпатическим и парасимпатическим отделами вегетативной нервной системы. Ядра блуждающего нерва, иннервирующего сердце, расположены в продолговатом мозге. Блуждающие нервы заканчиваются на интрамуральных ганглиях. Постганглионарные волокна правого вагуса идут к синоатриатъному узлу, а левого к атриовентрикулярному. Кроме того они иннервируют миокард соответствующих предсердий. Парасимпатических окончаний в миокарде желудочков нет. Благодаря такой иннервации, правый вагус влияет преимущественно на частоту сердцебиений, а левый на скорость проведения возбуждения в атриовентрикулярном узле.

Тела симпатических нейронов, иннервирующих сердце, расположены в боковых рогах 5-ти верхних грудных сегментов спинного мозга. Аксоны этих нейронов идут к звездчатому ганглию. От него отходят постганглионарные волокна, многочисленные ветви которых иннервируют и предсердия и желудочки. В сердце имеется развитая внутрисердечная нервная система, включающая афферентные, эфферентные, вставочные нейроны и нервные сплетения. Ее считают отделом метасимпатической нервной системы. Она начинает участвовать в регуляции сердечной деятельности лишь после потери экстрамураяьной иннервации. Например после пересадки сердца.Блуждающие нервы оказывают следующие воздействия на сердце:

1. Отрицательный хронотропный эффект. Это уменьшение частоты сердечных сокращений Он связан с тем, что правый вагус тормозит генерацию импульсов в синоатриальном узле. Под действием вагуса генерация может временно прекращаться.

2. Отрицательный инотропный эффект. Снижение силы сердечных сокращений. Обусловлен уменьшением амплитуды и длительности ПД, генерируемых клетками - пейсмекерами.

3. Отрицательный дромотропный эффект. Понижение скорости проведения возбуждения но проводящей системе сердца. Связан с воздействием левого вагуса на атриовентрикулярный узел. При достаточно сильном его возбуждении возможно возникновение временной атриовентрикулярной блокады.

4. Отрицательный батмотропный эффект. Это уменьшение возбудимости сердечной мышцы. Под влиянием вагуса удлиняется рефрактерная фаза.

Эти воздействия вагусов на сердце обусловлены тем, что их окончания выделяют ацетилхолин. Он связывается с М-холинорецепторами кардиомиоцитов и вызывает гиперполяризацию их мембраны. Поэтому уменьшаются возбудимость, проводимость, автоматия кардиомиоцитов, а как следствие сила сокращений.Если длительно раздражать блуждающие нервы, остановившееся первоначально сердце начинает вновь сокращаться. Это явление называется ускользанием сердца из под влияния вагуса. Оно является следствием параллельного усиления влияния симпатических нервов. Центры блуждающих нервов находятся в состоянии тонуса. Поэтому импульсы от них постоянно идут к сердцу. В результате имеет место функциональное торможение сердечных сокращении. При перерезке вагусов в эксперименте или введении атропина, блокирующего передачу в холинергических синапсах, частота сердцебиений возрастает в 1,5-2 раза Тонус центров вагуса обусловлен постоянным поступлением нервных импульсов к ним от рецепторов сосудистых рефлексогенных зон, внутренних органов, сердца. Симпатические нервы противоположным образом воздействуют на сердечную деятельность. Они оказывают положительное хронотропное, инотропное, батмотропное и дромотропное влияния. Медиатор симпатических нервов норадреналин взаимодействует с Pi-адренорецепторами мембраны кардиомиоцитов. Происходит ее деполяризация, а в результате ускоряется медленная диастолическая деполяризация в Р-клетках синоатриального узла, увеличиваются амплитуда и длительность генерируемых ПД, возрастает возбудимость клеток проводящей системы. Вследствие этого повышаются возбудимость, автоматия, проводимость и сила сокращений сердечной мышцы. Тонус симпатических центров регуляции сердечной деятельности выражен значительно слабее, чем парасимпатических.

Рефлекторная и гуморальная регуляция деятельности сердца

Выделяют три группы сердечных рефлексов:

1. Собственные или кардио-кардиальные. Они возникают при раздражении рецепторов самого сердца.

2. Кардио-вазальные. Наблюдаются при возбуждении рецепторов сосудов.

3. Сопряженные. Связаны с возбуждением рецепторов не относящихся к системе кровообращения.

К собственным относятся рефлексы с механорецепторов миокарда. Первый из них рефлекс Бейнбриджа. Это учащение сердцебиений при растяжении правого предсердия. Кровь из малого круга усиленно перекачивается в большой. Давление в нем снижается. При растяжении мускулатуры желудочков происходит урежеиие сердечных сокращений.

Кардио-вазальные являются рефлексы с рефлексогенных зон дуги аорты, разветвлений или синусов coнныx артерий, других крупных артерий. При повышении артериального давления возбуждаются барорецепторы этих зон. От них нервные импульсы по афферентным нервам поступают в продолговатый мозг и активируют нейроны центров вагуса. От них импульсы идут к сердцу. Частота и сила сердечных сокращений уменьшаются, артериальное давление снижается. Хеморецепторы этих зон возбуждаются при недостатке кислорода или избытке углекислого газа В результате их возбуждения центры вагуса тормозятся, частота и сила сердечных сокращений возрастают. Скорость кровотока увеличивается, кровь и ткани насыщаются кислородом и освобождаются от углекислого газа

Примером сопряженных рефлексов являются рефлексы Гольца и Данини-Ашнера. При механическом раздражении брюшины или органов брюшной полости происходят урежение сердечных сокращений и даже остановка сердца ( рефлекс Гольца). Рефлекс Данини-Ашнера возникает вследствие надавливания на глазные яблоки - остановка сердца.

