Биохимия как наука

Химическая природа веществ, входящих в состав живых организмов, превращения этих веществ, а также связь этих превращений с деятельностью отдельных тканей и организма в целом. Обмен триацилглицеролов и жирных кислот. Регуляция и взаимосвязь метаболизма.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 30.09.2014
Размер файла 2,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

а) транспорт по специальным каналам, образованным в трансмебранных белках (например, катионселективные каналы);

б) с помощью белков-транслоказ, которые взаимодействуют со специфическим лигандом, обеспечивают его диффузию по градиенту концентрации (пинг-понг) (перенос глюкозы в эритроциты с помощью белка-переносчика ГЛЮТ-1).

Кинетически перенос веществ облегченной диффузией напоминает ферментативную реакцию. Для транслоказ существует насыщающая концентрация лиганда, при которой все центры связывания белка с лигандом заняты, и белки работают с максимальной скоростью. Поэтому скорость транспорта веществ облегченной диффузией зависит не только от градиента концентраций переносимого вещества, но и от количества беков-переносчиков в мембране.

Простая и облегченная диффузия относится к пассивному транспорту, так как происходит без затраты энергии.

Активный транспорт - транспорт вещества против градиента концентрации (незаряженные частицы) или электрохимического градиента (для заряженных частиц), требующий затрат энергии, чаще всего АТФ. Выделяют два вида его: первично активный транспорт использует энергию АТФ или окислительно-восстановительного потенциала и осуществляется с помощью транспортных АТФ-аз. Наиболее распространены в плазматической мембране клеток человека Na+,K+- АТФ-аза, Са2+-АТФ-аза, Н+-АТФ-аза.

При вторично активном транспорте используется градиент ионов, созданный на мембране за счет работы системы первично активного транспорта (всасывание глюкозы клетками кишечника и реабсорбция из первичной мочи глюкозы и аминокислот клетками почек, осуществляемые при движении ионов Na+ по градиенту концентрации).

Перенос через мембрану макромолекул. Транспортные белки обеспечивают перенос через клеточную мембрану полярных молекул небольшого размера, но они не могут транспортировать макромолекулы, например белки, нуклеиновые кислоты, полисахариды или отдельные частицы. Механизмы, с помощью которых клетки могут усваивать такие вещества или удалять их из клетки, отличаются от механизмов транспорта ионов и полярных соединений.

А) Перенос вещества из среды в клетку вместе с частью плазматической мембраны называют эндоцитоз. Путем эндоцитоза (фагоцитоза) клетки могут поглощать большие частицы, такие как вирусы, бактерии или фрагменты клеток. Поглощение жидкости и растворенных в ней веществ с помощью небольших пузырьков называют пиноцитозом.

Б) Экзоцитоз. Макромолекулы, например белки плазмы крови, пептидные гормоны, пищеварительные ферменты синтезируются в клетках и затем секретируются в межклеточное пространство или кровь. Но мембрана не проницаема для таких макромолекул или комплексов, их секреция происходит путем экзоцитоза. В организме имеются как регулируемый так и не регулируемый пути экзоцитоза. Нерегулируемая секреция характеризуется непрерывным синтезом секретируемых белков. Примером может служить синтез и секреция коллагена фибробластами для формирования межклеточного матрикса.

Для регулируемой секреции характерны хранение приготовленных на экспорт молекул в транспортных пузырьках. С помощью регулируемой секреции происходят выделение пищеварительных ферментов, а также секреция гормонов и нейромедиаторов.

10. Энергетический обмен. Биологическое окисление

Живые организмы с точки зрения термодинамики - открытые системы. Между системой и окружающей средой возможен обмен энергии, который происходит в соответствии с законами термодинамики. Каждое органическое соединение, поступающее в организм, обладает определенным запасом энергии (Е). Часть этой энергии может быть использована для совершения полезной работы. Такую энергию называют свободной энергией (G). Направление химической реакции определяется значением G. Если эта величина отрицательна, то реакция протекает самопроизвольно. Такие реакции называются экзергоническими. Если G положительно, то реакция будет протекать только при поступлении свободной энергии извне - это эндергонические реакции. В биологических системах термодинамически невыгодные эндергонические реакции могут протекать лишь за счет энергии экзергонических реакций. Такие реакции называют энергетически сопряженными.

Важнейшей функцией многих биологических мембран служит превращение одной формы энергии в другую. Мембраны, обладающие такими функциями, называются энергопреобразующими. Любая мембрана, выполняющая энергетическую функцию, способна к превращению химической энергии окисляемых субстратов или АТФ в электрическую энергию, а именно в трансмембранную разность электрических потенциалов () или в энергию разности концентраций веществ, содержащихся в разделенных мембраной растворах, и наоборот. Среди энергопреобразующих мембран, имеющих наибольшее значение, можно назвать внутреннюю мембрану митохондрий, внешнюю цитоплазматическую мембрану, мембраны лизосом и комплекса Гольджи, саркоплазматический ретикулум. Наружная мембрана митохондрий и ядерная мембрана не может превращать одну форму энергии в другую.

Преобразование энергии в живой клетке описывается следующей общей схемой:

Энергетические ресурсы I работа

где I - трансмембранная разность электрохимических потенциалов иона I. Следовательно, процессы утилизации энергии и совершения за счет нее работы оказываются сопряжены через образование и использование I. Поэтому данный ион может быть назван сопрягающим ионом. Основным сопрягающим ионом в клетке эукариот является Н+, и соответственно Н+ является основной конвертируемой формой запасания энергии. Вторым по значимости сопрягающим ионом является Na+ (Na+). В то время как Сa2+, K+ и Cl не используются для совершения какой-либо работы.

Биологическое окисление - это процесс дегидрирования субстрата с помощью промежуточных переносчиков водорода и его конечного акцептора. Если в роли конечного акцептора выступает кислород, процесс называется аэробным окислением или тканевым дыханием, если конечный акцептор представлен не кислородом - анаэробным окислением. Анаэробное окисление имеет ограниченное значение в организме человека. Основная функция биологического окисления - обеспечение клетки энергией в доступной форме.

Тканевое дыхание - процесс окисления водорода кислородом до воды ферментами цепи тканевого дыхания. Оно протекает по следующей схеме:

Вещество окисляется, если отдает электроны или одновременно электроны и протоны (атомы водорода), или присоединяет кислород. Способность молекулы отдавать электроны другой молекуле определяется окислительно-восстановительным потенциалом (редокс-потенциалом). Любое соединение может отдавать электроны только веществу с более высоким окислительно-восстановительным потенциалом. Окислитель и восстановитель всегда образуют сопряженную пару.

