Физиология и биохимия растений

Характеристика структуры и функций мембран клетки. Выявление влияния внутренних и внешних условий на процесс прорастания семян. Изучение процессов, происходящих при замерзании растительных тканей, анализ способов повышения их морозоустойчивости.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 06.04.2014
Размер файла 42,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство сельского хозяйства РФ

Федеральное государственное образовательное учреждение

Высшего профессионального образования

«Пермская государственная сельскохозяйственная академия имени академика Д.Н. Прянишникова»

Кафедра Физиологии и биохимии растений

Контрольная работа

По дисциплине «Физиология и биохимия растений»

Выполнил студент

заочного обучения по направлению

«Агрономия»/Бакалавриат

Балятинских Р.И.

Аб-11-1

Проверил: доцент

Маслов И.Л.

Содержание

1. Клеточные мембраны, их структура. Функции мембран клетки

2. Свойства и механизм действия ферментов. Кофакторы ферментов

3. Транспирация и ее биологическое значение. Особенности верхнего "двигателя" водного потока

4. Действие недостатка воды на растение

5. Влияние внутренних и внешних условий на процесс прорастания семян

6. Процессы, происходящие при замерзании растительных тканей. Способы повышения морозоустойчивости

7. Влияние засоления на растения

8. Физиология накопления белков и запасных углеводов в зерне злаковых культур

1. Клеточные мембраны, их структура. Функции мембран клетки

физиология биохимия растение

Кожа человека - это барьер, защищающий клетки, её мы и называем - клеточной мембраной. Она не позволяет компонентам клетки (цитоплазме) вытечь наружу. Главная задача клеточной мембраны - это удерживать клетку в целостности, при этом определять, что может попасть внутрь клетки, а что может оттуда выйти. Клетки любого организма имеют клеточные мембраны, даже клетки бактерий.

Состоит клеточная мембрана из бинарного ряда липидов. Располагаются молекулы липидов в два ряда и каждый ряд точно такой же, как предыдущий. Структуру молекулы липида - эти две части единого целого, как раз и отображают. Ещё эти две части единого целого называют - гидрофобной (водонепроницаемой) и гидрофильной секциями.

Гидрофобная секция не любит воду и подобных воде молекул, благодаря бинарному слою липидов выступает вроде защитного механизма.

Гидрофильная секция напротив способна притягивать воду и подобные воде молекулы, после чего выталкивает их наружу. В итоге получается такая базовая жидкая мозаичная модель.

В результате того, что клеточная мембрана имеет среду полупроницаемую, то только некоторые виды самых мелких молекул способны проникнуть внутрь и наружу клетки сквозь мембрану. Называется данный процесс - диффузией. Но для того, чтобы такое действие произошло, мембрана должна быть вроде открытых дверей, то есть проницаемой, чтобы маленькая молекула смогла проникнуть сквозь неё. В том случае, когда мембрана непроницаема, маленькая молекула не имеет возможности проникнуть, здесь можно сказать «двери закрыты». Однако следует учесть, что молекула может переместиться только из переполненной области, в более свободную. Например, аминокислота желает пробраться через мембрану к самой клетке, при этом клеточная мембрана открыта для неё, это может произойти в том случае если концентрация аминокислоты за пределами клетки больше, чем в самой клетки. Только при таких условиях произойдёт процесс диффузии.

Следующий процесс, в котором главную роль играет клеточная мембрана - это так называемая помощь при транспортировке. Некоторые маленькие молекулы в мембране которых разместились протеины, способны помочь при пересечении мембраны. Вроде протеинового эскорта сквозь неё. Данный процесс напоминает процесс диффузии, так как протеиновая помощь при пересечении мембраны происходит, когда молекулы переходят из области высокой концентрации, с целью понизить её. Или же просто из области высокой концентрации молекул в область менее загруженную.

Опять же, молекулы способны пересекать клеточную мембрану способом активной транспортировки. Такой вид транспортировки представляет собой переход молекул из области с низкой концентрации в противоположную область с высокой концентрацией. Такой процесс транспортировки противоположный диффузии и посреднической транспортировки, осуществляется против правил концентрационной направленности. Для того чтобы такие передвижения осуществлять необходима концентрация энергии в форме аденозинтрифосфата (АТФ). АТФ- это нуклеотид, который состоит из аденина, рибозы и трёх остатков фосфорной кислоты. Он является универсальным накопителем и переносчиком химической энергии, известным для всех организмов и клеток. АТФ применяется для некоторых клеточных действий, начиная движениями и заканчивая репродукцией.

2. Свойства и механизм действия ферментов. Кофакторы ферментов

Ферменты - биологические катализаторы белковой природы, образуемые живой клеткой, действующие с высокой активностью и специфичностью. Термин «фермент» происходит от лат. fermentatio - брожение или «fermentum» - закваска. Ферменты еще называют «энзимами» от греч. еnzyme - в дрожжах, т.к. первые представления об этих веществах были связаны со способностью дрожжей сбраживать сахар в вино.

В основу теории механизма действия ферментов положено образование фермент-субстратного комплекса. Механизм действия фермента, исходя из работ Брауна, Михаэлиса и Ментен можно представить поэтапно:

1. образование фермент-субстратного комплекса (субстрат прикрепляется к активному центру фермента).

2. на второй стадии ферментативного процесса, которая протекает медленно, происходят электронные перестройки в фермент-субстратном комплексе. Фермент (Еп) и субстрат (8) начинают сближаться, чтобы вступить в максимальный контакт и образовать единый фермент-субстратный комплекс. Продолжительность второй стадии зависит от энергии активации субстрата или энергетического барьера данной химической реакции. Энергия активации - энергия, необходимая для перевода всех молекул 1 моля 8 в активированное состояние при данной температуре. Для каждой химической реакции существует свой энергетический барьер (см. наглядный материал). Благодаря образованию фермент-субстратного комплекса снижается энергия активации субстрата, реакция начинает протекать на более низком энергетическом уровне. Поэтому вторая стадия процесса лимитирует скорость всего катализа.

3. на третьей стадии происходит сама химическая реакция с образованием продуктов реакции. Третья стадия процесса непродолжительна. В результате реакции субстрат превращается в продукт реакции; фермент-субстратный комплекс распадается и фермент выходит неизмененным из ферментативной реакции. Таким образом, фермент дает возможность за счет образования фермент-субстратного комплекса проходить химической реакции обходным путем на более низком энергетическом уровне.