В регуляции работы сердца участвуют факторы гуморальной системы. Адреналин и норадреналин надпочечников. Они действуют подобно симпатическим нервам, т.е. увеличивают частоту и силу. Они действуют на B-адренорецепторы кардиомиоцитов.

Повышение С(Са) ведёт к увеличению возбудимости.

Повышение концентрации калия ведёт к возрастанию возбудимости и скорости проведения миокарда. При недостатке калия в крови наблюдается учащение и нарушение ритма сердечной деятельности. Поэтому препараты калия применяют при аритмиях. Во время операций на открытом сердце используют гиперкалиевые деполяризующие растворы, обеспечивающие временную остановку сердца.

Проявления сердечной деятельности. Механические и акустические проявления

Деятельность сердца сопровождается механическими, акустическими и биоэлектрическими явлениями. К механическим проявлениям активности сердца относят верхушечный толчок. Это ритмическое выбухание кожи грудной клетки в пятом межреберье на 1 см кнутри: от среднеключичной линии. Он ьозникает вследствие того, что во время систолы желудочков сердце укорачивается, поворачивается вокруг собственной оси и прижимается верхушкой к грудной клетке. Верхушечная или апекскардиограмма регистрируется с помощью механоэлектрического датчика, расположенного в точке верхушки сердца, сигналы от которого идут на электрокардиограф. Кроме этого к механическим проявлениям сердечной деятельности относится еще ряд феноменов. Динамокардиография это регистрация колебаний центра тяжести грудной клетки, возникающих в результате работы сердца. Баллистокардиография - регистрация смещений тела в горизонтальной плоскости, в результате выброса крови из желудочков в магистральные сосуды. Все вышеперечисленные методы в настоящее время клинического значения не имеют.

Звуковые проявления нормальной сердечной деятельности называют тонами сердца. Это клинический термин, отличающий их от патологических звуков - шумов. Простейшим методом исследования звуковых проявлений является аускультация - выслушивание с помощью стетоскопа или фонендоскопа. Обычно можно выслушать 2 тона: 1-й и П-й. Первый тон глухой, низкий и продолжительный (0,12-0,16 сек.). Он совпадает с систолой желудочков и называется систолическим. Лучше всего I тон прослушивается на верхушке сердца, т.е. в 5 межреберье на 1-1,5 см кнутри от средне-ключичной линии. Возникает I тон в момент захлопывания атриовентрикулярных клапанов и обусловлен колебаниями их створок, сухожильных нитей и стенок желудочков. Основную роль в его происхождении играет митральный клапан. Второй тон более высокий, громкий и короткий (0,07-0,1 сек.). Он совпадает с диастолой желудочков и называется диастолическим. Его возникновение обусловлено колебаниями аортального и лульмонального клапанов в моментах закрывания, т.е. начале диастолы. У здоровых де^ей часто удается выслушать еще 2 диастолических тона - Ш и IV. Появление третьего тона связано с растяжением стенки левого желудочка при его быстром пассивном заполнении кровью. Четвертый тон обусловлен ускоренным движением крови в левый желудочек при систоле предсердий. Эта тоны лучше слышны на верхушке сердца. Их появление у взрослых чаще связано с патологическими изменениями в сердце. Например третий выслушивается при дефекте межжелудочковой перегородки.

Выслушивание сердца начинается со второго межреберья слева от грудины, ;;це его громкость наибольшая. После этого его прослушивают во втором межреберье справа от грудины, где находится проекция аортального клапана. Пульмональный клапан выслушивают в точке Боткина, т.е. 3 межреберье слева от грудины или справа от основания мечевидного отростка грудины. Митральный клапан прослушивается на верхушке, т.е. в 5 межреберье на 1-1,5 см. справа от среднеключичной линии. Фонокардиография (ФКГ) это. метод графической регистрации тонов и шумов сердца. Она является методом дополняющим аускультацию и основана на ее результатах. Фонокардиограф состоит из микрофона, усилителя, системы частотных фильтров, устраняющих посторонние звуки и записывающего устройства. Регистрацию ФКГ начинают после 5-ти минутного покоя пациента в положении лежа Обычно ее записывают при задержке дыхания на вдохе. Частотные каналы выбираются по системе Маасса-Вебера, включающей полосы 250, 140, 70 и 35 Гц. Микрофон помещают в точки аускультации. Наибольшее практическое значение имеет аускультативный частотный канал 140 Гц. Он пропускает те звуковые частоты, которые анализируются при выслушивании. Высокочастотный канал 251 Гц служит для выявления высокочастотных шумов, а низкочастотные для записи III и IV тонов. Нормальная фонокардиограмма включает колебания I, П, а часто III и IV тонов. При синхронной записи с ЭКГ, колебания 1-го тона совпадают с зубцом S, а П с окончанием зубца Т. Первый тон обычно включает 3 группы колебаний.- начальные низкочастотные небольшой амплитуды, центральный сегмент, т.е. частые с высокой амплитудой и конечные низкоамплитудные. Первая группа колебаний являются мышечным компонентом 1-го тона. Следовательно они обусловлены вибрацией стенки желудочков. Центральные связаны с колебаниями стиорок митрального и трикуспидального клапанов при их закрытии. Конечные отражают колебания стенок крупных сосудов при открывании аортального и пульмонального клапанов. Анализ ФКГ позволяет диагностировать ряд заболеваний сердца. Например, расщепление 1-го тона свидетельствует о неодновременном закрытии атриовентрикулярных клапанов. Это наблюдается при стенозе этих отверстий.