Выделяют 2 типа окисляемых субстратов:

Пиридинзависимые - спиртовые или альдегидные - изоцитрат, б-кетоглутарат, пируват, малат, глутамат, -гидроксиацил-КоА, -гидроксибутират, - в их дегидрировании участвуют НАД-зависимые дегидрогеназы.

Флавинзависимые - являются производными углеводородов - сукцинат, ацил-КоА, глицерол-3-фосфат, холин - при дегидрировании передают водород на ФАД-зависимые дегидрогеназы.

Цепь тканевого дыхания - последовательность переносчиков протонов водорода (Н+) и электронов от окисляемого субстрата на кислород, локализованных на внутренней мембране митохондрий.

Размещено на http://www.allbest.ru/

Рис. 10.1 Схема ЦТД
Компоненты ЦТД:
НАД-зависимые дегидрогеназы дегидрируют пиридинзависимые субстраты и акцептируют 2з и один Н+.
ФАД (ФМН) - зависимые дегидрогеназы акцептируют 2 атома водорода (2Н+ и 2з). ФМН - зависимая дегидрогеназа дегидрирует только НАДН, в то время как ФАД- дегидрогеназы окисляют флавинзависимые субстраты.
Жирорастворимый переносчик убихинон (кофермент Q, КоQ) - свободно перемещается по мембране митохондрий и акцептирует два атома водорода и превращается в КоQH2 (восстановленная форма - убихинол).
Система цитохромов - переносит только электроны. Цитохромы железосодержащие белки, простетическая группа которых по структуре напоминает гем. В отличие от гема атом железа в цитохроме может обратимо переходить из двух - в трехвалентное состояние (Fe3+ + з Fe2+). Это и обеспечивает участие цитохрома в транспорте электронов. Цитохромы действуют в порядке возрастания их редокс-потенциала и в дыхательной цепи располагаются следующим образом: b - с1 - с - а - а3. Два последних работают в ассоциации как один фермент цитохромоксидаза аа3. Цитохромоксидаза состоит из 6 субъединиц (2 - цитохрома а и 4 - цитохрома а3). В цитохроме а3 кроме железа имеются атомы меди и он передает электроны непосредственно на кислород. Атом кислорода при этом заряжается отрицательно и приобретает способность взаимодействовать с протонами с образованием метаболической воды.
Железосерные белки (FeS) - содержат негемовое железо и участвуют в окислительно-восстановительных процессах, протекающих по одноэлектронному механизму и ассоциированы с флавопротеинами и цитохромом b.
Структурная организация цепи тканевого дыхания
Компоненты дыхательной цепи во внутренней мембране михохондрий формируют комплексы:
I комплекс (НАДН-КоQН2-редуктаза) - принимает электороны от митохондриального НАДН и транспортирует их на КоQ. Протоны транспортируются в межмембранное пространство. Промежуточным акцептором и переносчиком протонов и электронов являются ФМН и железосерные белки. I комплекс разделяет поток электронов и протонов.
II комплекс - сукцинат - КоQ - редуктаза - включает ФАД- зависимые дегидрогеназы и железосерные белки. Он транспортирует электроны и протоны от флавинзависимых субстратов на убихинон, с образованием промежуточного ФАДН2.
Убихинон легко перемещается по мембране и передает электроны на III комплекс.
III комплекс - КоQН2 - цитохром с - редуктаза - имеет в своем составе цитохромы b и с1, а также железосерные белки. Функционирование КоQ с III комплексом приводит к разделению потока протонов и электронов: протоны из матрикса перекачиваются в межмембранное пространство митохондрий, а электроны транспортируются далее по ЦТД.
IV комплекс - цитохром а - цитохромоксидаза - содержит цитохромоксидазу и транспортирует электроны на кислород с промежуточного переносчика цитохрома с, который является подвижным компонентом цепи.
Существует 2 разновидности ЦТД:
Полная цепь - в нее вступают пиридинзависимые субстраты и предают атомы водорода на НАД-зависимые дегидрогеназы
Неполная (укороченная или редуцированная) ЦТД в которой атомы водорода передаются от ФАД-зависимых субстратов, в обход первого комплекса.
Окислительное фосфорилирование АТФ
Окислительное фосфорилирование - процесс образования АТФ, сопряженный с транспортом электронов по цепи тканевого дыхания от окисляемого субстрата на кислород. Электроны всегда стремятся переходить от электроотрицательных систем к электроположительным, поэтому их транспорт по ЦТД сопровождается снижением свободной энергии. В дыхательной цепи на каждом этапе снижение свободной энергии происходит ступенчато. При этом можно выделить три участка, в которых перенос электронов сопровождается относительно большим снижением свободной энергии. Эти этапы способны обеспечить энергией синтез АТФ, так как количество выделяющейся свободной энергии приблизительно равно энергии, необходимой для синтеза АТФ из АДФ и фосфата.
Для объяснения механизмов сопряжения дыхания и фосфорилирования выдвинут ряд гипотез.
Механохимическая или конформационная (Грин-Бойера). В процессе переноса протонов и электронов изменяется конформация белков-ферментов. Они переходят в новое, богатое энергией конформационное состояние, а затем при возвращении в исходную конформацию отдают энергию для синтеза АТФ.
Гипотеза химического сопряжения (Липмана). В сопряжении дыхания и фосфорилирования участвуют «сопрягающие» вещества. Они акцептируют протоны и электроны и взаимодействуют с Н3РО4. В момент отдачи протонов и электронов связь с фосфатом становится макроэргической и фосфатная группа передается на АДФ с образованием АТФ путем субстратного фосфорилирования. Гипотеза логична, однако до сих пор не выделены «сопрягающие» вещества.
Хемиоосмотическая гипотеза Питера Митчелла (1961г.)
Основные постулаты этой теории:
внутренняя мембрана митохондрий непроницаема для ионов Н+ и ОН?;
за счет энергии транспорта электронов через I, III и IV комплексы дыхательной цепи из матрикса выкачиваются протоны;
возникающий на мембране электрохимический потенциал является промежуточной формой запасания энергии;
возвращение протонов в матрикс митохондрии через протонный канал АТФ синтазы является поставщиком энергии для синтеза АТФ по схеме
АДФ+Н3РО4АТФ+Н2О
Доказательства хемиоосмотической теории:
· на внутренней мембране есть градиент Н+ и его можно измерить;
· создание градиента Н+ в митохондрии сопровождается синтезом АТФ;
· ионофоры (разобщители), разрушающие протонный градиент, тормозят синтез АТФ;
· ингибиторы, блокирующие транспорт протонов по протонным каналам АТФ-синтазы, ингибируют синтез АТФ.
Строение АТФ-синтазы
АТФ-синтаза - интегральный белок внутренней мембраны митохондрий. Он расположен в непосредственной близости к дыхательной цепи и обозначается как V комплекс. АТФ-синтаза состоит из 2 субъединиц, обозначаемых как Fо и F1. Гидрофобный комплекс Fо погружен во внутреннюю мембрану митохондрий и состоит из нескольких протомеров, образующих канал по которому протоны переносятся в матрикс. Субъединица F1 выступает в митохондриальный матрикс и состоит из 9 протомеров. Причем три из них связывают субъединицы Fо и F1, образуя своеобразную ножку и являются чувствительными к олигомицину.

