Физиология и биофизика организма человека

Понятие о раздражимости и возбуждении. Процесс воздействия раздражителя на клетку, ткань, организм. Законы раздражения, параметры возбудимости. Действие постоянного тока на возбудимые ткани. Механизмы внешнего дыхания. Значение пищеварения и его виды.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 15.03.2015
Размер файла 259,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

С поражением полосатого тела и гиперактивностью бледного шара связаны заболевания с избыточными движениями, т.е. гиперкинезы. Это подергивания мышц лица, шеи, туловища, конечностей. А также двигательная гиперактивность в виде бесцельного перемещения. Например она наблюдается при хорее.

Кроме этого полосатое тело принимает участие в организации условных рефлексов, процессах памяти, регуляции пищевого поведения.

Общие принципы организации движений

Таким образом, за счет центров спинного, продолговатого, среднего мозга, мозжечка, подкорковых ядер организуются бессознательные движения. Сознательные осуществляются тремя путями:

1. С помощью пирамидных клеток коры и нисходящих пирамидных трактов. Значение этого механизма небольшое.

2. Через мозжечок.

3. Посредством базальных ядер.

Для opi-анизации движений особое значение имеют афферентные импульсы спинальной двигательной системы. Восприятие напряжение мышц осуществляется мышечными веретенами и сухожильными рецепторами. Во всех мышцах имеются короткие клетки веретенообразной формы. Несколько таких веретен заключены в соединительно-тканную капсулу. Поэтому их называют интрафузальными. Существуют два типа интрафузальных волокон. Волокна с ядерной цепочкой и волокна с ядерной сумкой. Последние толще л .длиннее первых. Эти волокна выполняют различные функции. Через капсулу к мышечным веретенам проходит толстое афферентное нервное волокно, относящееся к группе la. После входа в капсулу оно разветвляется и каждая веточка образует спираль вокруг центра ядерной сумки интрафузальных волокон. Поэтому такое окончание называется аннулоспирапьным. На периферии веретена т.е. его дистальных отделах находятся вторичные афферентные окончания. Кроме того, к веретенам подходят эфферентные волокна от у-мотонейронов спинного .мозга. При их .возбуждении происходит укорочение веретен. Это необходимо для регуляции чувствительности веретен к растяжению.' Вторичные афферентные окончания также являются рецепторами растяжения, но их чувствительность меньше, чем аннулоспиральных. В основном их функция заключается в контроле степени напряжения мышц при постоянном тонусе экстрафузальных мышечных клеток (рис).

В сухожилиях находятся сухожильные органы Голъджи. Они образованы сухожильными нитями, отходящими от нескольких экстрафузальных, т.е.' рабочих мышечных клеток. На этих нитях располагаются разветвления миелиновых афферентных нервов группы П>.

Мышечных веретен относительно больше в мышцах отвечающих за тонкие движения. Рецепторов Гольджи меньше, чем веретен.

Мышечные веретена воспринимают в основном изменение длины мышцы. Рецепторы сухожилий ее напряжение. Импульсы от этих рецепторов по афферентным нервам поступают в двигательные центры спинного мозга, а по восходящим путям к мозжечку и коре. В результате анализа и синтеза проприорецептивных сигналов в мозжечке происходит непроизвольная координация сокращений отдельных мышц и мышечных групп. Она осуществляется при посредстве центров среднего и продолговатого мозга. Обработка сигналов корой приводит к возникновению мышечного чувства и организации произвольных движений через пирамидные тракты, мозжечок и подкорковые ядра.

Лимбическая система

К лимбической системе относятся такие образования древней и старой коры, как обонятельные луковицы, гиппокамп, поясная извилина, зубчатая фасция, парагиппокампалъная извилина, а также подкорковое миндалевидное ядро и переднее таламическое ядро. Лимбической эта система структур мозга называется потому, что они образуют кольцо (лимб) на границе ствола мозга и новой коры. Структуры лимбической системы имеют многочисленные двусторонние связи между собой а также с лобными, височными долями коры и гипоталамусом.

Благодаря этим связям она регулирует и выполняет следующие функция:

1. Регуляция вегетативных функций и поддержание гомеостаза. ЛС называют висцеральным мозгом, так как она осуществляет тонкую. регуляцию функций органов кровообращения, дыхания, пищеварения, обмен веществ и т.д. Особое значение ЛС состоит в том, что она реагирует на небольшие отклонения параметров гомеостаза Она влияет на эти функции через вегетативные центры гипоталамуса и гипофиз.

2. Формирование эмоций. При операциях на мозге было установлено, что раздражение миндалевидного ядра вызывает появление у пациентов беспричинных эмоции страха, гнева, ярости. При удалении миндалевидного ядра у животных, полностью исчезает агрессивное поведение (психохирургия). Раздражение некоторых зон поясной извилины ведет к возникновению немотивированной радости или грусти. А так как лимбическая система участвует и в регуляции функций висцеральных систем, то все вегетативные реакции возникающие при эмоциях (изменение работы сердца, кровяного давления, потоотделения) также осуществляются сю.

3. Формирование мотиваций. Она участвует в возникновении и организации направленности мотиваций. Миндалевидное ядро регулирует пищевую мотивацию.' Некоторые его области тормозят активность центра насыщения и стимулируют центр голода гипоталамуса. Другие действуют противоположным образом. За счет этих центров пищевой мотивации миндалевидного ядра формируется поведение на вкусную и невкусную пищу. В нем же есть отделы регулирующие половую мотивацию. При их раздражении возникает гиперсексуальность и выраженная половая мотивация.

4. Участие в механизмах памяти. В механизмах-запоминания особая роль принадлежит гиппокампу. Во-первых, он классифицирует и кодирует всю информацию, которая должна -быть заложена в долговременной памяти; Во-вторых, обеспечивает извлечение и воспроизведение нужной информации в конкретный момент. Предполагают, что способность к обучению определяете.* врожденной активностью соответствующих нейронов гиппокампа.

В связи с тем, что ЛС принадлежит важная роль в формировании мотиваций и эмоций, при нарушениях ее функций возникают изменения психоэмоциональной сферы. В частности, состояние тревожности,,и двигательного возбуждения. В этом случае назначают транквилизаторы, тормозящие образование и выделение в межнейронных синапсах ЛС серотонина. При депрессии применяются антидепрессанты, усиливающие образование и накопление норадреналина Предполагают, что шизофрения, проявляющаяся патологией мышления, бредом, галлюцинациями, обусловлена изменениями нормальных связей между корой и ЛС. Это объясняется усилением образования' дофамина в пресинаптических окончаниях дофаминергических нейронов. Аминазин и другие нейролептики блокируют синтез дофамина и вызывают ремиссию. Амфетамины (фенамин) усиливают . его образование и могут вызвать возникновение психозов.