Электрокардиография

Электрокардиография это регистрация электрической активности мышцы сердца, возникающей в результате ее возбуждения. Впервые запись электрокардиограммы произвел в 1903 г. с помощью струнного гальванометра голландский физиолог Эйнтховен. Он^же первым в 1906 г. использовал этот метод для диагностики. Электрокардиограф состоит из усилителя биопотенциалов и регистрирующего устройства. При электрокардиографии регистрируется разность потенциалов, возникающая между различными точками тела в результате возбуждения сердца.

Регистрация ЭКГ осуществляется с помощью биполярных и униполярных отведений. При биполярных оба электрода являются активными, т.е. регистрируется разность потенциалов между ними. При униполярных отведениях регистрируется разность потенциалов между активным электродом и индифферентным, имеющим нулевой потенциал. Его образуют другие электроды,, соединенные вместе. Биполярными являются стандартные отведения, предложенные Эйнтховеном, а униполярными усиленные отведения от конечностей. Стандартных отведений три: 1-е отведение -правая и левая рука, 11-е правая рука и левая нога, Ш-е - левая рука и левая нога. При усиленных, отведениях регистрируется разность потенциалов между активным электродом на одной из конечности и индифферентным, образованный» электродами на двух других конечностях. При отведении aVR активный электрод находится на правой руке, aVL - на левой, a aVF - левой ноге. Усиленные отведе служат для получения большей амплитуды элементов электрокардиограммы. Отведения конечностей дают фронтальную проекцию распространения возбуждения. Его горизонтальную проекцию отражают грудные униполярные отведения по Вильсону. Таких отведений шесть: V\ -четвертое межреберье у правого края грудины, V2 - четвертое межреберье у левого края грудины, уз -точка между Уг и Уд, Уд - в пятом межреберье по среднеключичной линии, Vj - на передней подмышечной линии, У$- средней подмышечной линии. Jj>

Электрокардиограммой называется периодическая кривая, отражающая' распространение возбуждения по миокарду. При стандартных отведениях она имеет следующий вид (рис.). На ЭКГ р /1 выделяют положительные и отрицательные зубцы Р, Q, R, S, Т, а также сегменты и интервалы. ~~/”S' \Г~ Направление зубцов определяют относительно изоэлектричской линии, при этом положительные направлены вверх. Сегментами называются расстояния между двумя зубцами. Например сегмент PQ это промежуток между концом зубца Р и началом зубца Q. Интервалы включают 1 зубец и следующий за ним сегмент. Поэтому интервал PQ это расстояние от начала зубца Р и до начала зубца Q. Зубец(1*/ называется ^едсёрднымХОн отражает распространение возбуждения по обоим предсердиям. Его длитеяьно<УГБу0.05-ОХ сети а амплитуда до 0,25 мВ. Сегмент PQ свидетельствует о полном охвате обоих предсердий возбуждением, а также его распространении на атр^швЈнтрикулярный узел и пучок Гиса. Общая длительность интервала PQ 0,12-0,18 сек. КомплексСЬкЗтГ называют желудочковым^ Зубец^отражает возбуждение сосочковых мышц. R - распростр.ааение возбуждения по желудочкам, а S полный охват» возбуждением обоих желудочков. Поэтому^комплекс зубцов QRS называется* электрической систоло»й~желудочковЛ«то~пр^^ сек\ а амплитуда зубца R 1-1,5 мВ. Амплитуда зубца Q не должна превышать ј R, а его длительность быть не более 0,03 сек. Величина и продолжительность зубца S не измеряются. Сегмент ST указывает на полный охват возбуждением миокарда желудочков. Зубец Т соответствует фазе реполяризации желудочков. Его амплитуда 0,05 - 0,25 мВ; а длительность 0,16-0,24 сек.

Теоретической основой электрокардиографии является дипольная теория. Согласно ей каждое, волокно миокарда является переменным электрическим диполем (рис.). Т.е. его возбужденный конец заряжен отрицательно, а невозбужденный положительно. Параметры этого диполя характеризуются направлением и величиной. Они изображаются стрелкой - вектором. Вектор, направлен от минуса к плюсу, а его длина отражает величину разности потенциалов в диполе. Между возбужденным и невозбужденным участками диполя возникает градиент напряжения величиной 120 мВ. Он соответствует амплитуде потенциала действия. Так как миокард является функциональным синцитием, в каждый момент возбуждения сердца отдельные векторы суммируются и образуют интегральный вектор. Причем 90% векторов взаимно нейтрализуются. Исходя из этого в основе регистрации ЭКГ лежат следующие принципы:

1. Общее электрическое поле сердца возникает в результате сложения полей всех мышечных волокон.

2. Каждое возбужденное волокно является диполем, параметры которого, т.е. направление и величину можно отразить вектором.

3. В каждый момент времени векторы суммируются и формируется интегральный вектор. За счет него возникает разность потенциалов между различными точками тела.

