Концепции современного естествознания

Этапы развития естественно-научной картины мира, современные представления о строении и развитии природы микро-, макро- и мегамиров. Эволюция представлений о пространстве. Становление естественно-научной картины мира. История человеческого познания.

Рубрика Биология и естествознание
Вид учебное пособие
Язык русский
Дата добавления 17.12.2013
Размер файла 2,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

8.4 Законы сохранения в природе

Томны мира, что я изложил

в сокровенной тетради,

от людей утаил я,

своей безопасности ради.

Никому не могу рассказать,

что скрываю в душе,

слишком много невежд в этом злом

человеческом стаде...

Омар Хайям

Открытие законов сохранения в природе началось с установления М. В. Ломоносовым и А. Л. Лавуазье почти независимо друг от друга закона сохранения массы вещества. Закон сохранения массы в химических процессах формулируется следующим образом: сумма масс исходных веществ (соединений) равна сумме масс продуктов химической реакции. Количественным выражением закона сохранения массы вещества применительно к производственному химическому процессу является материальный баланс, в котором подтверждается, что масса веществ, поступивших на технологическую операцию (приход), равна массе полученных веществ (расход):

где-- соответственно массы твердых, жидких и

газообразных материалов, поступивших на обработку (приход материалов);

-- массы продуктов, получившихся в результате химической переработки (расход материалов).

Важным достижением на пути дальнейшего процесса интеграции знаний было открытие фундаментального закона природы -- закона сохранения и превращения энергии. Открытие закона сохранения и превращения энергии обычно связывают с именами Р. Майера, Д. Джоуля, Г. Гельмгольца. К открытию они пришли разными путями. Формулировка закона сохранения и превращения энергии, согласно Гельмгольцу, следующая: приращение кинетической энергии тела равно убыли его потенциальной энергии. Он выразил полученный закон в математической форме и связал закон сохранения энергии с принципом невозможности создания вечного двигателя. Джоуль определил величину эквивалента перевода механической энергии в тепловую. Майер рассматривал различные виды энергии: кинетическую, потенциальную, их сумму -- механическую энергию, а также тепловую, электрическую, химическую энергии. Он считал, что все эти виды энергии могут взаимопревращаться -- при условии неизменности общего количества энергии. Например, количественным выражением закона сохранения энергии в химическом производстве является тепловой (энергетический) баланс. Применительно к тепловым процессам химической переработки закон сохранения энергии формулируется так: количество тепловой энергии, принесенной в зону взаимодействия веществ, равно количеству энергии вынесенной веществами из этой зоны

где Qф -- теплота, введенная в процесс с исходными веществами;

Qэ -- теплота экзотермических реакций;

Qв -- теплота, введенная в процесс извне;

Оф' -- теплота, выведенная из процесса с продуктами реакции;

Qn' -- потери теплоты в окружающую среду.

Переход энергии из одной формы в другую означает, что энергия в данной ее форме исчезает, превращается в энергию в иной форме. Закон сохранения энергии утверждает, что при любых процессах, происходящих в изолированной системе, полная энергия системы не изменяется, т. е. переход энергии из одной формы в другую происходит с соблюдением количественной эквивалентности. Для количественной характеристики различных форм движения вводятся соответствующие им виды энергии: механическая, внутренняя (тепловая), электромагнитная, химическая, ядерная и т. д. Закон сохранения энергии -- закон, управляющий всеми явлениями природы; исключений из него науке неизвестно.