Функции коры больших полушарий

Раньше считалось, что высшие функции мозга человека .осуществляются корой больших полушарий. Еще в прошлом веке было установлено, что при удаление коры у животных, они теряют способность к выполнению сложных актов поведения, обусловленных приобретенным жизненным опытом. Сейчас установлено, что кора не является высшим распределителем всех функций. Многие ее нейроны входят в состав сенсорных и двигательных систем среднего уровня. Субстратом высших психических функций являются распределительные системы ЦНС, в состав которых входит и подкорковые структуры и нейроны коры. Роль любой области коры зависит от внутренней организации ее синаптических связей, а также ее связей с другими образованиями ЦНСЬ<Вместе с тем, у человека в процессе эволюции произошла кортиколизация всех, в том числе и жизненно важных висцеральных функций. Т.е. их подчинение коре. Она стала главной интегрирующей системой всей ЦНС. Поэтому в случае гибели значительной части нейронов коры у человека, его организм становится нежизнеспособным и погибает в результате нарушения гомеостаза (гипотермия мозга).

Кора головного мозга состоит из шести слоев:

1. Молекулярный слои, самый верхняя. Образован множеством восходящих дендритов пирамидных нейронов. Тел нейронов в нем малс| Этот слой пронизывают аксоны неспецифических ядер таламуса, относящихся к ретикулярной формации. За счет такой структуры слой обеспечивает активацию всей коры.

2.Наружный зернистый слой. Формируется плотно расположенными мелкими нейронами, имеющими многочисленные синаптические контакты между собой. Благодаря этому наблюдается длительная циркуляция нервных импульсов. Это является одним из механизмов памяти.

3. Наружный пирамидный слой. Состоит из мелких пирамидных клеток. С помощью их и клеток второгф слоя происходит образование межкортикальных связей, т.е. связей между различными областями коры.

4. Внутренний зернистый слой. Содержит звездчатые клетки, на которых образуют синапсы аксоны переключающих и ассоциативных нейронов таламуса. Сюда поступает вся информация от периферических рецепторов.

5. Внутренний пирамидный слой. Образован крупными пирамидными нейронами, аксоны которых образуют нисходящие пирамидные пути, направляющиеся в продолговатый и спинной мозг.

6. Слой полиморфных клеток. Аксоны его нейронов идут к таламусу. Корковые нейроны образуют нейронные сети, включающие три основных компонента:

1.афферентные или входные волокна.

2,интернейроны ,

3.эфферентные - выходные нейроны.

Эти компоненты образуют несколько уровней нейронных

1. Микросети. Самый нижний уровень. Это отдельные межнейронные синапсы с их пре- и постсинаптическими структурами. Синапс является сложным функциональным элементом, имеющим внутренние саморегуляторные механизмы. Нейроны коры имеют сильно разветвленные дендриты. На них находится огромное количество шипиков в виде барабанных палочек. Эти шипики служат для образования входных синапсов. Корковые синапсы чрезвычайно чувствительны к внешним воздействиям. Например, лишение зрительных раздражений, путем содержания растущих животных в темноте, приводит к значительному уменьшению синапсов в зрительной коре. При болезни Дауна синапсов в коре также меньше, чем в норме. Каждый шипик образующий синапс, выполняет роль преобразователя сигналов, идущих к нейрону.

2. Локальные сети. Новая кора слоистая структура, слои которой образованы локальными нейронными сетями. Клей, черезталамус.и обонятельный мозг, .могут приходить импульсы от всех периферических рецепторов. Входные волокна проходят через все слои, образуя синапсы с их нейронами. В свою очередь, коллатерали входных волокон и интернейроны этих слоев образуют локальные сети на каждом уровне коры. Такая структура коры обеспечивает возможность обработки, хранения и взаимодействия различной информации. Кроме того в коре имеется несколько типов выходных нейронов. Практически каждый ее слой дает выходные волокна, направляющиеся к другим «»ям или отдаленным участкам хоры. *

3. Корковые колонки. Входные и выходные элементы с интернейронами образуют вертикальные корковые колонки или локальные модули. Они проходят через все слои коры. Их диаметр составляет 300-500 мкм. Образующие эти колонки нейроны концентрируются вокруг таламо-кортикального волокна, несущего определенный вид сигналов. В колонках имеются многочисленные межнейронные связи. Нейроны 1-5 слоев колонок обеспечивают восприятие и переработку поступающей информации. Нейроны 5-6 слоя образуют эфферентные пути коры. Соседние колонки также связаны между собой. При этом возбуждение одной сопровождается торможением соседних.

В определенных областях коры сосредоточены колонки, выполняющие однотипную функцию. Эти участки называются цитоархитектоническими полями. В коре человека их 53. Поля делят на первичные, вторичные и третичные. Первичные обеспечивают обработку определенной сенсорной-информации, а вторичные и третичные взаимодействие сигналов разных сенсорных систем. Е частности, первичное соматосенсорное поле* к которому идут импульсы от всех кожных рецепторов' (тактильных, температурных, болевых) находится в области задней центральной извилины. Больше всего места в коре занимает представительство губ, лица, кистей рук. Поэтому при поражениях этой зоны изменяется чувствительность соответствующих участков кожи.

Представительство проприорецепторов мышц и сухожилий, т.е. моторная кора занимает переднюю центральную извилину. Импульсы от проприорецепторов нижних конечностей идут к верхней части извилины. От мышц туловища к сйшщей части. От мускулатуры головы и шеи к ее нижней части.

Наибольшую площадь этого поля также занимает представительство мускулатуры губ, языка, кистей и лица.

Импульсы от рецепторов глаза поступают в затылочные области коры около шпорной борозды. Поражение первичных полей приводит к корковой слепоте, а вторичных и третичных - потере зрительной памяти.

Слуховая область коры расположена в верхней височной извилине и поперечной извилине Гешля. При поражении первичных полей зоны развивается корковая глухота. Периферических - трудности в различении звуков. В задней трети верхней височной извилины левого полушария находится сенсорный центр речи - центр Вернике. При его патологических изменениях теряется способность к пониманию речи.

Двигательный центр речи - центр Брока, располагается в нижней лобной извилине левого полушария. Нарушения в этой части коры приводят к потере способности произносить слова.

Функциональная асимметрия полушарий

Передний мозг образован двумя полушариями, которые состоят из одинаковых долей. Однако они играют разную функциональную роль. Впервые различия между полушариями описал 1863 г. невропатолог Поль Брока, обнаруживший, что при опухолях левой лобной доли теряется способность к произношению речи. В 50-х годах XX века Р.Сперри и М.Газзанига исследовали больных, у которых с целью прекращения эпилептических припадков была произведена перерезка мозолистого тела. В нем проходят комиссуральные волокна, связывающие полушария. Умственные способности у людей с расщепленным мозгом не изменяются. Но с помощью специальных тестов обнаружено, что функции полушарий отличаются. Например, если предмет находится в поле зрения правого глаза, т.е. зрительная информация поступает в левое полушарие, то такой больной может назвать его, описать его свойства, прочитать или написать текст.