Суть хемиоосмотической теории: за счет энергии переноса электронов по ЦТД происходит движение протонов через внутреннюю митохондриальную мембрану в межмембранное пространство, где создается электрохимический потенциал (Н+), который приводит к конформационной престройке активного центра АТФ-синтазы, в результате чего становится возможным обратный транспорт протонов через протонные каналы АТФ-синтазы. При возвращении протонов назад электрохимический потенциал трансформируется в энергию макроэргической связи АТФ. Образовавшаяся АТФ с помощью белка-переносчика транслоказы перемещается в цитозоль клетки, а взамен в матрикс поступают АДФ и Фн.

Коэффициент фосфорилирования (Р/О) - число атомов неорганического фосфата, включенных в молекулы АТФ, в пересчете на один атом использованного поглощенного кислорода.

Пункты фосфорилирования - участки в дыхательной цепи, где энергия транспорта электоронов используется на генерацию протонного градиента, а затем в ходе фосфорилирования запасается в форме АТФ:

1 пункт - между пиридинзависимой и флавинзависимой дегидрогеназами; 2 пункт - между цитохромами b и с1; 3 пункт - между цитохромами а и а3.

Следовательно, при окислении НАД-зависимых субстратов коэффициент Р/О равен 3, так как электроны от НАДН транспортируются с участием всех комплексов ЦТД. Окисление ФАД-зависимых субстратов идет в обход I комплекса дыхательной цепи и Р/О равен 2.

Нарушения энергетического обмена

Все живые клетки постоянно нуждаются в АТФ для осуществления различных видов деятельности. Нарушение какого-либо этапа метаболизма, приводящие к прекращению синтеза АТФ, гибельны для клетки. Ткани с высокими энергетическими потребностями (ЦНС, миокард, почки, скелетные мышцы и печень) являются наиболее уязвимыми. Состояния, при которых синтез АТФ снижен объединяют термином «гипоэнергетические». Причины данных состояний можно разбить на две группы:

Алиментарные - голодание и гиповитаминозы В2 и РР - возникает нарушение поставки окисляемых субстратов в ЦТД или синтез коферментов.

Гипоксические - возникают при нарушении доставки или утилизации кислорода в клетке.

Регуляция ЦТД. Осуществляется с помощью дыхательного контроля.

Дыхательный контроль - это регуляция скорости переноса электронов по дыхательной цепи отношением АТФ/АДФ. Чем меньше это отношение, тем интенсивнее идет дыхание и активнее синтезируется АТФ. Если АТФ не используется, и его концентрация в клетке возрастает, то прекращается поток электронов к кислороду. Накопление АДФ увеличивает окисление субстратов и поглощение кислорода. Механизм дыхательного контроля характеризуется высокой точностью и имеет важное значение, так как в результате его действия скорость синтеза АТФ соответствует потребностям клетки в энергии. Запасов АТФ в клетке не существует. Относительные концентрации АТФ/АДФ в тканях изменяются в узких пределах, в то время как потребление энергии клеткой может изменяться в десятки раз.

Американский биохимик Д.Чанс предложил рассматривать 5 состояний митохондрий, при которых скорость их дыхания ограничивается определенными факторами:

Недостаток SH2 и АДФ - скорость дыхания очень низкая.

Недостаток SH2 при наличии АДФ - скорость ограничена.

Есть SH2 и АДФ - дыхание очень активно (лимитируется только скоростью транспорта ионов через мембрану).

Недостаток АДФ при наличии SH2 - дыхание тормозится (состояние дыхательного контроля).

Недостаток кислорода, при наличии SH2 и АДФ - состояние анаэробиоза.

Митохондрии в покоящейся клетке находятся в состоянии 4, при котором скорость дыхания определяется количеством АДФ. Во время усиленной работы могут пребывать в состоянии 3 (исчерпываются возможности дыхательной цепи) или 5 (недостаток кислорода) - гипоксии.

Ингибиторы ЦТД - это лекарственные препараты, которые блокируют перенос электронов по ЦТД. К ним относят: барбитураты (амитал), которые блокируют транспорт электронов через I комплекс дыхательной цепи, антибиотик антимицин блокирует окисление цитохрома b; монооксид углерода и цианиды ингибируют цитохромооксидазу и блокируют транспорт электронов на кислород.

Ингибиторы окислительного фосфорилирования (олигомицин) - это вещества, которые блокируют транспорт Н+ по протонному каналу АТФ-синтазы.

Разобщители окислительного фосфорилирования (ионофоры) - это вещества, которые подавляют окислительное фосфорилирование, не влияя при этом на процесс переноса электронов по ЦТД. Механизм действия разобщителей сводится к тому, что они являются жирорастворимыми (липофильными) веществами и обладают способностью связывать протоны и переносить их через внутреннюю мембрану митохондрий в матрикс, минуя протонный канал АТФ-синтазы. Выделяющаяся при этом энергия рассеивается в виде тепла.

Искусственные разобщители - динитрофенол, производные витамина К (дикумарол), некоторые антибиотики (валиномицин).

Естественные разобщители - продукты перекисного окисления липидов, жирные кислоты с длинной цепью, большие дозы йодсодержащих гормонов щитовидной железы, белки термогенины.

На разобщении дыхания и фосфорилирования базируется терморегуляторная функция тканевого дыхания. Митохондрии бурой жировой ткани продуцируют больше тепла, так как присутствующий в них белок термогенин разобщает окисление и фосфорилировние. Это имеет важное значение в поддержании температуры тела новорожденных.