Направление и величина интегрального вектора определяются моментом возбуждения сердца. Когда начинается возбуждение миокарда предсердий вектор направлен сверху вниз к верхушке сердца (от - к + рис.). Формируется зубец Р. В момент возбуждения всей мускулатуры предсердий разность * потенциалов в них исчезает. Формируется сегмент PQ. В начале возбуждения миокарда межжелудочковой перегородки вновь возникает интегральный вектор, но уже направленный вверх, к основанию сердца. На ЭКГ появляется отрицательный зубец Q. При возбуждении большей части миокарда желудочков, вектор вновь меняет свое направление к верхушке сердца. Возникает зубец R. Последним возбуждается участок миокарда в области основания левого желудочка. Вектор будет направлен вверх, вправо и назад. Формируется отрицательный зубец S. Когда возбуждение полностью охватывает миокард обоих желудочков разность потенциалов в них и вектор временно исчезают. На ЭКГ появляется сегмент ST. После этого начинается реполяризация миокарда желудочков. Поэтому вектор принимает положение вниз и влево. Формируется зубец Т.

Электрокардиография имеет исключительное значение для клинической кардиологии. Ритмичность сердечных сокращении определяют по интервалам R-R. Если расстояние между всеми зубцами R одинаково ритм правильный. Частоту сердечных сокращений на ЭКГ измеряют по формуле: 60

ЧСС =-----, где R -R длительность интервала в секундах.

R-R

Положение электрической оси сердца (ЭОС), определяют графически или визуально. Электрическая ось сердца совпадает с осью того отведения, при котором сумма зубцов комплекса QRS, имеющих положительный и отрицательный знак максимальна. Если ось отведения перпендикулярна электрической оси сердца, сумма положительного зубца R и отрицательного S равна 0.

Источник возбуждения в сердце определяется по последовательности зубцов Р и комплексов QRS. В норме в I и П стандартном отведениях положительный зубец Р, предшествующий комплексу QRS. Если возникает патологический источник возбуждения в нижних отделах предсердий, то возбуждение , распространяется в обратном направлении снизу вверх. На ЭКГ во II и Ш стандартных отведениях-^/-«' появляются отрицательные зубцы Р, предшествующие QRS. ^

Функцию проводимости оценивают по длительности зубца Р, интервала PQ и общей продолжительности комплекса QRS. Увеличение длительности этих зубцов и интервалов свидетельствует о замедлении проведения в соответствующих отделах сердца.

Дипольная теория послужила основой создания метода векторкардиографии. Если принять за основу предположение, что интегральный вектор во время одиночного цикла возбуждения исходит из одной точки, то конец этого вектора будет двигаться в пространстве, описывая векторную петлю. Эта векторная петля образуется на экране специального осциллоскопа кривую состоящую из 3-х петель. Петля Р отражает распространение возбуждения по предсердиям, петля QRS по желудочковая» а Т -восстановление желудочков. Анализ ВКГ производят путем определения длины, ширины петель или их площади.

Эхокардиография

Эхокардиография (ЭхоКГ) это исследование сердца с помощью ультразвуковых колебаний, отраженных от его различных структур.. С помощью ЭхоКГ можно исследовать структуру и работу клапанов, сокращения камер сердца, движение крови по ним. При эхокардиографии на область проекции сердца помещается датчик. В нем имеется пъезокристалл источник ультразвука и кристалл приемник отраженных ультразвуковых волн. Сигналы от последнего поступают на усилитель, преобразуются в изображение на экране монитора.

ДВИЖЕНИЕ КРОВИ ПО СОСУДАМ. Функциональная классификация кровеносных сосудов

Факторы, обеспечивающие движение крови

Все сосуды малого и большого круга, в зависимости от строения и функциональной роли делят на следующие группы:

1. Сосуды эластического типа

2. Сосуды мышечного типа

3. Сосуды резистивного типа

4. Сосуды обменного типа

5. Сосуды емкостного типа

. К сосудам эластического типа относятся аорта, легочная артерия и другие крупные артерии. В их стенке содержится много эластических волокон, поэтому она обладает большой упругостью и растяжимостью.

Сосудами мышечного типа являются артерий среднего и малого калибра. В их стенке больше гладкомышечных волокон. Однако мышечный слой А«ало влияет на просвет этих сосудов, а следовательно гемодинамику.

К резистивным сосудам относят концевые артерии и артериолы. Эти прекапиллярные сосуды имеют небольшой диаметр и толстую гладкомышечную стенку. Поэтому они оказывают наибольшее сопротивление току крови и влияние на системную гемодинамику. Сокращения их гладких мышц обеспечивают регуляцию кровотока в органах и тканях, а следовательно перераспределение крови.

Обменными сосудами являются капилляры. В них происходит диффузия и фильтрация воды, газов, минеральных и питательных веществ.

. К емкостным сосудам относятся вены. Их стенка легко растягивается. Поэтому они способны накапливать большое .количество крови, без изменения венозного кровотока В связи с этим вены некоторых органов могут выполнять роль депо крови. Это вены печени, подкожных сосудистых сплетений, чревные вены. В венах может депонироваться до 70% всей крови. Истинных депо, как селезенка собаки, у человека нет.

Кроме этих типов имеются шунтирующие сосуды. Ими являются артериовенозные анастомозы. При некоторых условиях они обеспечивают переход крови в вены минуя капилляры.