Если же предмет попадает в поле зрения левого глаза, то пациент даже не может назвать его и рассказать о нем. Он не может читать этим глазом. Таким образом, левое полушарие является доминирующим в отношении сознания, речи, счета, письма, абстрактного мышления, сложных произвольных движений. С другой, стороны хотя правое полушарие не имеет выраженных речевых функций, оно в определенной степени способно понимать речь и мыслить абстрактно. Но в значительно большей мере, чем левое, оно обладает механизмами сенсорного распознавания предметов, образной памяти. Восприятие музыки целиком является функцией правого полушария. Т.е. правое полушарие отвечает за неречевые функции, т.е. анализ сложных зрительных и слуховых образов, восприятие пространства, формы. Каждое полушарие изолированно принимает, перерабатывает и хранит информацию. Они обладают собственными ощущениями, мыслями, эмоциональными оценками событий. Левое полушарие обрабатывает информацию аналитически, т.е. последовательно, а правое одномоментно, интуитивно. Т.е. полушария используют разные способы познания. Вся система образования в мире направлена на развитие левого полушария, т.е. абстрактного мышления, а не интуитивного. Несмотря на функциональную асимметрию, в норме полушария работают совместно, обеспечивая все процессы человеческой психики.

Пластичность коры

Некоторые ткани сохраняют способность к образованию новых клеток из клеток-предшественников в течение всей жизни. Это клетки печени, кожи, энтероциты. Нервные клетки не обладают такой способностью. Однако у них сохраняется способность к образованию новых отростков и синапсов. Т.е. каждый нейрон способен при повреждении отростка образовывать новые. Восстановление отростков может происходить двумя путями: путем формирования нового конуса роста и образования коллатералей. Обычно росту нового аксона препятствует возникновение глиального рубца. Но несмотря на это новые синаптические контакты образуются коллатералями поврежденного аксона. Наиболее высока пластичность нейронов коры. Любой ее нейрон запрограммирован на то, что при его повреждении он активно пытается восстановить утраченные связи. Каждый нейрон вовлечен в конкурентную борьбу с другими за образование синаптических контактов.. Это служит основой пластичности нейронных корковых сетей. Установлено, что при удалении мозжечка нервные пути, идущие к нему, начинают прорастать в кору. Если в интактный мозг пересадить участок мозга другого животного, то нейроны этого кусочка ткани образуют многочисленные контакты с нейронами мозга реципиента.

Пластичность коры проявляется как в нормальных условиях, например при образовании новых межкортикальных связей в процессе обучения, так и при .патологии. В частности, утраченные при поражении участка коры функции берут на себя ее соседние поля или другое полушарие. Даже при поражении обширных областей коры вследствие кровоизлияния, их функции начинают выполнять соответствующие области противоположного полушария.

Электроэнцефалография. Ее значение для экспериментальных исследований и клиники

Электроэнцефалография (ЭЭГ)-это регистрация электрической активности мозга с поверхности кожи головы. Впервые ЭЭГ человека зарегистрировал в 1929 г. немецкий психиатр Г.Бергер. При снятии ЭЭГ на кожу накладывают электроды, сигналы от которых усиливаются и подаются на осциллограф и пишущее устройство.

В норме регистрируются следующие типы спонтанных колебаний:

1. а-ритм. Это волны с частотой 8-13 Гц. Наблюдается в состоянии бодрствования, полного покоя и при закрытых глазах. Если человек открывает глаза а-ритм сменяется р-ритмом. Это явление называется блокадой а-ритма.

2. р-рипгм. Его частота от 14 до 30 Гц. Наблюдается при деятельном состоянии мозга и учащается по мере повышения интенсивности умственной работы.

3. 9-ритм. Колебания с частотой 4-8 Гц. Регистрируется во время засыпания, поверхностного сна и неглубоком наркозе. **

4. 5-ритм. Частота 0,5-3,5 Гц. Наблюдается при глубоком сне и наркозе.

Чем ниже частота ритмов ЭЭГ, тем больше их амплитуда. Помимо этих основных ритмов регистрируются и другие ЭЭГ феномены. Например, по мере углубления сна появляются сонные веретена. Это периодическое увеличение частоты и амплитуды тега- ритма. При ожидании команды к действию возникает отрицательная Е -волна ожидания и т.д.

В эксперименте ЭЭГ используют для определения уровня активности мозга, а в клинике для диагностики эпилепсии (особенно скрытых форм), а также для выявление смерти мозга (кора живет 3-5 миа, стволовые нейроны 7-10, сердце 90, почки 150).

Структурно-функциональные особенности вегетативной нервной системы

Все функции организма условно делят на соматические и вегетативные. Первые связаны с деятельностью мышечной системы, вторые выполняются внутренними органами, кровеносными сосудами, кровью, железами внутренней секреции и т.д. Однако это деление условно, так как такая вегетативная функция, как обмен веществ, присуща скелетным мыпщям. С другой стороны двигательная активность сопровождается изменением функций внутренних органов, сосудов, желез.

Вегетативной нервной системой (ВНС) называют совокупность нервных клеток спинного, головного мозга и вегетативных ганглиев, которые иннервируют внутренние органы и сосуды- Дуга вегетативного рефлекса отличается тем, что ее эфферентное звено имеет двухнейронное строение. Т.е. от тела первого эфферентного нейрона, расположенного в ЦНС, идет преганглионарное- волокно, которое заканчивается на нейронах вегетативного ганглия, расположенного вне ЦНС. От этого второго эфферентного нейрона идет постганглионарное волокно к исполнительному органу. Нервные импульсы по вегетативным рефлекторным дугам распространяются значительно медленнее, чем по соматическим. Во-первых, это обусловлено тем, что даже простейший вегетативный рефлекс является полисинаптическим, а большинство вегетативных нервных центров включает огромное количество нейронов и синапсов. Во-вторых, преганглионарные волокна относятся к группе В, а постганглионарные С. Скорость проведения возбуждения по ним наименьшая. Все вегетативные нервы имеют значительно меньшую избирательность (вагус), чем соматические.

Вегетативная нервная система делится на 2 отдела: симпатический и парасимпатический. Телг преганглионарных симпатических нейронов лежат в боковых рогах грудных и поясничных сегметхи спинного мозга. Аксоны этих нейронов выходят в составе передних корешков и оканчиваются i паравертебральных ганглиях симпатических цепочек. От ганглиев идут постганглионарные волокна иннервирующие гладкие мышцы органов и сосудов головы, грудной, брюшной полостей малого таза, также пищеварительные железы. Существует симпатическая иннервация не только артерий и вен, но артериол. В целом функция симпатической нервной системы состоит в мобилизации энергетических ресурсов организма за счет процессов диссимиляции, повышении его активности, в том числе и нервной системы.