В структуру физической теории понятие энергии вошло в середине XIX в. при рассмотрении закона сохранения и превращения энергии в механике. Мерой изменения энергии в ряде случаев механики может быть определена работа. В этих случаях работа, совершаемая за счет уменьшения потенциальной энергии тела, практически полностью идет на увеличение кинетической энергии тела. Эти случаи послужили основанием для формирования закона сохранения и превращения энергии применительно к механическим процессам. Этот закон звучит следующим образом: полная энергия замкнутой консервативной системы тел, равная сумме их потенциальной и кинетической энергии, остается величиной постоянной. То есть всякое изменение потенциальной и кинетической энергии есть превращение потенциальной энергии в кинетическую, а кинетической в потенциальную. Необходимо отметить, что энергия сохраняется не только для изолированных (замкнутых) систем, но и для систем, находящихся во внешних полях, не изменяющихся во времени. Однозначное определение работы как меры изменения потенциальной энергии имеет место лишь для определенных типов полей, называемых потенциальными. Примерами таких полей могут служить гравитационное поле или электростатическое. Потенциальными считаются поля, работа сил которых не зависит от траектории движения тела в поле, а соответственно силы этих полей называют консервативными. В случае, если работа сил зависит от формы пути, или силы зависят от скорости движения, механическая энергия системы не сохраняется. Например, силы трения, которые присутствуют во всех случаях, не являются консервативными. Следовательно, закон сохранения механической энергии имеет смысл лишь применительно к идеализированным ситуациям. Выяснение энергетических процессов с наличием сил трения привело и открытию закона сохранения и превращения энергии в тепловых явлениях. Причем это происходило в двух направлениях: термодинамическом, изучающем тепловые процессы без учета молекулярного строения вещества, и молекулярно-кинетическом. Оформившись к середине XIX в., оба эти подхода к рассмотрению изменения состояния вещества с различных точек зрения дополняют друг друга, образуя единое целое. Работы Майера, Джоуля, Гельмгольца установили первое начало термодинамики, а Клаузиус и Томсон -- второе начало термодинамики. Клаузиус первым высказал мысль об эквивалентности работы и количества теплоты. Закон сохранения энергии в тепловых процессах утверждает, что величину внутренней энергии U можно увеличить двумя эквивалентными способами -- произведя над телом механическую работу (А) или сообщая ему количество теплоты (Q)

Следует подчеркнуть важное значение установления эквивалентности теплоты и работы. Именно понимание количества теплоты как меры изменения внутренней энергии способствовало установлению закона сохранения и превращения энергии.

Установлению закона сохранения энергии и превращение энергии способствовало также открытие эффектов, отличных от механических и тепловых, а также превращение других форм движения в тепловую энергию. Майер рассматривает положение о сохранении и превращении энергии в природе на живые организмы, утверждая, что при поглощении пищи в организме постоянно происходят химические процессы, результатом которых являются тепловые и механические эффекты.

Исследования электрических явлений давали серьезные основания для подкрепления вывода о взаимопревращении различных форм движения друг в друга. Джоуль устанавливает соотношение между величиной количества теплоты, выделяемой при прохождении электрического тока через проводник, и величиной тока и сопротивления проводника.

Итак, на протяжении более четырех десятилетий формировался один из самых великих принципов современной науки. Всеми явлениями природы управляет закон сохранения и превращения энергии: энергия в природе не возникает из ничего и не исчезает; количество энергии неизменно, она только переходит из одной формы в другую.

Дальнейшее развитие основополагающих закономерностей природы получило развитие в специальной теории относительности Эйнштейна, который приходит к заключению: "Если тело отдает энергию Е в виде излучения, то его масса уменьшается на Е/с2... Масса тела есть мера содержащейся в нем энергии". Позднее он формулирует следующий важный вывод специальной теории относительности: "масса и энергия эквивалентны друг другу"; появляется знаменитая формула Эйнштейна, связывающая энергию и массу:

где m0 -- масса покоя, Е0 = m0 с2 -- энергия покоя тела.

До создания специальной теории относительности законы сохранения энергии и массы рассматривались как два самостоятельных закона сохранения. Теперь же оба эти закона слились в один. По выражению Эйнштейна, масса должна рассматриваться как "сосредоточие колоссального количества энергии". Таким образом, теперь мы можем сказать, что фундаментальным законом природы является закон сохранения массы и энергии. Специфической особенностью применения закона сохранения энергии в ядерной физике и физике элементарных частиц является необходимость учета изменения энергии покоя, и следовательно, массы взаимодействующих тел.

Часто, говоря о преобразовании энергии покоя в кинетическую, называют этот процесс "превращением массы в энергию". Можно ли так говорить? Верно, это или нет? Строго говоря, неверно, так как в подобном процессе энергия и масса преобразуются не друг в друга, а каждая в свою другую форму; энергия покоя Е0 -- в кинетическую энергию; масса покоя m0 -- в другую форму массы, которую мы с вами условно называли кинетической массой. В обоих преобразованиях сохраняется полное значение как энергии, так и массы. Но протекают эти преобразования таким образом, что возрастанию кинетической энергии от первоначального значения до конечного значения соответствует эквивалентное убывание энергии покоя от первоначального значения до конечного значения. А так как масса и энергия связаны соотношением Е = mс2, то убывание энергии покояпроявляется как уменьшение массы покоя m0 на величинуи называется она дефектом массы.