К общим свойствам ферментов относятся:

1. Термолабильность (влияние температуры).

2. Влияние рН

3. Специфичность

Влияние температуры (термолабильность). Ферменты не устойчивы к температурному воздействию. Влияние температуры на ферментативный процесс подчиняется правилу Вант-Гоффа: при увеличении температуры на 10°С скорость ферментативной реакции возрастает в 2 - 4 раза. Оптимальной температурой для действия ферментов организма человека является температура 37-40°С. Снижение ферментативной активности наблюдается при низких температурах, но при этом не происходит потери биологических свойств фермента. При повышении температуры выше 45°С начинается постепенное нарушение активного центра фермента, т.к. нарушается четвертичная и третичная структуры белка-фермента (начинается тепловая денатурация).

Влияние рН. На ферментативную активность в значительной степени влияет концентрация протонов (величина рН). В сильнокислой или сильнощелочной среде у большинства ферментов происходит необратимая денатурация. Ферментативная реакция происходит наиболее активно при определенных значениях рН для каждого фермента. Такая величина рН, при которой скорость реакции является максимальной у данной ферментативной реакции, называется рН-оптимумом фермента. Разные ферменты имеют разные оптимумы рН: пепсин - 1,5-2; амилаза - 6,8; трипсин - 8 и т.д.

Влияние рН среды на скорость ферментативной реакции объясняется тем, что активный центр фермента содержит функциональные группы способные к ионизации (в первую очередь, -СООН и -NН2, а также имидазол гистидина и др.). От ионизации этих групп зависит заряд белка, пространственное расположение фермента, структура активного центра. В зависимости от рН среды функциональные группы фермента могут сближаться и отдаляться друг от друга, что будет сказываться на структуре активного центра и активности фермента. рН среды имеет значение и для ионизации групп субстрата. При оптимальных значениях рН ионизация субстрата и фермента таковы, что обусловливают их сродство.

Многие ферменты для проявления каталитической активности нуждаются в присутствии некоторых веществ непептидной природы -- кофакторов. Различают две группы кофакторов: ионы металлов (а также некоторые неорганические анионы) и коферменты, которые представляют собой органические вещества.Примерно треть всех известных ферментов содержит ион металла или активируется ионами металла.

Прочность связи металлов с белковой частью фермента колеблется в широких пределах. Некоторые ферменты в процессе их выделения утрачивают ион металла вследствие диссоциации, так что при измерении активности фермента приходится эти ионы добавлять -- это ферменты, активируемые металлами. Другие ферменты сохраняют ион металла при очистке -- это металло-ферменты (металлопротеины). Деление на эти группы условно, поскольку между крайними формами существует ряд промежуточных форм.

В роли кофактора могут выступать ионы различных металлов. Ион металла может участвовать в присоединении субстрата, собственно в катализе, в стабилизации оптимальной конформации молекулы фермента, в стабилизации четвертичной структуры. Активность металлозависимых ферментов после удаления металла либо утрачивается полностью, либо заметно снижается.Коферменты -- это органические вещества, как правило, неаминокислотной природы, непосредственно участвующие в катализе в составе фермента.

3. Транспирация и ее биологическое значение. Особенности верхнего "двигателя" водного потока

Количество воды, испаряемой растением, во много раз превосходит объем содержащейся в нем воды. Экономный расход воды составляет одну из важнейших проблем сельскохозяйственной практики. К.А. Тимирязев назвал транспирацию в том объеме, в каком она идет, «необходимым физиологическим злом». Действительно, в обычно протекающих размерах транспирация не является необходимой. Так, если выращивать растения в условиях высокой и низкой влажности воздуха, то, естественно, в первом случае транспирация будет идти со значительно меньшей интенсивностью. Однако рост растений будет одинаков или даже лучше там, где влажность воздуха выше, а транспирация меньше. Вместе с тем транспирация в определенном объеме полезна растительному организму:

1. Транспирация спасает растение от перегрева, который ему грозит на прямом солнечном свете. Температура сильно транспирирующего листа может примерно на 7°С быть ниже температуры листа завядающего, нетранспирирующего. Это особенно важно в связи с тем, что перегрев, разрушая хлоропласты, резко снижает процесс фотосинтеза (оптимальная температура для процесса фотосинтеза 20--25°С). Именно благодаря высокой транспирирующей способности многие растения хорошо переносят повышенную температуру.

2. Транспирация создает непрерывный ток воды из корневой системы к листьям, который связывает все органы растения в единое целое.

3. С транспирационным током передвигаются растворимые минеральные и частично органические питательные вещества, при этом чем интенсивнее транспирация, тем быстрее идет этот процесс.

Как уже говорилось, механизм поступления ионов и воды в клетку различен. Однако некоторое количество питательных веществ может поступать пассивно, и этот процесс может ускоряться с увеличением транспирации.

По сосудам ксилемы вода поступает вверх от корня к листьям, где испаряется через устьица листа. Процесс испарения воды называется транспирацией.

Транспирация слагается из 2 процессов:

1. 1. Передвижение воды из листовых жилок в поверхностные слои стенок клеток мезофилла.

2. 2. Испарение воды из клеточных стенок в межклеточные пространства с последующей диффузией в атмосферу через устьица (устьичная или кутикулярная транспирация).

Испарение происходит за счет того, что водный потенциал в клетках листа и межклетниках выше, чем в атмосферном воздухе. В межклетниках воздух насыщен водой наполовину, а водный поток межклетников уравновешен с водным потенциалом окружающих клеток. Поэтому молекулы воды покидают растения, перемещаясь в сторону более низкого водного потенциала в атмосферный воздух..

В результате потери воды клетками в них снижается водный потенциал и возрастает сосущая сила. Это приводит к усилению поглощения воды клетками листа из ксилемы жилок и поступлению воды из корня в листья. Этот механизм поступления воды называется верхним концевым двигателем. Он обеспечивает передвижение воды вверх по растению, а создается и поддерживается высокой сосущей силой транспирирующих клеток мезофилла. Чем активнее транспирация, тем больше сила верхнего концевого двигателя.