11. Типы окисления. Антиоксидантные системы

все реакции с участием кислорода, протекающие в живом организме, называются биологическим окислением. Почти во всех клетках около 90 % потребляемого кислорода восстанавливается в цепи тканевого дыхания с участием цитохромоксидазы (окисление, сопряженное с фосфорилированием АТФ, выполняет энергетическую функцию). Однако в некоторых тканях содержатся ферменты, катализирующие окислительно-восстановительные реакции, в которых атомы кислорода включаются непосредственно в молекулу субстрата (свободное окисление, выполняет пластическую функцию). Хотя в таких специализированных реакциях потребляется лишь небольшая часть кислорода, поглощаемого клетками, эти реакции очень важны для организма.

Выделяют четыре типа реакций с участием кислорода
(табл 11.1.).

Таблица 11.1

Типы окисления

Тип окисления

Ферменты

Основные продукты реакции

оксидазный

Оксидазы

S + Н2О

пероксидазный

ФАД-зависимые оксидазы

S + Н2О2

диоксигеназный

Диоксигеназы

SO2

монооксигеназный

Монооксигеназы

(гидроксилазы)

SOH + H2O

Оксидазный тип окисления

Этот путь окисления осуществляется в процессе функционирования ЦТД. Терминальный фермент ЦТД, переносящий электроны непосредственно на кислород - цитохромоксидаза. Это основной путь потребления кислорода в организме. Он выполняет энергетическую функцию.

Пероксидазный тип окисления

Окисление субстрата путем дегидрирования. Два атома водорода переносятся на молекулу кислорода с образованием перекиси:

2 + О2 S + Н2О2

В этой реакции энергия окисления выделяется в виде тепла. Реакции этого типа катализируют ФАД-зависимые оксидазы (аэробные дегидрогеназы), содержащие в качестве простетической группы ФАД или ФМН. В клетке около 80 % этих ферментов сосредоточено в пероксисомах. Пероксидазный путь окисления активно протекает в лейкоцитах, макрофагах и других фагоцитирующих клетках. Образующийся пероксид водорода Н2О2 - сильный окислитель, обезвреживающий патогенные бактерии (защитная функция).

Реакция пероксидазного окисления протекает в 2 стадии:

Анаэробная - происходит дегидрирование восстановленного субстрата SH2, при этом протоны и электроны переносятся на ФАД (ФАД + 2Н+ > ФАДН2).

Аэробная - происходит окисление фермента (ФАДН2 > ФАД) кислородом (самопроизвольный процесс).

SH2 E-ФАД Н2О2

(Е-ФМН)

I II

S E-ФАДН2 О2

(Е-ФМНН2)

Биологическая роль оксидазного типа окисления:

защитная функция - в лейкоцитах и других фагоцитирующих клетках;

катаболизм биогенных аминов (фермент - моноаминооксидаза);

метаболизм аминокислот (ферменты - оксидазы D- и L-аминокислот);

катаболизм пуринов (фермент - ксантиноксидаза);

катаболизм глюкозы в растительных клетках (фермент - глюкозооксидаза).

Диоксигеназный тип окисления

В процессе диоксигеназного окисления в молекулу субстрата включаются оба атома кислорода:

S + O2 SO2

Диоксигеназы катализируют разрыв двойной связи в ароматическом кольце. Например: гомогентизатоксидаза катализирует расщепление ароматического кольца гомогентизиновой кислоты с образованием малеилацетоацетата.

Монооксигеназный тип окисления

Монооксигеназы (гидроксилазы) катализируют включение в субстрат одного атома молекулы кислорода. Другой атом кислорода восстанавливается до воды. Для работы монооксигеназной системы необходим кроме неполярного субстрата (SH) донор атомов водорода - косубстрат (НАДФН + Н+, ФАДН2, аскорбиновая кислота):

SH + НАДФН+Н+ + О2 SОН + НАДФ+ + Н2О

Монооксигеназные реакции необходимы для:

специфических превращений аминокислот, например, для синтеза тирозина из фенилаланина (фермент - фенилаланингидроксилаза);

синтеза холестерола, желчных кислот в печени; стероидных гормонов в коре надпочечников, яичниках, плаценте, семенниках; витамина D3 в почках;

обезвреживания чужеродных веществ (ксенобиотиков) в печени.

Ферменты монооксигеназного пути окисления локализованы в мембранах эндоплазматического ретикулума (при гомогенизации тканей эти мембраны превращаются в микросомы - мембранные пузырьки). Поэтому монооксигеназный путь окисления называют микросомальным окислением.

Микросомальное окисление представляет короткую электронтранспортную цепь, включающую НАДФ, ФАД, ФМН, цитохром Р450.

НАДФН ФАД ФМНН2 3+450) О2- + 2Н+ Н2О

О ROH

НАДФ+ ФАДН2 ФМН Fе2+450) RH О2

Микросомальная система включает два фермента: цитохром Р450 и НАДФН-цитохром-Р450-редуктазу.

НАДФН-цитохром Р450 - редуктаза - флавопротеин, в качестве простетической группы содержит два кофермента ФАД и ФМН.

Цитохром Р450 - гемопротеин, содержит простетическую группу гем и участки связывания для кислорода и субстрата. Восстановленный цитохром Р450 имеет максимум поглощения при 450 нм. Выполняет две функции: связывание окисляемого субстрата и активация молекулярного кислорода.

субстрат RH ферм.- субстр. Комплекс

Р-450 1 P-450-R-H

Fe3+ Fe3+

2

НАДФ+ ФАДН2 2e-

НАДФН ФАД

2Н+ Н2О

P-450-R-H

Fe2+ - O2-

3

R-ОН пероксикомплекс

Рис. 11.1 Схема микросомального окисления

Микросомальное окисление протекает в несколько этапов:

1. связывание в активном центре цитохрома Р450 субстрата RН;

2. присоединение первого электрона и восстановление железа в геме до Fe2+; изменение валентности железа увеличивает сродство комплекса Р450 - Fe2+• RH к молекуле кислорода; присоединение второго электрона к молекуле кислорода и образование неустойчивого пероксикомплекса Р450-Fe2+• О2-• RH;

3. Fe2+ окисляется, при этом электрон присоединяется к молекуле кислорода; восстановленный атом кислорода (О2-) связывает два протона (донор протонов - НАДФН + Н+) и образуется 1 молекула воды; второй атом кислорода участвует в гидроксилировании субстрата RH; гидроксилированный субстрат ROH отделяется от фермента.

В результате гидроксилирования гидрофобный субстрат становится более полярным, повышается его растворимость и возможность выведения из организма с мочой. Так окисляются многие ксенобиотики, лекарственные вещества.