Тела преганглионарных парасимпатических нейронов находятся в сакральном отделе спинного мозга, продолговатом-и среднем мозге в области ядер III, VII, IX и X пар черепно-мозговых нервов. Идущие от них преганглионарные волокна заканчиваются на нейронах парасимпатических ганглиев. Они расположены около иннервируемых органов (параорганно) или в их толще (интрамурально). Поэтому постганглионарные волокна очень короткие. Парасимпатические нервы, начинающиеся от стволовых центров, также иннервируют органы и небольшие количество сосудов головы, шеи, а также сердце, легкие, гладкие мышцы и железы ЖКТ. В ЦНС парасимпатических окончаний нет. Нервы идущие от крестцовых сегментов, иннервируют тазовые Органы и сосуды. Общей функцией парасимпатического отдела является обеспечение восстановительных процессов в органах и тканях, за счет усиления ассимиляции. Таким образом, сохранение гомеостаза.

Высшие центры регуляции вегетативных функций находятся в гипоталамусе. Однако на вегетативные центры влияет КБП. Это влияние опосредуется лимбической системой и центрами гипоталамуса. Многие внутренние органы имеют двойную, т.е. симпатическую и парасимпатическую иннервацию. Это сердце, органы ЖКТ, малого таза и др. В этом случае, влияние отделов ВНС носит антагонистический характер. Например, симпатические нервы усиливают работу сердца, тормозят моторику органов пищеварения, сокращают сфинктеры выводных протоков пищеварительных желез и расслабляют мочевой пузйрь. Парасимпатические нервы влияют на функции этих органов противоположным образом. Поэтому в физиологических условиях функциональное состояние этих органов определяется преобладанием влияния того или иного отдела ВНС. Однако для организма их воздействие является синергичным. Например, такая функциональная синергия возникает при возбуждении барорецепторов сосудов, когда повышается артериальное давление. В результате их возбуждения повышается активность парасимпатических и снижается симпатических центров. Парасимпатические нервы уменьшают частоту и силу сердечных сокращений, а торможение симпатических центров приводит к расслаблению сосудов. Артериальное давление снижается до нормы. Во многих органах, имеющих двойную вегетативную иннервацию, постоянно преобладают регуляторные влияния парасимпатической нервной системы. Это железистые клетки ЖКТ, мочевой пузырь и др. Есть органы, имеющие только одну иннервацию. Например, большинство сосудов иннервируется только симпатическими нервами, которые постоянно поддерживают их в суженном состоянии, т.е. тонусе.

В 80-х годах А.Д. Ноздрачевым сформулирована концепция метасимпатической нервной системы. Согласно ей, интрамуральные ганглии вегетативной нервной системы, образующие нервные сплетения, являются простыми нейронными сетями, аналогичными ядрам ЦНС. В этих небольших нейронных скоплениях, преимущественно находящихся в стенке органов пищеварительного канала, происходит восприятие раздражения, переработка информации и передача к зффекторным нейронам, а затем исполнительным органам. Ими являются гладкомышечные клетки пищеварительного канала, матки, кардиомиоциты. Т.е. ганглии достаточно автономны от ЦНС. Однако сигналы от них поступают и в ЦНС, перерабатываются в ней, а затем через экстрамуральные парасимпатические' нервы передаются на эффекторные нейроны ганглия, а от него на исполнительный орган. Т.е. эфферентные нейроны, ганглиев являются общим конечным путем и для экстрамуральных парасимпатических нервов и для других нейронов ганглиев.

В стенке пищевода, желудка, кишечника имеется 3 связанных между собой сплетения: подсерозное, межмышечное (ауэрбахово), подслизистое (мейснерово). Клетки, составляющие сплетения относятся по классификации А.С. Догеля к трем типам:

1тип - нейроны с многочисленными короткими дендритами и длинным аксоном. Аксон заканчивается на ГМК и железистых клетках пищеварительного канала. Эти нейроны являются эффекторными. II тип - более крупные нейроны, имеющие несколько дендритов и короткий аксон, образующий синапс на нейронах первого типа. Окончания дендритов находятся подслизистой и слизистой оболочках. Т.е. эти клетки являются чувствительными.

Ш тип - служат для передачи сигналов между другими нейронами ганглиев. Их можно считать ассоциативными, т.е. интернейронами. Их меньше других.

Кроме того, в сплетениях выделяют так называемые нейроны-генераторы. Они обладают автомф-ией и задают частоту ритмической активности гладким мышцам ЖКТ. Таким образом отличительной особенностью метасимпатической нервной системы является то, что ее эфферентные нейроны всегда расположены интрамурально и регулируют частоту ритмических сокращений сердца, кишечника, матки и т.д. Поэтому даже после перерезки всех экстрамуральных нервов, идущих к этим органам, их нормальная функция сохраняется.

Наличие метасимпатической системы способствует освобождению ЦНС от излишней информации, так как метасимгтатические рефлексы замыкаются в интрамуральнъгх ганглиях. Она обеспечивает поддержание гомеостаза, управляя работой тех внутренних органов, которые имеют ее. _

Регуляция функций вегетативной нервной системой осуществляется по рефлекторному принципу. Т.е. раздражение периферических рецепторов приводит к возникновению нервных импульсов, которые после анализа и синтеза в вегетативных центрах поступают на эфферентные нейроны, а затем исполнительные органы. Поэтому все вегетативные рефлексы, в зависимости от участия рецепторного и эффекторного, звена делятся на следующие группы:

].Висцеро-висцеральные. Это рефлексы, которые возникают вследствие раздражения интерорецепторов внутренних органов и проявляются изменениями их функций. Например, при механическом раздражении брюшины или органов брюшной полости происходит урежение и ослабление сердечных сокращений. Рефлекс Гольца.

2.Висцеро-дермальные. Раздражении интерорецепторов внутренних органов, приводит к изменению потоотделения, просвета сосудов кожи, кожной чувствительности.

З.Сомато-висцеральные. Действие раздражителя на соматические рецепторы, например рецепторы кожи, приводит к изменению деятельности внутренних органов. К этой группе относится рефлекс Данини-Ашнера. '

4.Висцеро-соматические. Раздражение интерорецепторов вызывает изменение двигательных функций. Возбуждение хеморецепторов сосудов углекислым газом, способствует усилению сокращений' межреберных дыхательных мышц.

При нарушении механизмов вегетативной регуляции возникают изменения висцеральных функций. В частности, психосоматические заболевания.