4. Действие недостатка воды на растение

В естественных условиях очень часто даже в обычные ясные дни поступления воды в растение не успевает за ее расходованием. Образуется водный дефицит, который легко обнаружить, определяя содержание воды в листьях в разные часы суток. Измерения показали, что в полуденные часы содержание воды в листьях примерно на 25--28% меньше по сравнению с утренними. Увеличение водного дефицита сопровождается уменьшением водного потенциала листьев. Именно поэтому в дневные часы водный потенциал листьев, как правило, наименьший (более отрицательный).

Полуденный водный дефицит представляет собой нормальное явление и особенной опасности для растительного организма не представляет. Значительному увеличению водного дефицита препятствует сокращение транспирации в ночные часы. В нормальных условиях водоснабжения перед восходом солнца листья растений насыщены водой. Однако при определенном сочетании внешних условий водный дефицит настолько возрастает, что не успевает восстанавливаться за ночь. В утренние часы листья растений уже недонасыщены водой, появляется остаточный утренний водный дефицит (Л.С. Литвинов). В последующие дни, если снабжение водой не улучшится, недостаток воды будет все больше и больше нарастать. В некоторых случаях может наблюдаться завядание растений и утрачивается тургор. Первые фазы завядания сходны с первыми фазами плазмолиза, так как в силу уменьшения содержания воды объем клетки сокращается. Однако в дальнейшем течение процессов завядания и плазмолиза различно. При плазмолизе происходит отставание цитоплазмы от клеточной оболочки, а при завядании сокращающаяся в силу потери воды цитоплазма тянет за собой оболочку. На оболочке образуются как бы складки, она теряет первоначальную форму, что и вызывает потерю прямостоячего положения тканей и организма в целом. Завядание не означает, что растение погибло. Если своевременно снабдить растение водой, то тургор восстанавливается, жизнедеятельность организма продолжается, правда, с большими или меньшими повреждениями.

Различают два типа завядания.. Причиной временного завядания чаще всего бывает атмосферная засуха, когда доступная вода в почве есть, однако низкая влажность воздуха, высокая температура настолько увеличивают транспирацию, что поступление воды не поспевает за ее расходованием. При временном завядании в основном теряют тургор листья. Чаще всего это наблюдается в полуденные часы. В ночные часы растения оправляются и к утру вновь находятся в тургесцентном состоянии. Временное завядание не проходит без последствий. При потере тургора устьица закрываются, фотосинтез резко замедляется, растение не накапливает сухого вещества, а только тратит его. Однако все же, временное завядание сравнительно легко переносится растением.

Глубокое завядание наступает тогда, когда в почве почти не остается доступной для растения воды. В этих условиях даже небольшая транспирация вызывает все возрастающий водный дефицит и глубокое завядание, при котором происходит общее иссушение всего растительного организма. Растущие молодые листья оттягивают воду от стебля и корневой системы. Последствия такого завядания могут быть необратимыми и губительными. Вместе с тем непродолжительное завядание может рассматриваться как один из способов защиты растения от гибельного обезвоживания. Так, при завядании благодаря устьичным и внеустьичным регулирующим механизмам транспирация резко сокращается, что позволяет растительному организму в течение определенного промежутка времени сохранить воду и не погибнуть от полного высыхания. Завядание может происходить при разной потере воды. У растений тенистых местообитаний с малоэластичными клеточными оболочками потеря воды, равная 3--5%, уже вызывает завядание. Однако есть и такие растения, у которых завядание наступает только при 20--30%-ном водном дефиците. Водный дефицит и завядание вызывают сдвига в физиологической деятельности растения. Эти изменения могут быть более или менее сильными, обратимыми и необратимыми, в зависимости от длительности обезвоживания и от вида растения.

За начало страдания растений от недостатка воды обычно принимается появление остаточного утреннего водного дефицита. Одновременно в этот же период прекращается плач растений. Последствия водного дефицита многообразны. Прежде всего, в клетках понижается содержание свободной воды, одновременно возрастает концентрация клеточного сока. Происходят глубокие изменения в цитоплазме, увеличивается ее вязкость. Возрастает проницаемость мембран. Листья, подвергшиеся завяданию, при помещении в воду выделяют значительное количество солей и других растворимых соединений. Усиленный выход солей (экзоосмос) наблюдается также из клеток корня, подвергнутых завяданию. Одновременно эти клетки теряют способность к поглощению питательных веществ. Изменения связаны с нарушениями в структуре мембран, которые наблюдаются при снижении содержания воды ниже 20% от массы. В результате нарушения гидратных оболочек меняется конфигурация белков-ферментов и, как следствие, их активность. Особенно резко падает активность ферментов, катализирующих процессы синтеза. Вместе с тем активность ферментов, катализирующих процессы распада, возрастает. Крахмал распадается на сахара. Завядание приводит к увеличению активности ферментов, катализирующих распад белков (протеолиз). Содержание белкового азота резко падает, а небелкового -- возрастает. Распад белков при обезвоживании может быть настолько глубоким, что наступает гибель растений.

Изменяется нуклеиновый обмен. Показано, что при возрастании водного дефицита усиливается распад РНК, возрастает активность рибонуклеаз, приостанавливается синтез ДНК. Возможно, что изменение в нуклеиновом обмене является одной из причин остановки синтеза белков. При рассмотрении вопроса о влиянии происходящих при завядании процессов распада на жизнедеятельность организма надо, по-видимому, учитывать два обстоятельства. С одной стороны, этот процесс приводит к увеличению концентрации клеточного сока и в этой связи представляет собой защитную реакцию организма. С другой стороны, усиление процессов распада приводит к тяжелым физиологическим нарушениям и даже к гибели организма. Недостаток воды изменяет и такие основные физиологические процессы, как фотосинтез и дыхание. При обезвоживании устьица закрываются, это резко ухи о снижает поступление С02 в лист и, как следствие, интенсивность фотосинтеза падает. Однако уменьшение содержания воды снижает интенсивность фотосинтеза и у растений, не имеющих устьиц (мхи, лишайники). Обезвоживание нарушает структуру хлоропластов, а также конформацию ферментов, участвующих в процессе фотосинтеза, уменьшает их активность, нарушается процесс фотофосфорилирования (И.А. Тарчевский). Что касается интенсивности дыхания, то в первый период завядания она даже возрастает. Это связано с тем, что в результате усиления под влиянием завядания процесса распада крахмала возрастает количество Сахаров -- основного субстрата дыхания. При этом сахара в основном накапливаются в листьях, так как отток ассимилятов при засухе резко тормозится. Вместе с тем при недостатке воды в клетках энергия, выделяющаяся в процессе дыхания, не аккумулируется в АТФ, а в основном выделяется в виде тепла (В.Н. Жолкевич). Таким образом, при завядании энергия дыхания не может быть использована растением. Из всех физиологических процессов наиболее чувствительным к недостатку влаги является процесс роста. Наблюдения показывают, что в самый начальный период, когда растение испытывает недостаток влаги, фотосинтез еще идет, дыхание осуществляется нормальным путем, а рост уже приостанавливается (НА. Максимов). Это объясняется несколькими причинами. Уменьшение содержания воды прекращает редупликацию ДНК, а, следовательно, деление клеток. Вторая фаза роста клеток (фаза растяжения) идет за счет усиленного поступления воды. В условиях недостатка воды эта фаза резко тормозится. Клетки, образовавшиеся в условиях засухи, отличаются малым размером. Недостаток воды приводит и к другим анатомическим изменениям -- большему развитию механических тканей. Торможение процессов роста, наблюдаемое при недостатке воды, может также явиться следствием нарушения гормонального обмена. Действительно, показано, что при недостатке воды увеличивается активность ингибиторов роста (абсцизовой кислоты, этилена).