В редких случаях в результате гидроксилирования токсичность соединения увеличивается. Например, при окислении нетоксичного бензпирена (содержится в табачном дыму, копченостях) образуется токсичный оксибензпирен, который является сильным концерогеном, индуцирующим злокачественное перерождение клеток.

В митохондриях содержится монооксигеназная система, которая выполняет биосинтетическую функцию: синтез холестерола; стероидных гормонов (кора надпочечников, яичники, плацента, семенники); желчных кислот (печень); образование витамина D3 (почки).

Активные формы кислорода (свободные радикалы)

В организме в результате окислительно-восстановительных реакций постоянно происходит генерация активных форм кислорода (АФК) при одноэлектронном восстановлении кислорода (молекула имеет неспаренный электрон на молекулярной или внешней атомной орбите).

Источники АФК:

цепь тканевого дыхания (утечка электронов с восстановленного убихинона KoQH2 на кислород);

реакции, катализируемые оксидазами, гемопротеинами, цитохромом Р450;

реакции окисления в лейкоцитах, макрофагах и пероксисомах;

радиолиз воды;

под воздействием ксенобиотиков, пестицидов;

реакции самопроизвольного (неферментативного) окисления ряда веществ.

Супероксид-анион - является одним из наиболее широко распространенных в организме свободных радикалов:

Fe2+ Fe3+

O2 + e- O2-

Он образуется в клетках болезнетворных бактерий и является повреждающим фактором для мембран клеток паренхиматозных органов человеческого организма. Для лейкоцитов и макрофагов супероксид-анион является фактором бактерицидности, с помощью которого клетки инактивируют патогенные микроорганизмы.

Другой путь образования свободных радикалов - взаимодействие кислорода с металлами переменной валентности. При этом образуется пероксидный радикал:

Fe2+ + O2 + H+ > Fe3+ + HO2

O2- + Н+ > HO2

Взаимодействие супероксиданиона с пероксидным радикалом (1) или одноэлектронное восстановление супероксид-аниона (2) в водной среде приводят к образованию пероксида водорода

O2- + НО2 + Н+ > Н2О2 + О2 (1)

О2- + е- + 2Н+ > Н2О2 (2)

Гидроксильный радикал ОН образуется при взаимодействии пероксида водорода с супероксид-анионом (1) либо с металлами (2):

Н2О2 + О 2- > ОН + ОН- + О2 (1)

Н2О2 + Fe2+ > ОН + ОН- + Fe3+ (2)

Кислородные радикалы обладают высокой реакционной способностью и легко вступают в химические реакции с органическими молекулами для приобретения недостающего электрона. Кислородные радикалы оказывают воздействие на различные структурные компоненты клеток: ДНК (повреждение азотистых оснований); белки (окисление аминокислотных остатков, образование ковалентных «сшивок»); липиды; мембранные структуры.

Активные формы кислорода могут отщеплять электроны от многих соединений, превращая их в новые свободные радикалы, и инициируют тем самым цепные окислительные реакции. Если в реакцию с АФК вступают ненасыщенные жирные кислоты плазматических мембран, говорят о перекисном окислении липидов.

Перекисное окисление липидов (ПОЛ)

Реакции ПОЛ являются свободнорадикальными и постоянно протекают в организме, также как и реакции образования АФК. В норме они поддерживаются на определенном уровне и выполняют ряд функций:

индуцируют апоптоз (запрограммированную гибель клеток);

регулируют структуру клеточных мембран и тем самым обеспечивают функционирование ионных каналов, рецепторов, ферментных систем;

обеспечивают освобождение из мембраны арахидоновой кислоты, из которой синтезируются биорегуляторы (простагландины, тромбоксаны, лейкотриены);

ПОЛ может выступать в качестве вторичного мессенджера, участвуя в трансформации сигналов из внешней и внутренней среды организма, обеспечивая их внутриклеточную передачу;

АФК участвуют в клеточном иммунитете и фагоцитозе.

Механизм ПОЛ:

Инициация.

Инициирует реакцию чаще всего гидроксильный радикал, отнимающий водород от СН2- групп ненасыщенной жирной кислоты L, что приводит к образованию липидного радикала L:

L + OН > L

Развитие цепи.

Развитие цепи происходит при присоединении кислорода, в результате чего образуется пероксидный радикал LOO или пероксид липида LOOH (гидроперекиси липидов)

L + O2 > LOO

LOО + LH > LOOH + LR•

Обрыв цепи.

Развитие цепи может останавливаться при взаимодействии свободных радикалов между собой или при взаимодействии с различными антиоксидантами (витамином Е), которые являются донорами электронов:

LOO• + L > LOOH + LH

L•+ вит Е > LH + вит Е•

ВИТ Е + L > LH + ВИТ Е окисл

В результате ПОЛ происходит преобразование обычных липидов в первичные продукты ПОЛ (гидроперекиси липидов). Это приводит к появлению в мембранах участков («дыр»), через которые наружу выходит содержимое как самих клеток, так и их органелл.

Первичные продукты ПОЛ разрушаются с образованием вторичных продуктов ПОЛ: альдегидов, кетонов, малонового диальдегида, диеновых коньюгатов. Накоплением в крови малонового диальдегида (МДА) объясняется синдром интоксикации, сопровождающий многие заболевания внутренних органов. Реагируя с SH- и СН3-группами белков, МДА подавляет активность цитохром-оксидаз (угнетая тем самым тканевое дыхание) и гидроксилаз. МДА обуславливает также ускоренное развитие атеросклероза.

При взаимодействии МДА с аминогруппами фосфолипидов образуются конечные продукты ПОЛ - Шиффовы основания. Примером этих соединений является пигмент липофусцин, появляющийся на оболочке глаза, на коже с возрастом. Липофусцин представляет собой смесь липидов и белков, связанных между собой поперечными ковалентными связями и денатурированными в результате взаимодействия с химически активными группами продуктов ПОЛ. Этот пигмент фагоцитируется, но не гидролизуется ферментами лизосом, накапливается в клетках, нарушая их функцию.

Негативные последствия активации ПОЛ:

Повреждение липидного бислоя мембран, в результате чего в клетки проникает вода, ионы натрия, кальция, что приводит к набуханию клеток, органелл и их разрушению.

Преждевременное старение клеток и организма в целом.

Взаимодействие высокореактивных продуктов ПОЛ с аминогруппами белков с образованием Шиффовых оснований.

Изменение текучести (вязкости) мембран, в результате чего нарушается транспортная функция мембран (функционирование ионных каналов).

Нарушение активности мембраносвязанных ферментов, рецепторов.