Механизмы синаптической передачи в вегетативной нервной системе

Синапсы ВНС имеют в целом такое же строение, что и центральные. Однако отмечается значительное разнообразие хеморецепторов постсинаптических мембран. Передача нервных импульсов с преганглионарных волокон на нейроны всех вегетативных ганглиев осуществляется Н-холинергическими синапсами, т.е. синапсами на постсинаптической мембране которых расположены никотинчувствительные холинорецелторы. Постганглионарные холинергические волокна образуют на клетках исполнительных органов (желез, ГМК органов пищеварения, сосудов и г.д^- М~. холинергические синапсы. Их постсинаптическая мембрана содержит мускаринчувствительные рецепторы (блокатор-атропин). И в тех и других синапсах передача возбуждения осуществляется ацетилхолином. М-холинергические синапсы оказывают возбуждающее влияние на гладкие мышцы пищеварительного канала, мочевыводящей системы (кроме сфинктеров), железы ЖКТ. Однако они уменьшают возбудимость, проводимость и сократимость сердечной мышцы и вызывают расслабление некоторых сосудов головы и таза .

Постганглионарные симпатические волокна образуют 2 типа адренергических синапсов на эффекторах- а-адренергические и р-адренергические. Постсинаптическая мембрана первых содержит а |-и а.2 -адренорецепторы. При воздействии НА на ai-адренорецепторы происходит сужение артерий и артериол внутренних органов и кожи, сокращение мышц матки, сфинктеров ЖКТ, но одновременно-расслабление других гладких мышц пищеварительного канала. Постсинаптические р-адренорецепторы также делятся на pV и pV типы. Pi-адренорецепторы расположены в клетках сердечной мышцы. При действии на них НА повышается возбудимость, проводимость и сократимость кардиомиоцитов: Активация р2-адренорецепторов приводит к расширению сосудов легких, сердца и скелетных мышц, расслаблению гладких мышц бронхов, мочевого пузыря, торможению моторики органов пищеварения.

Кроме того, обнаружены Постганглионарные волокна, которые образуют на клетках внутренних органов гистаминергические, серотонинергические, пуринергические (АТФ) синапсы.

ФИЗИОЛОГИЯ СИСТЕМЫ КРОВИ

Функциии крови

Кровь, лимфа, тканевая жидкость являются внутренней средой организма, в которой протекают многие процессы гомеостаза. Кровь является жидкой тканью и вместе с кроветворными и депонирующими органами (костным мозгом, лимфоузлами, селезенкой) образует физиологическую систему крови.

В организме взрослого человека около 4-6 литров крови или 6-8% от массы тела. Основными фу!псциями системы крови являются: 1 .Транспортная, она включает:

а. дыхательную - транспорт дыхательных газов О2 и СО2 от легких к тканям и наоборот;

б. трофическую - перенос питательных веществ, витаминов, микроэлементов;

в. выделительную - транспорт продуктов обмена к органам выделения; г. терморегуляторную -удаление избытка тепла от внутренних органов и мозга к коже;

д. регуляторную - перенос гормонов и других веществ, входящих в гуморальную систему регуляции организма.

2.Гомеостатическая. Кровь обеспечивает следующие процессы гомеостаза:

а поддержание рН внутренней среды организма;

б. сохранение постоянства ионного и водно-солевого баланса, а как следствие осмотического давления.

З.Защитная функция. Обеспечивается содержащимися в крови иммунными антителами,

специфическими противовирусными и антибактериальными веществами, фагоцитарной активностью

лейкоцитов.

4.Гемостатическая функция. В крови имеется ферментная система свертывания, препятствующая кровотечению.

Состав крови. Основные физиологические константы крови

Кровь состоит из плазмы и взвешенных в ней форменных элементов: эритроцитов, лейкоцитов и тромбоцитов. Соотношение объема форменных элементов и плазмы взывается гематокригом. В норме форменные элементы занимают 42-45% объема крови, а плазма -55-58%. У мужчин объем форменных элементов на 2-3% больше, чем у женщин. Гематокрит определяют путем центрифугирования крови, содержащей цитрат натрия, в капиллярах со 100 делениями.

Удельный вес цельной крови 1,052-1,061 г/см3. Ее вязкость равна 4,4-4,7 пуаз, а осмотическое деление 7,6 атм. Большая часть осмотического давления обусловлена находящимися в плазме ютионами натрия и калия, а также анионами хлора. Растворы, осмотическое давление которых выше осмотического давления крови, называют гипертоническими. Это, например, 10% раствор хлорида втгрия или 40% глюкозы. Если осмотическое давление раствора ниже, чем крови он называется гипотоническим (0,3%.NaCl). В клинике, для переливания больших количеств кровезамещающих ркггворов, используют изотонические растворы. Их осмотическое давление такое же как у крови. Таким является физиологический раствор, содержащий 0,85% хлорида натрия. Белки крови, являясь , юшюидами, также создают небольшое давление называемое онкотическим. Его величина 0,03 атм. иди 25-30 мм.рт.ст.

Состав, свойства и значение компонентов плазмы

Удельный вес плазмы 1,025-1,029 г/см3, вязкость 1,9-2,6. Плазма содержит 90-92% воды и 8-10% сухого остатка. В состав сухого остатка входят минеральные вещества (около 0,9%), в основном яорид натрия, катионы калия, магния, кальция, анионы хлора, гидрокарбонат, фосфатанионы. Кроме «го в нем имеются глюкоза, а также продукты гидролиза белков - мочевина, креатинин, аминокислоты *ГД- Они называются остаточным азотом. Содержание глюкозы в плазме 3,6-6,9 ммоль/л, остаточного ярта 14,3-28,6 ммоль/л.

Особое значение имеют белки плазмы. Их общее количество 7-8%. Белки состоят из нескольких фракций, но наибольшее значение имеют альбумины, глобулины и фибриноген. Альбуминов «держится 3,5-5%, глобулинов 2-3%, фибриногена 0,3-0,4%. При нормальном питании в организме человека ежесуточно вырабатывается около 17 г альбуминов и 5 г глобулинов.

Функции альбуминов плазмы:

1.Создают большую часть онкотического давления, обеспечивая нормальное распределение воды и ионов между кровью и тканевой жидкостью, мочеобразование.

2.Служат белковым резервом крови, который составляет 200 г белка. Он используется организмом при белковом голодании.

З.Благодаря отрицательному заряду способствуют стабилизации и препятствуют оседанию форменных элементов крови.

4.Подцерживают кислотно-щелочное равновесие, являясь буферной системой. 5. Переносят половые гормоны, желчные пигменты и ионы кальция.

Эти же функции выполняют и другие фракции белков, но в значительно меньшей мере. Им свойственны особые функции.