1. Работой сердца,~обёспечшзающег6»восполнение энергозатрат системы кровообращения.

2. Упругостью стенок эластических сосудов. В период систояы энергия систолической порции кров» переходит в энергию деформации сосудистой стенки. Во время диастолы стенка сокращается и ее потенциальная энергия переходит в кинетическую. Это способствует поддержанию снижающегося артериального давления и сглаживанию пульсаций артериального кровотока.

3. Разность давлений в начале и конце сосудистого русла. Она возникает в результате затраты энергии на преодоление сопротивления току крови. Сопротивление кровотоку в сосудах зависит от вязкости крови, длины и, в основном, от диаметра сосудов. Чем он меньше, тем больше сопротивление, а следовательно разность давления в начале и конце сосуда. В сосудистой системе сопротивление изменяется неравномерно. Поэтому неравномерно снижается и кровяное давление. В артериях оно уменьшается на 10%, артериолах и капиллярах на 85%, венах на 5 %. Таким образом наибольший вклад в общее периферическое сопротивление (ОПС) вносят сосуды резистивного и обменного типа. Общее периферическое сопротивление можно рассчитать по формуле:

Стенки вен более тонкие и растяжимые, чем у артерий. Энергия сердечных сокращений в основном уже затрачена на преодоление сопротивления артериального русла. Поэтому давление в венах невысокое и требуются дополнительные механизмы, способствующих венозному возврату к сердцу. Венозный кровоток обеспечивают следующие факторы:

1. Разность давлений в начале и конце венозного русла.

2. Сокращения скелетных мышц при движении, в результате которых кровь выталкивается из периферических вен к правому предсердию.

3. Присасывающее действие грудной клетки. На вдохе дарление в ней становится отрицательным, что способствует венозному кровотоку.

4. Присасывающее действие правого предсердия в период его диастолы. Расширение его полости приводит к появлению отрицательного давления в нем.

5. Сокращения гладких мышц вен.

Движение крови по венам к сердцу связано и с тем, что в них имеются выпячивания стенок, которые выполняют роль клапанов.

Скорость кровотока

Различают линейную и объемную скорость кровотока. Линейная скорость кровотока (Улик.) это расстояние, которое проходит частица крови в единицу времени. рна зависит от суммарной площади поперечного сечения всех сосудов, образующих участок сосудистого русла. Поэтому в кровеносной системе наиболее узким участком является аорта. Здесь наибольшая линейная скорость кровотока, > составляющая 0,5-0,6 м/сек. В артериях среднего и мелкого калибра она снижается до 0,2-0,4 м/сек. Суммарный просвет капиллярного русла в 500-600 раз больше чем аорты. Поэтому скорость кровотока в капиллярах уменьшается до 0,5 мм/сек. Замедление тока крови в капиллярах имеет большое физиологическое значение, так как в них происходит транскапиллярный обмен. В крупных венах линейная скорость кровотока вновь возрастает до 0,1-0,2 м/сек: Линейная скорость кровотока в артериях измеряется ультразвуковым методом. Он основан на эффекте Доплера. На сосуд помещают датчик с источником и приемником ультразвука В движущейся среде - крови частота ультразвуковых колебаний изменяется. Чем больше скорость течения _кр_ови по сосуду, тем ниже частота отраженных ультразвуковых волн. Скорость кровотока в капиллярах измеряется под микроскопом с делениями в окуляре, путем наблюдения за движением определенного эритроцита.

Объемная скорость'кровотока (V°6L) это количество крови, проходящей через поперечное сечение сосуда «в единицу времени. Она зависит от разности давлении в начале и конце сосуда и сопротивления току крови:

Р'-Рг * *,J

Vo6 =-----где где pi и Р2 давление в начале и конце сосуда, R - (LC *\-№'

R

Раньше в эксперименте объемную скорость кровотока измеряли с помощью кровяных часов Людвига. В клинике объемный кровоток оценивают с помощью^реЪвазографии. Этот метод основан на регистрации колебаний электрического сопротивления органов для тока высокой частоты, при изменении их кровенаполнения в систолу и диастолу. При увеличении кровенаполнения сопротивление понижается, а уменьшении возрастает. С целью диагностики сосудистых заболеваний производят реовазографию конечностей, печени, почек, грудной клетки. Иногда используют плетизмографию. Это регистрация колебаний объема органа, возникающих при изменении их кровенаполнения. Колебания объема регистрируют с помощью водных, воздушных и электрических плетизмографов.

Скорость кругооборота крови, это время за которое частица крови проходит оба круга кровообращения. Ее измеряют путем введения красителя флюоресцина в вену одной руки и определения времени его появления в вене другой. В среднем скорость кругооборота крови составляет 20-25 сек.