Таковы общие закономерности страдания растительного организма под влиянием водного стресса. Надо заметить, что отдельные органы растения страдают не в одинаковой степени и в определенной последовательности. При начинающемся водном дефиците в растении наблюдается перераспределение воды. Молодые листья оттягивают воду от более старых, а также от корневой системы. Отмирают корневые волоски. Усиливаются процессы опробковения корней. Указанные изменения приводят к значительному сокращению зоны, участвующей в поглощении воды, к снижению проницаемости клеток корня для воды. Именно это определяет тот факт, что после длительного завядания растения оправляются медленно. Более того, способность корневой системы к поглощению воды после завядания полностью не восстанавливается. После достижения растением полного тургора процессы обмена также восстанавливаются не сразу, так как водный стресс вызывает нарушения в системах регуляции.

Рассматривая в целом процессы, происходящие в растении под влиянием недостатка воды, необходимо отметить, что они проходят разные этапы. Известно, что при воздействии неблагоприятных условий среды в организме развиваются приспособительные процессы. На начальных этапах недостаток воды вызывает в растительном организме физиологические изменения, повышающие его устойчивость. К таким процессам относится осморегуляция -- накопление осмотически действующих веществ, таких как ионы (в первую очередь К+) и органические вещества (органические кислоты, аминокислоты). Благодаря этому вода удерживается (повышается соотношения связанной воды к свободной), и клетки предохраняются от высыхания. Однако накопление ионов небезопасно, т. к. может привести к ингибированию ферментов. В силу этого основное приспособительное значение имеет образование при водном стрессе растворимых органических соединений -- сорбитола, глицинбетаина, и в первую очередь пролина. В условиях водного дефицита содержание пролина возрастает во много раз. Показано, что у ряда растений (ячмень, хлопчатник и др.) содержание пролина увеличивается почти в 100 раз. Такой фитогормон как абсцизовая кислота, накапливающаяся при стрессе, также способствует образованию этой аминокислоты. Пролин действует как осморегулятор, способствует удержанию воды, предотвращает дегидратацию белков, вызываемую засухой, увеличиваем оводненность мембран и стабилизирует их структуру. Опыты показали, что растения, способные к осморегуляции, в условиях стресса сохраняют фотосинтез на более высоком уровне.

Необходимо отметить особую роль хлоропластов в регуляции водоудерживающей способности листьев. В начальный период стресса содержание воды в хлоропластах увеличивается, и они набухают. В период усиления водного дефицита хлоропласты теряют воду медленнее по сравнению с клеткой в целом и могут служить дополнительным резервуаром воды. Это является одной из причин, что при засухе процесс фотосинтеза снижается медленно и при небольшом водном дефиците даже возрастает. Способность растительного организма сохранять при засухе способность к накоплению сухого вещества проявляется и в изменениях путей фотосинтеза. Предполагается, что САМ-путь наряду с конституционным способом, когда САМ-путь экспрессируется в течение всего онтогенеза, может формироваться и как адаптация в ответ на действие водного стресса. В качестве сигнала может быть сочетание влияния водного дефицита и недостатка углекислого газа, вызванного закрытием устьиц. В результате передачи сигнала в ядро происходят изменения экспрессии генов, кодирующих ферменты С4 и САМ-пути, например ФЕП-карбоксилазы. Как уже рассматривалось, САМ или С4-путь позволяют расходовать воду в 3--5 раз экономнее по сравнению с растениями С3-пути.

В условиях водного стресса происходят заметные изменения и в гормональной системе. Это, прежде всего, выражается в накоплении таких фитогормонов как АБК и этилен. Абсцизовая кислота вызывает уменьшение транспирации при /,, одновременном усилении поглощения воды корневой системой. В этой связи проявляется ее ведущая роль в процессах водного обмена. Наряду с этим, как правило, содержание таких фитогормонов как ауксины и гиббереллины уменьшается. Изменение соотношения фитогоромонов приводит к торможению роста, что также может рассматриваться как защитная реакция.

В условиях водного дефицита при закрытых устьицах в клетках тормозится поступление углекислого газа. Недостаток С02 вызывает ослабление фотосинтеза и как следствие некоторый избыток кислорода. Как уже упоминалось и этих условиях возможно накопление супероксидных радикалов или других АФК. Это приводит к развитию перекисного окисления липидов и повреждению мембран. В этой связи важным моментом адаптации растений к условиям засухи является развитие антиоксидантной системы и образование соответствующих ферментов, в первую очередь СОД. Как и при других стрессорах важное значение в обеспечении устойчивости при засухе имеет образование особых стрессовых белков. Это, например большая группа белков-дегидринов (LEA-белки). Эти белки обычно синтезируются в период позднего эмбриогенеза, когда происходит естественное обезвоживание семян. Как уже отмечалось синтез таких белков индуцируется АБК. При обезвоживании LEA-белки предохраняют клеточные структуры от деградации, связывая воду. Возрастает роль белков, участвующих в транспорте воды через мембраны -- аквапоринов. Защита ДНК при засухе осуществляется другими стрессовыми белками -- шаперонами. Значение этих белков заключается в поддержании целостности ДНК при обезвоживании. Вместе с тем дальнейшее воздействие недостатка воды приводит к таким нарушениям, которые вызывают повреждение организма. Эти нарушения могут иметь обратимый и необратимый характер. Затянувшееся завядание может привести растение к гибели. В крайних случаях при внезапном и очень большом напряжении всех метеорологических факторов растение гибнет от высыхания (захват) или высоких температур (запал). Однако обычно гибель растений от водного дефицита наступает еще до их полного высыхания, и причиной ее являются нарушения обмена веществ. Особенно опасно в этом отношении нарушение нуклеинового и белкового обмена. Прекращение синтеза и усиление распада белка, снижение его содержания ниже критического уровня приводят к необратимым изменениям. Организм не может восстановить способность к новообразованию белка, а без этого невозможна жизнь. Глубокий распад сложных органических соединений ведет к образованию промежуточных продуктов распада (например, аммиака), которые, накапливаясь, отравляют организм. Не исключено также, что обезвоживание приводит к повреждению из-за резкого повышения концентрации клеточного сока и сдвига рН в кислую сторону.