Активация ПОЛ характерна для многих заболеваний и патологических состояний:

атеросклероз и другие сердечнососудистого заболевания;

поражения ЦНС (болезнь Паркинсона, Альцгеймера);

воспалительные процессы любого генеза;

дистрофия мышц (болезнь Дюшенна);

онкологические заболевания;

радиационные поражения;

бронхолегочные патологии.

Антиоксидантные системы организма

В организме токсическое действие активных форм кислорода предотвращается за счет функционирования систем антиоксидантной защиты. В норме сохраняется равновесие между окислительными (прооксидантными) и антиоксидантными системами. Антиоксидантная система защиты представлена ферментными и неферментативными компонентами.

Ферменты антиоксидантной системы:

супероксиддисмутаза, каталаза, пероксидаза (глутатионпероксидаза), глутатионредуктаза. Наиболее активны эти ферменты в печени, почках и надпочечниках.

Супероксиддисмутаза превращает супероксидные анионы в пероксид водорода:

2- + 2Н+ > Н2О2 + О2

Супероксидисмутаза является мощным ингибитором свободнорадикального окисления в организме, защищающим биополимеры (белки, нуклеиновые кислоты и др.) от окислительной деструкции. Супероксидисмутаза - индуцируемый фермент, т.е. синтез его увеличивается, если в клетках активируется ПОЛ.

Каталаза является гемопротеином и катализирует реакцию разложения пероксида водорода:

2О2 > 2Н2О + О2

В клетках каталаза локализована в пероксисомах, где образуется наибольшее количество пероксида водорода, а также в лейкоцитах, где она защищает клетки от последствий «респираторного взрыва».

Глутатионпероксидаза - важнейший фермент, обеспечивающий инактивацию пероксида водорода и пероксидных радикалов. Он катализирует восстановление пероксидов при участии трипептида глутатиона. SH-группа глутатиона служит донором электронов и, окисляясь образует дисульфидную форму глутатиона:

Н2О2 + 2НS-глутатион > 2Н2О + глутатион-S-S-глутатион

Окисленный глутатион восстанавливается глутатионредуктазой:

глутатион-S-S-глутатион + НАДФН+Н+ > 2 HS-глутатион + НАДФ+

Глутатионпероксидаза в качестве кофермента использует селен. При его недостатке активность антиоксидантной защиты снижается.

Неферментативные антиоксиданты:

Природные водорастворимые антиоксиданты (витамин С; карнозин; таурин; восстановленные тиолы, содержащие SH-группы; цистеин; НS-КоА; белки, содержащие селен). Витамин С участвует в ингибировании ПОЛ с помощью двух механизмов. Во-первых, он восстанавливает окисленную форму витамина Е и поддерживает необходимую концентрацию этого антиоксиданта в мембранах клеток. Во-вторых, витамин С взаимодействует как восстановитель с водорастворимыми активными формами кислорода и инактивирует их.

Липофильные низкомолекулярные антиоксиданты, локализованные в мембранах клеток (витамин Е; в-каротин; КоQ; нафтахоиноны). Витамин Е - наиболее распространенный антиоксидант в природе, способен инактивировать свободные радикалы непосредственно в гидрофобном слое мембран и тем самым предотвращать развитие цепи перекисного окисления. -каротин, предшественник витамина А, также ингибирует ПОЛ. Уменьшение содержания этого антиоксиданта в тканях приводит к тому, что продукты ПОЛ начинают производить вместо физиологического патологический эффект.

Растительная диета, обогащенная витаминами Е, С, каротиноидами, уменьшает риск развития атеросклероза и заболеваний сердечно-сосудистой системы, обладает антиканцерогенным действием. Действие этих витаминов связано с ингибированием ПОЛ и кислородных радикалов и, следовательно, с поддержанием нормальной структуры компонентов клеток.

12. Гормоны - общая характеристика и механизмы действия

Гормоны (от греческого hormaino - побуждаю) - это биологически активные вещества, которые выделяются эндокринными клетками в кровь или лимфу и регулируют в клетках-мишенях биохимические и физиологические процессы.

В настоящее время предложено расширить определение гормонов: гормоны - это специализированные межклеточные регуляторы рецепторного действия.

В этом определении слова «специализированные регуляторы» подчеркивают, что регуляторная - главная функция гормонов; слово «межклеточные» означает, что гормоны вырабатываются одними клетками и извне действуют на другие клетки; рецепторное действие - первый этап в эффектах любого гормона.

Биороль гормонов. Гормоны регулируют многие жизненные процессы - метаболизма, функции клеток и органов, матричные синтезы (транскрипцию, трансляцию) и другие процессы, определяемые геномом (пролиферацию, рост, дифференцировку, адаптацию, клеточный шок, апоптоз и др.)

Эндокринная система функционирует в тесной взаимосвязи с нервной системой как нейроэндокринная.

Рис. 12.1 Схема взаимосвязи регуляторных систем организма

Синтез и секреция гормонов стимулируются внешними и внутренними сигналами, поступающими в ЦНС.

2 - 3. Эти сигналы по нейронам поступают в гипоталамус, где стимулируют синтез пептидных рилизинг-гормонов (либеринов и статинов), которые стимулируют или ингибируют синтез и секрецию гормонов передней доли гипофиза.

4 - 5. Гормоны передней доли гипофиза (тропные гормоны) стимулируют образование и секрецию гормонов периферических эндокринных желез, которые поступают в кровь и взаимодействуют с клетками-мишенями.

Уровень гормонов в крови поддерживается благодаря механизмам саморегуляции (регуляция по принципу обратной связи). Изменение концентрации метаболитов в клетках-мишенях подавляет синтез гормонов в эндокринной железе или в гипоталамусе (6, 7). Синтез и секреция тропных гормонов подавляется гормонами эндокринных желез (8).

Классификация гормонов

Гормоны классифицируются по химическому строению, биологическим функциям, месту образования и механизму действия.

Классификация по химическому строению. По химическому строению гормоны делят на 3 группы (табл. 12.1):

пептидные или белковые;

производные аминокислот;

стероидные

производные арахидоновой кислоты - эйкозаноиды (оказывают местное действие)

Таблица 12.1

Классификация гормонов по химическому строению

Пептидные (белковые)

Производные аминокислот

Стероиды

Кортикотропин

Соматотропин

Тиреотропин

Пролактин

Лютропин

Лютеинеизирующий гормон

Фолликулостимули-рующий гормон

Мелоноцитстимули-рующий гормон

Вазопрессин

Окситоцин

Паратгормон

Кальцитонин

Инсулин

Глюкагон

Адреналин

Норадреналин

Трийодтиронин (Т3)

Тироксин (Т4)

Глюкокортикоиды

Минералокорти-коиды

Андрогены

Эстрогены

Прогестины

Кальцитриол

Клетки некоторых органов, не относящихся к железам внутренней секреции (клетки ЖКТ, клетки почек, эндотелия и др.), также выделяют гормоноподобные вещества (эйкозаноиды), которые действуют в местах их образования.