Кровяное давление

В результате сокращений желудочков сердца и выброса из них крови, а также наличия сопротивления току крови в сосудистом русле создается кровяное давление. Это сила, с которой кровь давит на стенку сосудов. Величина давления в аорте и артериях зависит от фазы сердечного цикла Во время систолы оно максимально и называется систолическими. В период диастолы минимально и носит название диастолического. Систолическое давление у здорового человека молодого и среднего возраста в крупных артериях составляет 100 - 130 мм.рт.ст. Диастолическое^ 60-80 мм.рт.ст. Разность между систолическим и диастолическим давлением называется-пульсовым давлением» В норме его величина' 30-40 jkM.pf.cr. Кроме этого определяют среднее давление'. «ЭтсГтакое постоянное, т.е. не “v 0ft*-пульсирующее давление, гемодинамический эффект которого соответствует определенному /»' пульсирующему. Величина среднего давления ближе к диастолическому, так как продолжительность диастолы больше, чем систолы. Артериальное давление (АД) можно измерить прямыми и непрямыми методами. Для измерения прямым методом в артерию вводят иглу или канюлю, соединенные с манометром. Сейчас вводят катеттер с датчиком давления. Сигнал от датчика поступает на электрический манометр. В клинике прямое измерение производят только во время операций. Наиболее широко используются непрямые методы Рива-Роччи и Короткова. В 1896 г. Рива-Роччи предложил измерять систолическое давление по величине давления, которое необходимо создать в резиновой манжете для полного пережатия артерии. Это дадлемце. измеряется JigB^16*^”/ Прекращение кровотока определяется по исчезновению пульса.»*В .[905 г. Хоротков 1федложил метод измерения и систолического и диастолического давления. Он заключается в следующем. В манжете создается давление, при котором ток крови в плечевой артерии полностью прекращается. Затем оно постепенно снижается и одновременно фонендоскопом в локтевой ямке выслушиваются возникающие звуки. В тот момент, когда давление в манжете становится немного ниже, чем систолическое, появляются короткие ритмические звуки. Их называют тонами Короткова. Они обусловлены прохождением порций крови в деформированном манжетой сосуде в период систолы. Ток крови носит *З^рбулентный характер, поэтому возникают звуки. По мере снижения давления в манжете интенсивность тонов уменьшается и при его определенной' величине они исчезают. Ток крови приобретает ламинарный характер. В этот момент давление в манжете примерно соответствует диастолическому. В настоящий момент для измерения артериального давления используют аппараты, регистрирующие колебания сосуда под манжетой. Микропроцессор рассчитывает систолическое и диастолическое давление. Для длительной регистрации АД применяется артериальная осциллография. Это графическая регистрация пульсаций крупных артерий при их сжатии манжетой. Этот метод позволяет определять систолическое, диастолическое, среднее давление и эластичность стенки сосуда. Артериальное давление возрастает при физической и умственной работе, эмоциональных реакциях. При физической работе в основном увеличивается систолическое давление, т.к. возрастает систолический объем. Если происходит сужение сосудов, то повышается и систолическое и диастолическое давление. Такое явление наблюдается при сильных эмоциях.

При длительной графической регистрации артериального давления обнаруживается три типа его колебаний. Их называют волнами 1*го, П-го и III-го порядков (рис.). Волны первого порядка это колебания давления в период систолы и диастолы. Волны второго порядка называются дыхательными. На вдохе артериальное давление возрастает, а на выдохе снижается. При гипоксии мозга возникают еще более медленные волны третьего порядка. Они обусловлены колебаниями активности сосудодвигателъного центра продолговатого мозга.

В артериолах, капиллярах, мелких и средних венах давление постоянно. В артериолах его величина 40-60 мм.рт.ст., в артериальном конце капилляров 20-30 мм.рт.ст., венозном 8-12 мм.рт.ст. Кровяное давление в артериолах и капиллярах измеряется путем введения в них микролипетки, соединенной с манометром. Кровяное давление в венах равно 5-8 мм.рт.ст. В полых венах оно равно 0, а на вдохе на 3-5 мк.рт.ст. ниже атмосферного. Давление в венах измеряется прямым методом. Он называется флеботонометрией.

Повышение кровяного давления называется гипертонией или гипертензией, понижение -гипотонией, гипотензией. Артериальная гипертония наблюдается при старении, гипертонической болезни, заболеваниях почек и т.д. Гипотония наблюдается при шоке, истощении, а также нарушении функций сосудодвигательного центра.

Артериальный и венный пульс

Артериальным пульсом называются ритмические колебания артериальных стенок, обусловленные прохождением пульсовой волны. Пульсовая волна это распространяющееся колебание стенки артерий в результате систолического повышения артериального давления. Пульсовая волна возникает в аорте во время систолы, когда в нее выбрасывается .систолический порция крови и ее стенка растягивается. Так как пульсовая волна движется по стенке артерий, скорость ее распространения не зависит от линейно» скорости кровотока, а определяется лгорфофугасциональным состоянием сосуда. Чем больше жесткость стенки, тем больше скорость распространения пульсовой волны и наоборот. Поэтому у молодых людей она составляет 7-10 м/сек, а у старых, из-за атерооклероткческих изменений а-судов, возрастает. Самым простым методом исследования артериального пульса является пальпатсрный. Обычно пульс прощупывается на лучевой артерии путем прижатия ее к подлежащей лучевой .кости. Так как характер пульса в основном зависит от деятельности сердца и тонуса артерий, по пульсу можно судить об их состоянии. Обычно определяют его следующие параметры:

1. Частота пульса. В норме 60-80 уд/мин.

2. Ритмичность. Если интервалы между пульсовыми волнами одинаковы пульс ритмичный.

3. Скорость пульса. Это быстрота пульсового повышения и понижения давления. При патологии может наблюдаться быстрый или медленный пульс.

4. Напряжение пульса. Определяется силой, которую необходимо приложить для того, чтобы пульс прекратился. Например при артериальной гипертензии наблюдается напряженный пульс.