Глобулины включают четыре субфракции - ось а^, Р иу-глобулины. Функции глобулинов: ] .а-глобулины участвуют в регуляции эритропоэза, т.к. один из них является эритропоэтином. 2.Необоходимы для свертывания крови, т.к. к ним относится один из факторов свертывания -. З.Участвуют в растворении тромба, т.к. содержат фермент фибринолитической системы плазминоген. 4.а2-альбумин церулоплазмин переносит 90% ионов меди, необходимых организму. 5.Переносят гормоны тироксин и кортизол б.р-глобулин трансферрин переносит основную массу железа У.несколько (3-глобулинов являются факторами свертывания крови.

8.у-глобулины выполняют защитную функцию, являясь иммуноглобулинами. При заболеваниях их количество в крови возрастает.

Фибриноген является растворимым предшественником белка фибрина, из которого образуется сгусток крови тромб.

Механизмы поддержания кислотно-щелочного равновесия крови

Для организма важнейшее значение имеет поддержание постоянства реакции внутренней среды. Это необходимо для нормального протекания ферментативных процессов в клетках и внеклеточной среде, синтеза и гидролиза различных веществ, поддержания ионных градиентов в клетках, транспорта газов и т.д. Активная реакция среды определяется соотношением водородных и гидроксильных ионов. Постоянство кислотно-щелочного равновесия внутренней среды поддерживается буферными системами крови и физиологическими механизмами. Буферные системы - это комплекс слабых кислоты и основания, который способен препятствовать сдвигу реакции в ту или иную сторону.

Кровь содержит следующие буферные системы:

Бикарбонатная или гидрокарбонатная. Она состоит из свободной угольной кислоты и гидрокарбонатов натрия и калия (NaНСОз и КНСОз). При накоплении в крови щелочей, они взаимодействуют с угольной кислотой. Образуются гидрокарбонат и вода. Если кислотность крови возрастает, то кислоты соединяются с гидрокарбонатами. Образуются нейтральные соли и угольная кислота. В легких она распадается на углекислый газ и воду, которые выдыхаются.

2.Фосфатная буферная система Она является комплексом гидрофосфата и дигидрофосфата натрия (Na2HPO4 и NаН2РО4 Первый проявляет свойства основания, второй слабой кислоты. Кислоты образуют с гидрофосфатом натрия нейтральную соль и дигидрофосфат натрия (Na2HPO4+^CO2=NaHCO3+NaH2PO4).

3.Белковая буферная система Белки являются буфером благодаря своей амфотерности. Т.е. в зависимости от реакции среды они проявляют либо щелочные, либо кислотные свойства Щелочные свойства им придают концевые аминогруппы белков, а кислотные карбоксильные. Хотя буферная емкость белковой системы небольшая, она .играет важную роль в межклеточной жидкости.

4.Гемоглобиновая буферная система эритроцитов. Самая мощная буферная система. Состоит из восстановленного гемоглобина и калиевой соли оксигемоглобина Аминокислота гистидин, входящая в структуру гемоглобина, имеет карбоксильные и. амидные группировки. Первые обеспечивают гемоглобину свойства слабой кислоты, вторые - слабого основания. При диссоциации оксигемоглобина в капиллярах тканей на кислород и гемоглобин, последний приобретает способность связываться с катионами водорода. Они образуются в результате диссоциации, образовавшейся из углекислого газа угольной кислоты. Угольная кислота образуется из углекислого газа и воды под действием фермента карбоангидразы, имеющейся в эритроцитах (формула). Анионы угольной кислоты связываются с катионами калия, находящимися в эритроцитах и катионами натрия в плазме крови. Образуются гидрокарбонаты калия и натрия, сохраняющие буферную емкость крови. Кроме того, восстановленный гемоглобин может непосредственно связываться с углекислым газом с образованием карбгемоглобин'а. Это также препятствует сдвигу реакции крови в кислую сторону.

Физиологические механизмы поддержания кислотно-щелочного равновесия обеспечиваются легкими, почками, ЖКТ, печенью. С помощью легких из крови удаляется угольная кислота. В организме ежеминутно образуется 10 ммолъ угольной кислоты. Закисление крови не происходит потому, что из нее образуются бикарбонаты. В капиллярах легких из анионов угольной кислоты и протонов вновь образуется угольная кислота, которая под влиянием фермента карбоангидразы расщепляется на углекислый газ и воду. Они выдыхаются. Через почки из крови выделяются нелетучие органические и неорганические кислоты. Они выводятся как в свободном состоянии, так и в виде солей. В физиологических условиях почки моча имеет кислую ^реакцию (рН=5-7). Почки участвуют в регуляции кислотно-щелочного гомеостаза с помощью следующих механизмов:

1. Секреции эпителием канальцев водородных ионов, образовавшихся го угольной кислоты, в мочу.

2. Образования в клетках эпителия гидрокарбонатов, которые поступают в кровь и увеличивают ее щелочной резерв. Они образуются из угольной кислоты и катионов натрия и калия. Первые 2 процесса обусловлены наличием в этих клетках карбоангидразы.

3. Синтеза аммиака, катион которого может связываться с катионом водорода с образованием аммония.

4. Обратного всасывание в канальцах из первичной мочи в кровь гидрокарбонатов.

5. Фильтрация в мочу избытка кислых и щелочных соединений.

Значение органов пищеварения- для поддержания кислотно-щелочного равновесия небольшое. В частности, в желудке в виде соляной кислоты выделяются протоны. Поджелудочной железой и железами тонкого кишечника гидрокарбонаты. Но в то же время и протоны и гидрокарбонаты обратно всасываются в кровь. В результате реакция крови не изменяется. В печени из молочной кислоты образуется гликоген. Однако нарушение функций пищеварительного канала сопровождается сдвигом реакции крови. Так стойкое повышение кислотности желудочного сока приводит к увеличению щелочного резерва крови. Это же возникает при частой рвоте из-за потери катионов водорода и хлоридов.

Кислотно-щелочной баланс крови характеризуется несколькими показателями:

1.Актуальный рН. Это фактическая величина рН крови. В норме артериальная кровь имеет рН 7,35-7,45.

2. Парциальное напряжение СО2 (РСО2). Для артериальной крови 36-44 мм;рт.ст.

3. Стандартный бикарбонат крови (SB). Содержание бикарбонат (гидрокарбонат) анионов при стандартных условиях, т.е. нормальном насыщении гемоглобина кислородом. Величина 21,3 - 24,8 ммоль/л.

4. Актуальный бикарбонат крови (АВ). Истинная концентрация бикарбонат анионов. В норме практически не отличается от стандартного, но возможны физиологические колебания от 19 до 25 ммоль/л. Раньше этот показатель называли щелочным резервом. Он определяет способность крови нейтрализовать кислоты.

5. Буферные основания (ВВ). Общая сумма всех анионов, обладающих буферными свойствами, в стандартных условиях. 40-60 ммоль/л.