Необходимо отметить, что растения на протяжении онтогенеза относятся к недостатку воды неодинаково. У каждого вида растений существуют критические периоды, т. е. периоды наибольшей чувствительности к снабжению водой. Исследования показали, что именно периоды наибольшего роста данного органа или всего растительного организма в целом наиболее чувствительны к недостатку воды. С агрономической точки зрения критические периоды -- это периоды, когда наиболее интенсивно растут и формируются те органы, ради которых данное растение возделывают. Особенно чувствительными к недостатку воды являются периоды формирования пыльцы и оплодотворения.

5. Влияние внутренних и внешних условий на процесс прорастания семян

Внешние условия оказывают на рост как прямое, так и косвенное влияние. Последнее связано с тем, что скорость роста зависит от интенсивности всех остальных физиологических процессов, воздушного и корневого питания, снабжения водой, напряженности процессов обмена веществ и энергии. В этой связи влияние внешних условий может сказаться на интенсивности роста через изменение любого из указанных процессов. При этом далеко не всегда причины того или иного влияния можно с достаточной точностью установить, поскольку в естественной обстановке влияние отдельных факторов тесно взаимосвязано.

Температура

Рост растений возможен в сравнительно широких температурных границах. Растения ранневесенней флоры растут при температуре даже несколько ниже 0°С. Есть растения, для которых верхняя температурная граница роста несколько превышает 50°С. Для каждого вида растения в зависимости от его особенностей и, главным образом, от географического происхождения характерны определенные температурные границы, в которых возможно протекание ростовых процессов. Различают три кардинальные температурные точки: минимальная температура, при которой рост только начинается, оптимальная -- наиболее благоприятная для ростовых процессов, и максимальная, при которой рост прекращается. Данные таблицы 7 показывают, что растения сильнее всего различаются по минимальной температуре, при которой рост начинается. Оптимальные и особенно максимальные температуры для роста различных культур очень близки. С повышением температуры от минимальной до оптимальной скорость роста резко возрастает. В области более низких температур наблюдается более быстрый подъем темпов роста при повышении температуры. Сказанное хорошо видно из данных по изменению температурного коэффициента в разных интервалах температуры. Так, скорость роста проростков гороха при повышении температуры от 0 до 10°С возрастает в 9 раз, от 10 до 20°С -- в 2,5 раза, а от 20 до 30°С -- всего в 1,9 раза. Оптимальные температуры могут быть неодинаковыми для роста разных органов одного и того же растения. Как правило, оптимальная температура для роста корневых систем ниже по сравнению с надземными органами. Для роста боковых побегов оптимальная температура ниже по сравнению с ростом главного стебля.

Установлено, что растения интенсивнее растут в ночной период суток. Для роста многих растений благоприятной является сменная температура в течение суток -- днем повышенная, а ночью пониженная. Это явление Ф. Вент назвал термопериодизмом. Явление термопериодизма хорошо проявляется на культуре томатов. Показано (Н.И. Якушкина), что пониженные ночные температуры ускоряют рост корневой системы и боковых побегов у растений. Такое влияние может быть объяснено тем, что при понижении температуры более активно работают ферменты, катализирующие распад крахмала на сахара. В листьях образуются растворимые транспортные формы углеводов, легко передвигающиеся к точкам роста корня и боковых побегов, благодаря чему их рост усиливается. Содержание воды. В процессе роста растения особенно чувствительны к недостатку воды. Уменьшение содержания воды в почве приводит, естественно, и к уменьшению содержания ее в растении, а это, в свою очередь, резко тормозит процессы роста. Снижается деление клеток и особенно их рост растяжением. Для различных физиологических процессов нужна разная насыщенность водой. Наибольшая насыщенность водой требуется для процессов роста. Насыщенность клетки или ткани растений водой называют гидратурой, она выражается в процентах. За 100%-ную гидратуру принимается такая насыщенность, при которой данное тело находится в равновесии с атмосферой, имеющей 100%-ную относительную влажность. Рост клеток идет лишь в том случае, если гидратура не падает ниже 95%. Для того чтобы поддержать такую гидратуру, точки роста надземных органов растения защищены смыкающимися листочками с хорошо развитой кутикулой. Точки роста корня не имеют подобной защиты и поэтому требуют повышенной влажности почвы для своего роста.