5. Наполнение. Складывается из высоты пульсовой волны и частично напряжения пульса. Зависит от величины систолического объема крови. Если сила сокращений левого желудочка падает, пульс становится слабым.

Объективное исследование пульсовой волны осуществляют с помощью сфигмографии. Это метод графической регистрации пульса. Сфигмография позволяет рассчитать такие физиологические показатели, как скорость распространения пульсовой волны, упругость и эластическое сопротивление артериального русла, а также диагностировать некоторые заболевания сердца и сосудов. В клинике используют объемную и чаще прямую сфигмографию. Прямая заключается в непосредственной регистрации колебаний стенки артерии. Для этого на артерию накладывают датчик, преобразующий ее механические колебания в электрический сигнал, который подается на электрокардиограф. Если производится сфигмография сонных или. подключичных артерий, получают центральные сфигмограммы, а если бедренной, лучевой, локтевой - периферические. Периферическая сфигмограмма ^является периодической кривой на которой выделяют следующие элементы:

1. Восходящая часть (cd), называется анакротой. Она отражает рост артериального давления в период систолы.

2. Снижение пульсовой волны (df) - катакрота. Свидетельствует о диастолическом понижении давления.

3. Инцизура (f).

4. Дикротический подъем (h). Обусловлен вторичным повышением артериального давления, в результате удара возвращающегося к'сердцу потока крови о закрывшийся аортальный клапан (рис).

В мелких и венах среднего диаметра колебаний стенок не возникает.

В крупных венах регистрируются колебания - венный пульс. Его запись называется флебографией. Чаще всего производят флебографию с яремных вен. На флебограмме выделяют три волны: а, с и v. Волна а называется предсердной. Она отражает повышение венозного давления в период систолы правого предсердия, в результате которой затрудняется венозный приток к сердцу. Волна с обусловлена систолической пульсацией, расположенных рядом с веной, сонной и подключичной артерий. Волна у возникает вследствие наполнения правого предсердия кровью в период диастолы л вторичным затруднением венозного возврата (рис).

Механизмы регуляции тонуса сосудов

Тонус сосудов во многом определяет параметры системной гемодинамики и регулируется миогенными, гуморальными и нейрогенными механизмами.

В основе миогенного механизма лежит способность гладких мышц сосудистой стенки возбуждаться и сокращаться при растяжении. Именно автоматия гладких мышц создает базальный тонус многих сосудов, т.е. поддерживает начальный уровень давления к сосудистой системе. В сосудах кожк, мышц, внутренних органов миогениая регуляция тонуса играет относительно небольшую роль. Но в почечных, мозговых и коронарных сосудах она является ведущей и поддерживает нормальный кровоток в широком диапазоне артериального давления. '

Гуморальная регуляция осуществляется физиологически активными вещества%л, находят имися в крови или тканевой жидкости. Их можно разделить на следующие группы:

1. Метаболические факторы. Это несколько групп веществ.

а) Неорганические ионы. Ионы калия вызывают расширение сосудов, ионы кальция суживают их.

б) Неспецифические продукты метаболизма. Молочная кислота и другие кислоты цикла Кребса расширяют сосуды. Таким же образом действует повышение содержания СОг и катионы водорода. Т.е. сдвиг реакции среды в кислую сторону вызывает расширение сосудов, в щелочную сужение.

в) Осмотическое давление тканевой жидкости. При его повышении сосуды расширяются.

2. Гормоны. По механизму действия на сосуды делятся на 2 группы:

а) Гормоны непосредственно действующие на сосуды. Адреналин и норадреналин суживают большинство сосудов, взаимодействуя с а-адренорецепторами гладких мышц. В то же время, адреналин взывает расширение сосудов мозга, почек, скелетных мышц, воздейст?'гя на р-адренорецепторы. Вазопрессин преимущественно суживает вены, а лгтиотензин П артерии и артериолы. Ангиотензин II образуется из белка плазмы акгиотензиногена в результате действия фермента ренина. Ренин начинает синтезироваться в юкстзгломерулярном аппарате почек при снижении почечного кровотока. Поэтому при некоторых заболеваниях почек развивается почечная гипертемзия. Брадикинин, гистамин, простагландины Е расширяют сосуды, а серотонин суживает их. 6) Гормоны опосредованного действия. АКТГ и кортикостероиды надпочечников постепенно увеличивают тонус сосудов и повышают кровяное давление. Таким же образом действует тироксин. 0-Нервная регуляция сосудистого тонуса осуществляется сосудосуживающими и сосудорасширяющим и нервами. Сосудосуживающими являются симпатические нервы. Первым их сосудосуживающее влияние обнаружил в 1851 г. КБернар, раздражая шейный симпатический нерв у кролика. Тела вазоконстрикторных симпатических нейронов расположены в боковых рогах грудных и поясничных сегментов спинного мозга. Преганглионарные волокна заканчиваются в паравертебральных гакглкях. Идущие от них постганглионарные волокна образуют на гладких мышцах сосудов кожи, внутренних органов, мышц а-адренергические синапсы. Центры симпатических вазоконстрикторов находятся под контролем вышележащих, находящихся в состоянии постоянного тонуса. Поэтому по симпатическим нервам непрерывно поступают нервные импульсы к сосудам. За счет этого иннервируемые ими сосуды постоянно умеренно сужены.