При определенных условиях реакция крови может изменяться. Сдвиг реакции крови в кислую сторону, называется ацидозом, в щелочную, алкалозом. Эти изменения рН могут быть дыхательными и недыхательными или метаболическими. Дыхательные изменения реакции крови обусловлены изменениями содержания углекислого газа. Недыхательные - бикарбонат анионов. В здоровом организме, например при пониженном атмосферном давлении или усиленном дыхании (гипервснтиляции) снижается концентрация CO2 в крови. Возникает дыхательный алкалоз. Недыхательный развивается при длительном приеме растительной пищи или воды, содержащей гидрокарбонаты. При задержке дыхания развивается дыхательный, а тяжелой физической работе, недыхательный ацидоз. Изменения рН могут быть компенсированными и некомпенсированными. Если реакция крови не изменяется, то это компенсированные алкалоз и ацидоз. Сдвиги компенсируются буферными системами, в первую очередь бикарбонатной. Поэтому они наблюдаются в здоровом организме. При недостатке или избытке буферных компонентов имеет место частично компенсированные ацидоз и алкалоз, но рН не выходит за пределы нормы. Если же реакция крови меньше 7,29 или больше 7,56 наблюдается некомпенсированные ацидоз и алкалоз. Самым грозным состоянием в клинике является некомпенсированный метаболический ацидоз. Он возникает вследствие нарушений кровообращения и гипоксии тканей, а как следствие, усиленного анаэробного расщепления жиров и белков и т.д. При рН ниже 7,0 происходят глубокие изменения функций ЦНС (кома), возникает фибрилляция сердца, падает артериального давления, угнетается дыхание и может наступить смерть. Метаболический ацидоз устраняется коррекцией электролитного состава, искусственной вентиляцией и т.д.

Строение и функции эритроцитов. Гемолиз

Эритроциты (Э)- это высокоспециализированные безъядерные клетки крови. Ядро у них утрачивается в процессе созревания. Эритроциты имеют форму двояковогнутого диска В среднем их диаметр около 7,5 мкм, а толщина на периферии 2,5 мкм. Благодаря такой форме увеличивается поверхность эритроцитов для диффузии газов. Кроме того, это возрастает их пластичность. За счет высокой пластичности, они деформируются и легко проходят по капиллярам. У старых и патологических эритро1;итов пластичность низкая. Поэтому они задерживаются в капиллярах ретикулярной ткани селезенки и разрушаются там. Мембрана эритроцитов и отсутствие ядра обеспечивают их главную функцию - перенос кислорода и участие в переносе углекислого газа. Мембрана эритроцитов непроницаема для катионов, кроме калия, а ее проницаемость для анионов хлора, гидрокарбонат анионов и гидроксил анионов в миллион раз больше. Кроме того она хорошо пропускает молекулы кислорода и углекислого газа. В мембране содержится до 52% белка. В частности, гликопротеины определяют групповую принадлежность крови и_ обеспечивают ее отрицательный заряд, В нее встроена Na/K-АТФаза, удаляющая из цитоплазмы натрий и закачивающая ионы калия. Основную массу эритроцитов составляет хемопротеин гемоглобин. Кроме того в цитоплазме содержатся ферменты карбоангидраза, фосфатазы, холинэстераза и другие ферменты.

Функции эритроцитов: 1 . Перенос кислорода от легких к тканям.

2. Участие в транспорте СОа от тканей к легким.

3. Транспорт воды от тканей к легким, где она выделяется в виде пара

4. Участвуют в свертывании крови, выделяя эритроцитарные факторы свертывания.

5. Переносят аминокислоты на своей поверхности.

6. Участвуют в -регуляции вязкости крови, вследствие пластичности. В результате их способности к деформации, вязкость крови в мелких сосудах меньше, чем крупных.

В одном микролитре крови мужчин содержится 4,5-5,0 млн. эритроцитов (4,5-5,0 * 1012 л). Женщин -3,7-4,7 млн. (3,7-4,7 * 10 л). Подсчет количества эритроцитов производится в камере Горяева Дня этого кровь в специальном капилляре меланжере (смесителе) для эритроцитов смешивают с 3% раствором хлорида натрия в соотношении 1:100 или 1:200. Затем капелька этой смеси помещается в счетную камеру. Она создается средним выступом камеры и покровным стеклом. Высота камеры 0,1 мм. На среднем выступе нанесена сетка, образующая большие квадраты. Часть этих квадратов разделена на 16 маленьких (табл.). Каждая сторона малого квадрата имеет величину 0,05 мм. Следовательно, объем смеси над малым квадратом будет составлять 1/10 мм * 1/20 мм * 1/20 мм = 1/4000 мм3.

После заполнения камеры, под микроскопом считают количество эритроцитов в 5-ти тех больших квадратах, которые разделены на маленькие, Т.е. в 80 маленьких. Затем рассчитывают количество эритроцитов в одном микролитре крови по формуле:

Где а - общее количество эритроцитов, полученное при подсчете б - число малых квадратов в которых производился подсчет (80) в -разведение крови (1:1 00, 1:200). 4000 - величина обратная объему жидкости на малым квадратом.

Для быстрого подсчета, при большом количестве анализов, используют

фотоэлектрические эритрогемометры. Принцип их действия основан на определении прозрачности взвеси эритроцитов с помощью пучка света проходящего- от источника к светочувствительному датчику. Фотоэлектрокалориметры.

Увеличение содержания эритроцитов в крови называется эритроцитозом или эритремией, уменьшаться эритропенией или анемией. Эти изменения могут быть относительными и абсолютными. Например, относительное уменьшение их количества возникает при задержке воды в организме, а увеличение при обезвоживании. Абсолютное уменьшение содержания эритроцитов, т.е. анемия наблюдается при кровопотере, нарушениях кроветворения, разрушении эритроцитов гемолитическими ядами или при переливании несовместимой крови.

Гемолиз это разрушение мембраны эритроцитов и выход гемоглобина в плазму. В результате кровь становится прозрачной.

Различают следующие виды гемолиза.

По месту возникновения:

1. Эндогенный, т.е. в организме.

2. Экзогенный, вне его. Например во флаконе с кровью, аппарате искусственного кровообращения. По характеру:

1. Физиологический. Он обеспечивает разрушение старых и .патологических форм эритроцитов. Имеется два механизма. Внутриклеточный гемолиз происходит в макрофагах селезенки, костного мозга, клетках печени. Внутрисосудистый, в мелких сосудах, из которых гемоглобин с помощью белка плазмы гаптотлобина переносится к клеткам печени. Там гем гемоглобина превращается в билирубин. В сутки разрушается около 6-7 г гемоглобина.

2. Патологический.

По механизму возникновения:

1 .Химический. Возникает при воздействии на эритроциты веществ, растворяющих липиды мембраны. Это спирты, эфир, хлороформ, щелочи кислоты и т.д. В частности, при отравлении большой дозой уксусной кислоты возникает выраженный гемолиз.