Свет

Растения используют свет двумя путями: во-первых, как энергетический ресурс (свет служит источником энергии для синтеза органических веществ -- фотосинтез); во-вторых, как сигнал или источник информации. Во втором случае энергия света может быть на несколько порядков ниже, чем в первом. Свет оказывает большое и разностороннее влияние на темпы и характер роста, как отдельных органов, так и растительного организма в целом. При этом на разные стороны ростовых процессов влияние света проявляется неоднозначно. Так, свет необходим для протекания процесса фотосинтеза, и поэтому накопление массы растения без света не идет. Вместе с тем рост клеток растяжением может идти в темноте, более того, на свету этот процесс тормозится. Свет оказывает большое влияние и на формообразовательные процессы. Этиолированные проростки, выросшие в темноте, характеризуются рядом анатомических и морфологических особенностей. В отсутствие света происходит упрощение анатомической структуры стебля. Слабо развиваются ткани центрального цилиндра, механические ткани. Вместе с тем растяжение клеток в темноте идет очень интенсивно. В результате образуются длинные, вытянутые стебли. Листья редуцированы, у двудольных растений вместо листовой пластинки образуются лишь небольшие чешуйки. Этиолированные проростки имеют слегка желтоватый оттенок. По-видимому, более быстрое вытягивание стебля и корня, этиолированных проростков выработалось в процессе эволюции, так как в большинстве случаев прорастание семян происходит в почве в отсутствие света, и эти особенности, а также отсутствие листьев облегчают проростку проникновение через слой почвы. Возможно, что вытягивание стебля в отсутствие света является следствием отсутствия ингибиторов роста. В темноте образуется много ауксинов. Нарушение соотношения ауксинов и ингибиторов вызывает несбалансированный рост. При выходе проростков на поверхность почвы происходят их внутренние и внешние изменения. В темноте у проростков двудольных растений гипокотиль изогнут, что защищает точку роста в почве от повреждений. Под влиянием света этот изгиб («крючок») выпрямляется. На свету рост стебля тормозится, рост листьев усиливается, и они принимают обычную форму. Под влиянием света происходят анатомические изменения стебля, дифференцируется эпидермис, появляются волоски, изменяется окраска -- синтезируется хлорофилл. Эти изменения получили название фотоморфогенеза. Интересно заметить, что ткани проростков могут рассматриваться как «световоды», т. е. они способны проводить свет. Вследствие этого под влиянием освещения надземных органов меняются направление и темпы роста корневых систем. Именно это способствует их углублению.

Изучение влияния отдельных участков спектра на перечисленные изменения (фотоморфогенез) показало, что чаще всего они вызываются при воздействии красного света с длиной волны около 660 нм. Для того чтобы свет оказал какое-либо физиологическое влияние, он должен быть поглощен каким-либо веществом. Таким веществом оказался пигмент фитохром. Было показано, что многие физиологические реакции, вызываемые облучением красным светом, можно снять при облучении дальним красным светом (длина волны около 730 нм). Эти исследования привели к заключению, что фитохром существует в двух формах, которые под влиянием облучения светом определенной длины волны могут переходить одна в другую. Фитохром, поглощающий красный свет, называют фитохром красный (Фк), а поглощающий дальний красный -- фитохром дальний красный (Фдк). При поглощении красного света (660 нм) Фк переходит в Фдк, а при поглощении дальнего красного света (730 нм) Фдк переходит в Фк: может и самопроизвольно распадаться. В темноте Фдк или необратимо разрушается, или под влиянием дальнего красного света превращается в Фк. В настоящее время показано, что взаимопревращение фитохромов идет не сразу, а через ряд промежуточных форм. Надо учитывать, что на протяжении большей части дня соотношение энергии красных и дальних красных лучей составляет 3:1. Это благоприятствует превращению Фк в Фдк (активная форма). Вместе с тем в вечерние и ночные часы преобладает дальний красный свет, в связи с чем равновесие фитохромной системы сдвигается в сторону преобладания Фк (неактивная форма). Надо учитывать также, что Фк более устойчив и может синтезироваться в клетке, тогда как Фдк легко разрушается. В связи со сказанным изменения в соотношении двух форм фитохрома можно представить в виде схемы. Обе формы фитохрома выделены из растений -- это хромопротеиды с молекулярной массой около 120 кДа. Хромофорная часть (собственно пигмент) представляет собой вещество, близкое по структуре к фикобилинам (красным пигментам цианобактерий и красных водорослей), состоящим из четырех пиррольньгх группировок, соединенных в открытую цепочку. Фв представляет собой восстановленную форму Фк. Фк имеет голубую окраску, а Фдк -- зелено-желтую. Кроме основных линий поглощения в красной и дальней красной части спектра, оба фитохрома поглощают еще коротковолновый свет: Фк-- с длиной волны 370 нм, Фдк -- 400 нм. Спектрофотометрические и иммунологические исследования показали, что высокое содержание фитохрома характерно для меристематических, а также этиолированных тканей.

Фитохромная система, по-видимому, очень древняя, так как она имеется даже у цианобактерий и у некоторых гетеротрофных организмов. Фитохромы можно обнаружить в различных органах растения. Физиологические проявления, которые регулируются фитохромной системой, можно отнести к фотоморфогенетическим. Основным критерием для этих реакций служит их обратимость (вызываются облучением красным светом и снимаются при облучении дальним красным светом). Особенности влияния красного и дальнего красного света видны при изучении прорастания светочувствительных семян.

Рассмотрение данных в таблице показывает, что благоприятное действие на прорастание красного света снимается облучением дальним красным. К реакциям, регулируемым фитохромной системой, относятся ингибирование роста стебля, открытие крючка гипокотиля, развертывание семядолей, дифференциация эпидермиса и устьиц, образование элементов ксилемы, ориентация хлоропластов, образование антоциана, прорастание светочувствительных семян, фотопериодическая реакция растения и др. Все процессы, регулируемые фитохромной системой, делят на два типа: 1) процессы, которые под влиянием освещения красным светом усиливаются (например, дифференциация эпидермиса, синтез антоциана, прорастание семян); 2) процессы, которые тормозятся (удлинение гипокотиля, рост стебля).