К сосудорасширяющим относится несколько типов нервов:

1. Сосудорасширяющие парасимпатические нервы. Ими являются барабанная струна, расширяющая сосуды подчелюстной слюнной железы и парасимпатические тазовые нервы.

'2. Симпатические холинергические вазодилататоры. К ним относятся симпатические нервы, иннервирующт. сосуды некоторых скелетных мышц. Их постганглионарные окончания являются холинэргическкми.

3. Симпатические нервы, образующие на гладких мышцах сосудов р-адренергические синапсы. Такие нервы идут к сосудам легких, печени, селезенки.

4. Расширение сосудов кожи возникает при раздражении задних корешков спинного мозга, т.е. афферентных нервных волокон. Такое расширение называется антидромным или обратным. Предполагают, что в этом случае из чувствительных нервных окончаний выделяются такие вазоактивные вещества, как АТФ, вещество Р, брадикинин. Они и вызывают вазодилатацию.

Центральные механизмы регуляции сосудистого тонуса. Сосудодвигательные центры

В регуляции тонуса сосудов принимают участие центры всех уровней Ц.Н.С. Низшим являются симпатические шиналъные центры. Они находятся под контролем вышележащих. В 1871 г. В.Ф.Овсянников установил, что после перерезки ствола между продолговатым и спинным мозгом кровяное .давление розко падает. Если же перерезка проходила между продолговатым и средним мозгом, то давление практически не изменяется. В дальнейшем было выяснено, что в продолговатом мозге на дне 4-гс желудочка находится бульбарный сюсудодвигательный центр. Он состоит из прессоркого и депрессорпого отделов. Прессорные нейроны в основном расположены в латеральных областях wnvpa, а депреееорные в центральных. Прессорные нейроны находится в состоянии постоянного возбуждения. В результате нервные импульсы от них непрерывно идут к спинальным симпатическим яегфонам, а от них к сосудам. Благодаря этому сосуды постоянно умеренно сужены. Тонус преосорного отдела обусловлен тем, что к нему постоянно идут нервные импульсы в основном от рецепторов сосудоз, а также неспецифические сигналы от рядом расположенного дыхательного « центра и высших отделов ЦНС. Активирующее влияние на прессорные нейроны также оказывают углекислый газ и протоны. Регуляция тонуса сосудов в основном осуществляется именно через симпатические вазоконстрикторы, путем изменения активности бульварного и спинальных симпатических центров.


Подобные документы

  • Понятие возбудимости и раздражимости, способность живых клеток воспринимать изменения внешней среды и отвечать на раздражения реакцией возбуждения. Скорость протекания циклов возбуждения в нервной ткани (лабильность). Свойств биологических мембран.

    реферат [1005,0 K], добавлен 31.12.2012

  • Сходство физической природы звука и вибрации. Действие низкочастотной вибрации на клетки и ткани организма животных и человека. Патологические процессы, возникающие в результате действия вибрации. Совместное действие шума и вибрации на живой организм.

    контрольная работа [20,8 K], добавлен 21.09.2009

  • Сущность пищеварения, критерии его классификации. Функции желудочно-кишечного тракта. Ферменты пищеварительных соков. Строение пищеварительного центра (голод и насыщение). Процесс пищеварения в полости рта и желудке, основные механизмы его регуляции.

    презентация [1,4 M], добавлен 26.01.2014

  • Физиология как наука о функциях и процессах, протекающих в организме, ее разновидности и предметы изучения. Возбудимые ткани, общие свойства и электрические явления. Этапы исследования физиологии возбуждения. Происхождение и роль мембранного потенциала.

    контрольная работа [533,3 K], добавлен 12.09.2009

  • Изучение видов тканей внутренней среды – комплекса тканей, образующих внутреннюю среду организма и поддерживающих ее постоянство. Соединительная ткань – главная опора организма. Трофическая, опорно-механическая, защитная функция ткани внутренней среды.

    презентация [364,9 K], добавлен 12.05.2011

  • Адаптация как одно из ключевых понятий в экологии человека. Основные механизмы адаптации человека. Физиологические и биохимические основы адаптации. Адаптация организма к физическим нагрузкам. Снижение возбудимости при развитии запредельного торможения.

    реферат [22,8 K], добавлен 25.06.2011

  • Виды эпителиальной ткани. Однослойный плоский эпителий. Мерцательный или реснитчатый, цилиндрический эпителий. Основные виды и функции соединительной ткани. Овальные тучные клетки, фибробласты. Плотная соединительная ткань. Функции нервной ткани.

    презентация [2,5 M], добавлен 05.06.2014

  • Возбудимые ткани и их свойства. Структура и функции биологических мембран, транспорт веществ через них. Электрические явления возбудимых тканей, их характер и обоснование. Рефрактерные периоды. Законы раздражения в возбудимых тканях, их применение.

    презентация [1,8 M], добавлен 05.03.2015

  • Анатомия и физиология как науки. Роль внутренней среды, нервной и кровеносной систем в превращении потребностей клеток в потребности целого организма. Функциональные системы организма, их регуляция и саморегуляция. Части тела человека, полости тела.

    презентация [10,6 M], добавлен 25.09.2015

  • Опорно-трофические (соединительные) ткани - клетки и межклеточное вещество организма человека, их морфология и функции: опорная, защитная, трофическая (питательная). Виды тканей: жировая, пигментная, слизистая, хрящевая, костная; специальные свойства.

    реферат [20,9 K], добавлен 04.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.