2. Температурный. При низких температурах в эритроцитах образуются кристаллики льда, разрывающие их оболочку.

3. Механический. Наблюдается при механических разрывах мембраны. Например, при встряхивании флакона с кровью или ее перекачивания аппаратом искусственного кровообращения.

4. Биологический. Происходит при действии биологических факторов. Это гемолитические яды бактерий, насекомых, змей. В результате переливания несовместимой крови.

5. Осмотический. Возникает в том случае, если эритроциты попали в среду с осмотическим давлением ниже, чем у крови. Вода входит в эритроциты, они набухают и лопаются. Концентрация хлорида натрия, при которой происходит гемолиз 50% всех эритроцитов, является мерой их осмотической стойкости. Ее определяют в клинике для диагностики заболеваний печени, анемий. Осмотическая стойкость должна быть не ниже 0,46% НаС1. При помещении эритроцитов в среду, с большим чем у крови осмотическим давлением, происходит плазмолиз. Это сморщивание эритроцитов. Его используют для подсчета эритроцитов.

Гемоглобин (НЬ) это хемопротеин, содержащийся в эритроцитах. Его молекулярная масса 66000 дальтон. Молекулу гемоглобина образуют четыре субъединицы, каждая из которых включает гем, соединенный с атомом железом, и белковую часть глобин. Гем синтезируется в митохондриях эритробластов, а глобин в их рибосомах. У взрослого человека гемоглобин содержит две а- и две р-полипептидных цепи. Он называется А-гемоглобином * (adult-взрослый). В зрелом возрасте он составляет основную часть гемоглобина. В первые три месяца внутриутробного развития в эритроцитах находится гемоглобин типа GI и G2 (Gover). В последующие периоды внутриутробного ' развития и в первые месяцы после рождения основную часть составляет феталъный гемоглобин (F-гемоглобин). В его структуре две а- и две у-полипептидные цепи. При рождении до 50-80% гемоглобина составляет F-гемоглобин, а 20-40 % А-гемоглобин. Ранние гемоглобины имеют большую кислородную емкость.

Гем содержит атом 2-х валентного железа, который легко соединяется с кислородом н легко отдает его. При этом валентность жечеза не изменяется. Один грамм гемоглобина способен связывать 1,34 мл кислорода. Соединение гемоглобина с кислородом, образующееся в капиллярах легких называется оксигемоглобином (НЬО2). Он имеет ярко алый цвет. Гемоглобин, отдавший кислород в капиллярах тканей, называется дезоксигемоглобином или восстановленным (НЬ). У него темно-вишневая окраску. От 10 до 30% углекислого газа, поступающего из тканей в кровь, соединяются с амидной группировкой гемоглобина. Образуется легко диссоциирующее соединение карбгемоглобин (HbCOz). В этом виде часть углекислого газа транспортируется к легким.

В некоторых случаях гемоглобин образует патологические соединения. При отравлении угарным газом образуется карбоксигемоглобин (НЬСО). Сродство гемоглобина с окисью углерода значительно выше, чем с кислородом, а скорость диссоциации карбоксигемоглобина в 200 раз меньше, чем оксигемоглобина. Поэтому присутствие в воздухе даже 1% угарного газа приводит к прогрессирующему увеличению количества карбоксигемоглобина и опасному угарному отравлению. Кровь теряет способность переносить кислород. Развивается гипоксия мозга и других тканей. Угарное отравление сопровождается сильной головной болью, тошнотой, рвотой, судорогами, потерей сознания и смертью.

При отравлении сильными окислителями, например нитритами, марганцовокислым калием, красной кровяной солью, образуется метгемоглобин (MetHb). В этом соединении гемоглобина железо становится трехвалентным. Поэтому метгемоглобин очень слабо диссоциирующее соединение. Он не отдает кислород тканям.


Подобные документы

  • Понятие возбудимости и раздражимости, способность живых клеток воспринимать изменения внешней среды и отвечать на раздражения реакцией возбуждения. Скорость протекания циклов возбуждения в нервной ткани (лабильность). Свойств биологических мембран.

    реферат [1005,0 K], добавлен 31.12.2012

  • Сходство физической природы звука и вибрации. Действие низкочастотной вибрации на клетки и ткани организма животных и человека. Патологические процессы, возникающие в результате действия вибрации. Совместное действие шума и вибрации на живой организм.

    контрольная работа [20,8 K], добавлен 21.09.2009

  • Сущность пищеварения, критерии его классификации. Функции желудочно-кишечного тракта. Ферменты пищеварительных соков. Строение пищеварительного центра (голод и насыщение). Процесс пищеварения в полости рта и желудке, основные механизмы его регуляции.

    презентация [1,4 M], добавлен 26.01.2014

  • Физиология как наука о функциях и процессах, протекающих в организме, ее разновидности и предметы изучения. Возбудимые ткани, общие свойства и электрические явления. Этапы исследования физиологии возбуждения. Происхождение и роль мембранного потенциала.

    контрольная работа [533,3 K], добавлен 12.09.2009

  • Изучение видов тканей внутренней среды – комплекса тканей, образующих внутреннюю среду организма и поддерживающих ее постоянство. Соединительная ткань – главная опора организма. Трофическая, опорно-механическая, защитная функция ткани внутренней среды.

    презентация [364,9 K], добавлен 12.05.2011

  • Адаптация как одно из ключевых понятий в экологии человека. Основные механизмы адаптации человека. Физиологические и биохимические основы адаптации. Адаптация организма к физическим нагрузкам. Снижение возбудимости при развитии запредельного торможения.

    реферат [22,8 K], добавлен 25.06.2011

  • Виды эпителиальной ткани. Однослойный плоский эпителий. Мерцательный или реснитчатый, цилиндрический эпителий. Основные виды и функции соединительной ткани. Овальные тучные клетки, фибробласты. Плотная соединительная ткань. Функции нервной ткани.

    презентация [2,5 M], добавлен 05.06.2014

  • Возбудимые ткани и их свойства. Структура и функции биологических мембран, транспорт веществ через них. Электрические явления возбудимых тканей, их характер и обоснование. Рефрактерные периоды. Законы раздражения в возбудимых тканях, их применение.

    презентация [1,8 M], добавлен 05.03.2015

  • Анатомия и физиология как науки. Роль внутренней среды, нервной и кровеносной систем в превращении потребностей клеток в потребности целого организма. Функциональные системы организма, их регуляция и саморегуляция. Части тела человека, полости тела.

    презентация [10,6 M], добавлен 25.09.2015

  • Опорно-трофические (соединительные) ткани - клетки и межклеточное вещество организма человека, их морфология и функции: опорная, защитная, трофическая (питательная). Виды тканей: жировая, пигментная, слизистая, хрящевая, костная; специальные свойства.

    реферат [20,9 K], добавлен 04.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.