Механизм действия фитохрома до настоящего времени не известен. Активной формой фитохрома является Фдк, именно его образование, которое происходитпод влиянием облучения красным светом, вызывает определенный физиологический эффект. Однако и Фда не весь участвует в реакциях, а лишь его определенная часть. Возможно, что эта активная часть Фдк связана с мембранами и определенным образом ориентирована в них. В этой связи представляют интерес данные немецкого физиолога В. Гаупта, согласно которым хлоропласты ориентируются под прямым углом по отношению к лучу красного света. При этом луч может быть диаметром всего 3 мк и прямо не попадать на хлоропласты. Из этого можно сделать вывод, что фитохром локализован по преимуществу в мембранах, при этом каждая форма фитохрома определенным образом ориентирована в мембранах. При освещении определенными лучами спектра эта ориентация меняется, что и вызывает изменение ориентации хлоропластов. Воздействие Фдк может проявляться быстро (минуты) и медленно (часы). В первом случае действие Фдк, по-видимому, связано с изменением свойств мембран. Имеется предположение, что в быстрых эффектах фитохрома играют роль сигнальные цепи. Накопление Фдк в мембранах влияет на их проницаемость, в частности для К+, что, в свою очередь, изменяет электрический потенциал и вызывает определенный биологический эффект, например, никтинастическое закрывание листьев. В случае более длительных эффектов предполагают, что фитохром вызывает активацию (дерепрессию) части генома (Т. Мор). Эта точка зрения подтверждается тем, что при добавлении ингибиторов синтеза белка и РНК действие красного света не проявляется. Есть данные, что фитохром регулирует транскрипцию многих генов, связанных с позеленением, а также ген ядра, кодирующий малые субъединицы РБФ карбоксилазы/оксигеназы и связанные с хлорофиллом белки. Показано также, что красный свет индуцирует образование ряда ферментов. Ответная реакция, вызываемая Фдк или его особой формой, зависит от состояния клетки или ткани, от ее компетентности. Под влиянием красного света активность таких фитогормонов, как гиббереллины и цитокинины, возрастает. Не исключено, что действие фитохрома на геном опосредовано фитогормонами. Как уже отмечалось, многие физиологические и морфологические изменения, индуцированные фитохромом, связаны с кратковременным освещением малой интенсивности 1/100 солнечного света в течение 1 мин -- низкоэнергетическими реакциями (НЭР). Однако было показано, что, для того чтобы в растениях исчезли все признаки этиоляции и они приобрели нормальный вид, этого недостаточно. Таким образом, выяснилась необходимость более длительного и более интенсивного облучения. Было сделано заключение, что такие эффекты включают высокоэнергетические реакции (БЭР). Именно БЭР обеспечивают нормальный рост побегов. При этом оказалось, что спектр действия БЭР также несколько отличен. Наибольшее влияние оказывают не красные, а дальние красные (710--730 нм) и синие лучи. Что касается пигментов (фоторецепторов), которые ответственны за эти реакции, то для проявления действия дальнего красного света это тот же Ф. Фоторецептор для синего света окончательно не установлен, возможно, что это флавиновые соединения, например, флавинокаротиноиды. В последнее время действию синего света на растения уделяется большое внимание. Показано, что синий свет влияет на электрические и генетические процессы, изменяет метаболизм. Причем его действие отличается от эффектов красного света. Примерами процессов, регулируемых синим светом, являются фототропизм, биосинтез пигментов и др. Установлена стимуляция синим светом разрушения крахмала и биосинтеза малата в замыкающих клетках устьиц. Обогащение осмотически действующими веществами приводит к открытию устьиц. Синий свет влияет на устьичные движения также путем активации Н+-АТФазы плазмалеммы. Синий свет вызывает возникновение разности потенциалов, что влияет на поступление ионов. В случае стимулирования генов синий свет стимулирует транскрипцию и трансляцию и приводит к морфогенетическим эффектам. Рассматривая воздействие света, необходимо остановиться на влиянии круглосуточного освещения на процессы роста. Опыты по выращиванию растений при свете электрических ламп (светокультура) показали, что рост многих растений при круглосуточном освещении идет значительно интенсивнее, особенно при правильном подборе качества света, т. е. типа ламп (Б.С. Мошков). Так, при выращивании сеянцев древесных культур (дуб, сосна) на непрерывном освещении темпы их роста возрастают в 1,5--2 раза (В.М. Леман). Такие однолетние растения, как горох и фасоль, также характеризуются очень интенсивным ростом в условиях круглосуточного освещения. Однако существуют растения, на рост которых круглосуточное освещение оказывает отрицательное влияние. В некоторых случаях круглосуточное освещение вызывает явления, сходные с теми, которые обычно являются следствием недостатка света. Такие растения, как томаты, в условиях непрерывного освещения вытягиваются, листья становятся желтыми, хлорофилл разрушается. Это явление называют зеленой этиоляцией. Особенно вредное влияние круглосуточного освещения проявляется при высокой ночной температуре.

Снабжение кислородом

Процессы роста требуют затрат энергии, источником которой служит процесс дыхания. В этой связи понятна необходимость кислорода. При снижении концентрации кислорода ниже 5% рост тормозится. Это происходит не только из-за нарушения энергетического баланса, но и в силу накопления продуктов анаэробного обмена (спирт, молочная кислота). Минеральное питание. Для нормального протекания ростовых процессов необходимо достаточное снабжение всеми необходимыми минеральными элементами. Особенно специфична роль снабжения растений азотом. Это связано не только с тем, что азот входит в состав белков и нуклеиновых кислот, но и с образованием двух основных групп гормонов, регулирующих ростовые процессы (ауксинов и цитокининов).

6. Процессы, происходящие при замерзании растительных тканей. Способы повышения морозоустойчивости

Морозоустойчивость - способность растений переносить температуру ниже 00С. Разные растения переносят зимние условия, находясь в различном состоянии. У однолетних растении зимуют семена, нечувствительные к морозам, у многолетних - защищенные слоем снега земли и снега клубни, луковицы и корневища. У озимых растений и древесных пород ткани под действием отрицательных температур могут замерзнуть и даже промерзнуть насквозь, однако растения не погибают. Способность этих растений перезимовать обуславливается их достаточной, высокой морозоустойчивостью.

Гибель растений под влиянием морозов обусловливается изменениями, происходящими в протопласте, его коагуляцией.

Каждая клетка имеет свою границу обезвоживания и сжатия. Переход этих границ, а не только снижение температуры причина гибели клеток. Происходит обезвоживание протопласта вследствие вымораживания воды. Убедительным доказательством служит состояние переохлаждения без образования льда, которое растения переносят без вреда, при тех же температурах, но с образованием льда в тканях растения гибнут.

Не все растения одинаково реагируют на образование льда в тканях.

Например, клубни картофеля, георгина погибают сразу, капуста, лук переносят умеренное замораживание, растения северных широт, озимые злаки рожь, пшеница выдерживают понижение температуры до -15-200С. Нечувствительность к морозам достигается физико-химическими изменениями в клетках. В зимующих листьях и других частях растения накапливается много сахара, а крахмала в них почти нет. Сахар защищает белковые соединения от коагуляции при вымораживании, и поэтому его можно назвать защитным веществом. При недостаточном количестве сахара в клетках повышается водоудерживающие силы коллоидов протопласта, увеличивается количество прочносвязанной и уменьшается содержание свободной воды.

С понижением температуры при закаливании растений интенсивность дыхания снижается сильнее, чем фотосинтез, в результате чего наблюдается задержка ростовых процессов. Повышение содержания сахаров хлоропластах коррелирует с морозоустойчивостью растений. Следовательно, сахара оказывают стабилизирующее действие на клеточные структуры.