Классификация гормонов по биологическим функциям

По биологическим функциям гормоны можно разделить на несколько групп (табл. 12.2.)

Таблица 12.2

Классификация гормонов по биологическим функциям

Регулируемые процессы

Гормоны

Обмен углеводов, липидов, аминокислот.

Водно-солевой обмен.

Обмен кальция и фосфатов.

Репродуктивная функция.

Синтез и секреция гормонов эндокринных желез.

Инсулин, глюкагон, адреналин, кортизол,тироксин,соматотропин.

Альдостерон, вазопрессин.

Паратгормон, кальцитонин, кальцитриол.

Эстрогены, андрогены, гонадотропные гормоны.

Тропные гормоны гипофиза, либерины и статины гипоталамуса.

Эта классификация условна, поскольку одни и те же гормоны могут выполнять разные функции. Например, адреналин участвует в регуляции обмена липидов и углеводов и, кроме этого, регулирует артериальное давление, частоту сердечных сокращений, сокращение гладких мышц. Эстрогены регулируют не только репродуктивную функцию, но и оказывают влияние на обмен липидов, индуцируют синтез факторов свертывания крови.

Классификация по месту образования

По месту образования гормоны делятся на гормоны гипоталамуса, гипофиза, щитовидной железы, паращитовидных желез, поджелудочной железы, надпочечников, половых желез.

Классификация по механизму действия

По механизму действия гормоны можно разделить на 3 группы:

Гормоны, не проникающие в клетку и взаимодействующие с мембранными рецепторами (пептидные, белковые гормоны, адреналин). Сигнал передается внутрь клетки с помощью внутриклеточных посредников (вторичные мессенджеры). Основной конечный эффект - изменение активности ферментов;

гормоны, проникающие в клетку (стероидные гормоны, тиреоидные гормоны). Их рецепторы находятся внутри клеток. Основной конечный эффект - изменение количества белков-ферментов через экспрессию генов;

гормоны мембранного действия (инсулин, тиреоидные гормоны). Гормон является аллостерическим эффектором транспортных систем мембран. Связывание гормона с мембранным рецептором приводит к изменению проводимости ионных каналов мембраны.

Основные свойства и особенности действия гормонов

1. Высокая биологическая активность. Гормоны регулируют метаболизм в очень малых концентрациях - 10-8 - 10-11М.

2. Дистантность действия. Гормоны синтезируются в эндокринных железах, а биологические эффекты оказывают в других тканях-мишенях.

3. Обратимость действия. Обеспечивается адекватным ситуации дозированным освобождением и последующими механизмами инактивации гормонов. Время действия гормонов различно:

· пептидные гормоны: сек - мин;

· белковые гормоны: мин - часы;

· стероидные гормоны: часы;

· йодтиронины: сутки.

3. Специфичность биологического действия.

4. Плейотропность (многообразие) действия. Например, катехоламины рассматривались как краткосрочные гормоны стресса. Затем было выявлено, что они участвуют в регуляции матричных синтезов и процессов, определяемых геномом: памяти, обучения, роста, деления, дифференциации клеток.

5. Дуализм регуляций (двойственность). Так, адреналин как суживает, так и расширяет сосуды. Йодтиронины в больших дозах увеличивают катаболизм белков, в малых - стимулируют анаболизм.

Рецепторы гормонов

Биологическое действие гормонов проявляется через их взаимодействие с рецепторами клеток-мишеней. Клетки, наиболее чувствительные к влиянию определенного гормона, называют клеткой-мишенью. Специфичность гормонов по отношению к клеткам-мишеням обусловлена наличием у клеток специфических рецепторов, которые входят в состав плазматических мембран.

Рецепторы - это специфические структуры клетки, обладающие высоким сродством по отношению к одному определенному гормону.

Рецепторы по химической природе являются, сложными белками (гликопротеинами). Рецепторы пептидных гормонов и адреналина располагаются на поверхности мембраны и содержат три домена. Первый домен расположен на внешней стороне клеточной мембраны, содержит гликозилированные участки и обеспечивает узнавание и связывание гормона. Второй домен - трансмембранный. Третий (цитоплазматический) домен создает химический сигнал в клетке.

Рецепторы стероидных и тиреоидных гормонов содержат три функциональные области:

домен узнавания и связывания гормона;

домен связывания с ДНК;

домен, отвечающий за связывание с другими белками, вместе с которыми участвует в регуляции транскрипции.

Механизм передачи гормональных сигналов через мембранные рецепторы

Гормоны (первичные посредники) связываются с рецепторами на поверхности клеточной мембраны и образуют комплекс гормон-рецептор. Этот комплекс трансформирует сигнал первичного посредника путем изменения концентрации внутри клетки вторичных посредников. Вторичными посредниками являются: циклический АМФ (цАМФ), цГМФ, инозитолтрифосфат (ИФ3), диацилглицерол (ДАГ); Са2+, NO (оксид азота II).

Аденилатциклазная система.

Гормоны, взаимодействие которых с рецептором клетки-мишени приводит к образованию цАМФ действуют через систему, включающую: белок-рецептор, G-белок и фермент аденилатциклазу.

Известно более 200 различных G-белков. В отсутствие гормона G-белок связан с ГДФ и неактивен. Образование комплекса гормон-рецептор приводит к конформационным изменениям G-белка, замене ГДФ на ГТФ и активации G-белка. Существуют GS-стимулирующий и GI-ингибирующий аденилатциклазу белки.

Последовательность событий, приводящих к изменению активности аденилатциклазы:

связывание гормона с рецептором;

комплекс гормон-рецептор взаимодействует с G-белком, изменяя его конформацию;

вследствие изменения конформации G-белка происходит замена ГДФ на ГТФ;

комплекс GS-белок * ГТФ активирует аденилатциклазу (комплекс GI-белок * ГТФ ингибирует аденилатциклазу);

активация аденилатциклазы приводит к увеличению скорости образования цАМФ из АТФ.