Установлено, что при замерзании растения кислая фосфатаза переходит в свободное состояние и диспергируется в цитоплазме. Исследования показали, что охлаждение до температур, близких к замерзанию, приводит к укреплению связи фермента в клетке: при дальнейшем охлаждении происходит его освобождение и вымывание в наружный раствор. Переход кислых фосфатаз в свободное состояние является начальной фазой повреждения растения при его замерзании.

Содержание незамерзающей воды в тканях зимостойкой пшеницы почти в 3 раза выше по сравнению с не зимостойкой. В районах с неустойчивой весной и частым возвращением весенних холодов новые побеги у пшеницы образуются медленно и не одновременно из почек, находящихся в состоянии покоя в узлах кущения. Наоборот, у злаковых, возделываемых в районах с устойчивым и большим снеговым покровом, наблюдается дружное прорастание всех спящих почек узла кущения, находится близко от поверхности (1,5), такие растения менее зимостойки, чем растения с более глубоким залеганием узла кущения (3-4 см).

Узел кущения - своеобразная кладовая энергетических ресурсов растения в зимний период. Морозостойкость сортов озимой пшеницы определяется как количеством сахаров, накопленных в осенний период, так и экономным расходованием их в течение зимы

У растения озимой пшеницы в зимний период с понижением температуры содержание моносахаридов (глюкозы и фруктозы) увеличивается за счет расщепления сахарозы на глюкозы и фруктозу. Это «молекулярный актив» зимующего растения (возрастает концентрация клеточного сока, что снижает точку его замерзания) (А.А.Рихтер).

И.И. Туманов разработал теорию закаливания растений, повышающего их устойчивость к действию низких температур. Сущность ее заключается в том, что у растений под влиянием низких положительных температур накапливаются сахара и другие соединения - первая фаза закаливания. Дальнейшее повышение морозоустойчивости происходит уже при отрицательных температурах, но не повреждающих клетки, вторая фаза закаливания. Она идет сразу же после первой при температуре немного ниже 00 С. в этой фазе наблюдается частичная потеря воды клетками. Под действием сахаров накопившихся в клетках, изменяются биоколлоиды, и возрастет относительное количество коллоидно-связной воды. Такие изменения придают биоколлоидам устойчивость к низким температурам. Прекращение роста - необходимое условие прохождения первой фазы закаливания. Метаболические изменения, наблюдаемые во время этой фазы, могут быть вызваны изменением гормонального и энергетического баланса. Изменение баланса фитогормонов, влияет на белковый синтез и активацию специфических ферментов в закаленных тканях. Гормоны могут также влиять на свойства клеточных мембран; как известно абсизовая кислота увеличивает проницаемость мембраны для воды, в то время как кинетин оказывает обратное действие. Тем самым, низкая температура повышает активность ингибиторов роста и тормозит растяжению клеток. Стимуляторы роста (гибберлины) не снижают эту способность у растений, находящихся в состоянии глубокого покоя. Вместе с тем они могут резко изменить ее. Так черенки черной смородины, обработанные гиберлином после первой фазы закаливания и помещенные затем в благоприятные условия для прохождения второй фазы, выдерживали понижение температуры лишь до -50С, в то время как контрольные растения до - 400 С.


Подобные документы

  • Влияние температуры на особенности прорастания и всхожести семян эфемеров в лабораторных и полевых условиях. Определение минимальной, оптимальной и максимальной температуры прорастания семян эфемерных растений Донбасса, их таксономический анализ.

    магистерская работа [83,3 K], добавлен 19.11.2015

  • Исследование основных жизненных форм растений. Описание тела низших растений. Характеристика функций вегетативных и генеративных органов. Группы растительных тканей. Морфология и физиология корня. Видоизменения листа. Строение почек. Ветвление побегов.

    презентация [21,1 M], добавлен 18.11.2014

  • Обмен углеводов при прорастании семян. Механизм действия на растения ретардантов. Основные способы ускорения дозревания плодов. Выращивание растений при искусственном облучении (электросветкультура). Холодоустойчивость растений и способы ее повышения.

    контрольная работа [41,7 K], добавлен 22.06.2012

  • Процесс замачивание семян гороха, посадка их в землю. Наблюдение за прорастанием семян, измерение высоты первых ростков. Экспериментальное исследование особенностей прорастания семян в более темном и светлом помещении, в прохладной и теплой обстановке.

    презентация [2,4 M], добавлен 10.04.2013

  • Превращение азотистых веществ в растениях. Качество растительных масел в зависимости от факторов внешней среды. Превращение веществ при созревании семян масленичных культур. Яровизация, ее суть и значение. Влияние температуры и света на покой семян.

    контрольная работа [35,0 K], добавлен 05.09.2011

  • Способы размножения растений: вегетативное и половое. Факторы, влияющие на прорастание семян. Способы размножения луковичных растений. Характеристика регуляторов роста ("Эпин экстра", "Циркон", "Флоравит 3Р") и их влияние на рост и развитие растений.

    дипломная работа [3,7 M], добавлен 17.06.2017

  • Прорастание (всхожесть) как переход от состояния покоя к росту зародыша и развитию из него проростка. Живой зародыш семени. Благоприятные условия прорастания семени растений. Значение воды и питательных веществ. Глубина заделки семян, влияние света.

    презентация [2,4 M], добавлен 01.11.2011

  • Характеристика микробиологических и физических стимуляторов и их роль в жизнедеятельности растений. Биологические особенности подсолнечника, характеристика семян сорта "Пионер". Определение влияния стимуляторов на прорастание, рост и развитие семян.

    курсовая работа [172,8 K], добавлен 13.09.2015

  • Закономерности жизнедеятельности растительных организмов. Рациональное размещение растений в почвенно-климатических условиях. Механизмы онкопрофилактического действия фитостеринов. Физические и химические компоненты физиологии растений, фотосинтез.

    реферат [42,6 K], добавлен 15.12.2009

  • Изобретение Захарием Янсеном примитивного микроскопа. Исследование срезов растительных и животных тканей Робертом Гуком. Обнаружение Карлом Максимовичем Бэром яйцеклетки млекопитающих. Создание клеточной теории. Процесс деления клетки. Роль ядра клетки.

    презентация [1,4 M], добавлен 28.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.