Далее образовавшийся под действием аденилатциклазы цАМФ активирует протеинкиназу А. Активированная протеинкиназа А фосфорилирует ферменты и другие белки, что сопровождается изменением функциональной активности белков-ферментов (активацией или ингибированием).

Протеинкиназа - это внутриклеточный фермент, который может существовать в двух формах. В отсутствие цАМФ протеинкиназа представлена тетрамером, состоящим из двух каталитических (2С) и двух регуляторных (2R) субъединиц (неактивный фермент). В присутствии цАМФ протеинкиназный комплекс обратимо диссоциирует на одну 2R-субъединицу и две свободные каталитические субъединицы С. Субъединицы С обладают ферментативной активностью.

Гуанилатциклазная система.

Эта система, генерирующая цГМФ как вторичный посредник, сопряжена с гуанилатциклазой. Этот фермент катализирует реакцию образования цГМФ из ГТФ (подобно аденилатциклазе). Молекулы цГМФ могут активировать транспортные системы мембран клеток или активируют цГМФ-зависимую протеинкиназу G, которая участвует в фосфорилировании других белков в клетке.

Циклические нуклеотиды запускают каскады реакций аденилатциклазного или гуанилатциклазного механизмов регуляции активности ферментов. Одна молекула гормона, активирующая рецептор, может «включать» несколько G-белков. Каждый из них в свою очередь активирует несколько молекул аденилатциклазы с образованием тысяч молекул цАМФ или цГМФ. Образующийся вторичный посредник усиливает сигнал в тысячу раз. Суммарное усиление сигнала равно 106 - 107 раз.

Снятие гормонального сигнала достигается уменьшением концентрации вторичного посредника. Реакции превращения цАМФ или цГМФ в неактивные метаболиты АМФ или ГМФ катализируют ферменты фосфодиэстеразы.

3. Оксид азота.

Оксид азота образуется из аминокислоты аргинина при участии сложной Са2+-зависимой ферментной системы, названной NO-синтазой, которая присутствует в нервной ткани, эндотелии сосудов, тромбоцитах и других тканях. В клетках-мишенях NO взаимодействует с входящим в активный центр гуанилатциклазы ионом железа и способствует быстрому образованию цГМФ. Образовавшийся цГМФ вызывает расслабление гладклй мускулатуры сосудов. Однако действие NO кратковременно, несколько секунд. Подобный эффект, но более длительный оказывает нитроглицерин, который медленнее освобождает NO.

4. Са2+ - мессенджерная система.

Ионам Са2+ принадлежит центральная роль в регуляции многих клеточных функций: регуляция метаболизма, сократительная и секреторная активность, адгезия и клеточный рост. Содержание ионов Са2+ в клетке в 5000 - 10000 раз ниже, чем во внеклеточной жидкости, и этот Са2+ связан с митохондриями или эндоплазматическим ретикулумом. Гормональный сигнал приводит к резкому повышению концентрации Са2+, поступающего через мембраны из внеклеточной жидкости или из внутриклеточных источников (митохондрии и ЭПР). Са2+ связывается с внутриклеточным регуляторным белком кальмодулином, имеющим 4 центра для связывания Са2+. Комплекс Са2+-кальмодулин, активирует специфическую Са2+-кальмодулинзависимую протеинкиназу, которая фосфорилирует ферменты и регулирует их активность. Отмена эффектов, опосредованных ионами Са2+, осуществляется с помощью кальцийсвязывающих белков типа кальциневрина.

Инозитолтрифосфатная система.

Функционирование инозитолтрифосфатной системы передачи гормонального сигнала обеспечивают: рецептор, фосфолипаза С, белки и ферменты мембран и цитозоля:


Подобные документы

  • Химия как естественная наука, изучающая состав, свойства и химические превращения веществ, явления, которые сопровождают эти превращения, а также рассматривает вопросы использования результатов этих превращений. Ее типы: органическая и неорганическая.

    презентация [465,5 K], добавлен 09.11.2014

  • Белки - основные структурные элементы клеток и тканей организма. Процессы распада и синтеза белков в ходе тканевого метаболизма. Цикл сложных химических превращений белковых веществ. Процесс переваривания и всасывания белков. Регуляция белкового обмена.

    реферат [396,3 K], добавлен 30.01.2011

  • Превращения веществ и энергии, происходящие в живых организмах и лежащие в основе их жизнедеятельности. Назначение обмена веществ и энергии, взаимосвязь анаболических и катаболических процессов. Энергетическая ценность углеводов и жиров в организме.

    реферат [21,9 K], добавлен 28.05.2010

  • Изучение проблемы обмена веществ как основной функции организма человека в научной литературе. Обмен углеводов как совокупность процессов их превращения в организме, его фазы. Источник образования и поступления витаминов. Регуляция обмена веществ.

    курсовая работа [415,4 K], добавлен 01.02.2014

  • Биологическая роль липидов. Структура Триацилглицеролов (нейтральных жиров) – сложных эфиров глицерола и жирных кислот. Структурные компоненты мембран клеток нервной ткани и мозга. Переваривание и всасывание липидов. Кетогенез (обмен жирных кислот).

    презентация [411,8 K], добавлен 06.12.2016

  • Роль обмена веществ в обеспечении пластических и энергетических потребностей организма. Особенности теплопродукции и теплоотдачи. Обмен веществ и энергии при различных уровнях функциональной активности организма. Температура тела человека и ее регуляция.

    реферат [22,5 K], добавлен 09.09.2009

  • Сущность метаболизма организма человека. Постоянный обмен веществ между организмом и внешней средой. Аэробное и анаэробное расщепление продуктов. Величина основного обмена. Источник тепла в организме. Нервный механизм терморегуляции организма человека.

    лекция [22,3 K], добавлен 28.04.2013

  • Понятие о гормонах, их основных свойствах и механизме действия. Гормональная регуляция обмена веществ и метаболизма. Гипоталамо-гипофизарная система. Гормоны периферических желез. Классификация гормонов по химической природе и по выполняемым функциям.

    презентация [5,9 M], добавлен 21.11.2013

  • Сущность понятия "биоэнергетика". Существенные признаки живого. Внешний и промежуточный обмен веществ и энергии. Метаболизм: понятие, функции. Три стадии катаболических превращений основных питательных веществ в клетке. Отличия катаболизма от анаболизма.

    презентация [3,9 M], добавлен 05.01.2014

  • Классификация процессов метаболизма и обмена. Виды организмов по различиям обменных процессов, методы их изучения. Метод учета веществ поступивших и выделившихся из организма на примере азотистого обмена. Основные функции и источники белков для организма.

    презентация [3,8 M], добавлен 12.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.