В результате создается впечатление о "превращении массы в кинетическую энергию".

Согласно закону сохранения энергии, полная энергия Е остается неизменной при любых процессах, однако этот закон не запрещает превращение энергии из одной формы в другую. В принципе возможны как процессы превращения энергии покоя Е0 в кинетическую энергию, так и обратный процесс преобразования кинетической энергии в энергию покоя. В соответствии с соотношением Е = mс2 первый процесс должен сопровождаться уменьшением массы ("превращением массы в энергию"), а второй -- увеличением массы ("превращением кинетической энергии в массу"). Особенно заманчивым является процесс преобразования энергии покоя в кинетическую энергию ("превращение массы в энергию").

Мерой механического движения тела является количество движения, или импульс, определяемый как произведение его массы m на скорость v. Импульс Р является векторной величиной, направленной так же, как скорость точки. В случае механической системы импульс ее определяется как геометрическая сумма импульсов всех ее точек или произведение массы всей системы на скорость ее центра масс.

где m -- масса всей системы, а -- скорость ее центра масс.

Изменение импульса системы происходит под действием только внешних сил, т. е. сил, действующих на систему со стороны тел, не входящих в эту систему. Одним из важных законов природы является закон сохранения импульса, который утверждает, что импульс замкнутой системы не изменяется с течением времени. Для замкнутой системы, в которой не испытывает внешних воздействий или когда геометрическая сумма действующих на систему внешних сил равна нулю, импульс системы сохраняется постоянным. Отсюда следует также, что при любых процессах, происходящих в замкнутой системе, скорость ее центра инерции сохраняется неизменной. Для материальной точки закон сохранения импульса означает, что в отсутствие внешних сил она движется с постоянной скоростью по прямой линии.

Если система не замкнутая, но равнодействующая внешних сил равна нулю, то импульс системы остается постоянным так же, как если бы внешних сил не было совсем. Обычно приходится иметь дело с незамкнутыми системами, для которых равнодействующая внешних сил отлична от нуля и импульс системы не постоянный. Однако если проекция главного вектора внешних сил на какую-либо ось, неподвижную относительно инерциальной системы отсчета, тождественно равна нулю, то проекция на эту же ось вектора импульса системы не зависит от времени. Этот закон называют законом сохранения проекции импульса.

Основополагающим является также закон сохранения момента импульса системы (тела). В классической механике моментом импульса частицы (моментом количества движения) называют векторное произведение:

где r, Р -- радиус-вектор и вектор импульса частицы.

Этот закон утверждает, что момент импульса замкнутой системы тел относительно любой неподвижной точки не изменяется с течением времени. Если момент внешних сил относительно неподвижной оси вращения тела тождественно равен нулю, то момент импульса тела относительно этой оси не изменяется в процессе движения.

Данный закон может быть обобщен на любую незамкнутую систему тел: если результирующий момент всех внешних сил, приложенных к системе, относительно какой-либо неподвижной оси равен нулю, то момент импульса системы относительно той же оси не изменяется с течением времени. В частности, этот закон справедлив для замкнутой системы тел.

В электрических явлениях фундаментальным является закон сохранения электрического заряда. Для замкнутой системы частиц суммарный электрический заряд системы со временем не изменяется, т. е. остается постоянным.

Наиболее ярко проявление законов сохранения мы наблюдаем в мире элементарных частиц. Здесь действует правило: разрешено все, что не запрещают законы сохранения. Последние играют роль правил запрета, регулирующих взаимопревращение частиц. Прежде всего отметим законы сохранения энергии, импульса и электрического заряда. Эти три закона, например, объясняют стабильность электрона. Из сохранения энергии и импульса следует, что суммарная масса покоя продуктов распада должна быть меньше массы покоя распадающейся частицы. Значит, электрон мог бы распадаться только на нейтрино и фотоны. Но эти частицы электрически нейтральны. Вот и получается, что электрону просто некому передать свой электрический заряд; поэтому он стабилен. Существует много специфических параметров, сохранения которых регулирует взаимопревращение частиц, -- барионный заряд, лептонный заряд, четность (пространственная, временная, зарядовая), странность, очарование и др. Некоторые из них не сохраняются в процессах, обусловленных слабым взаимодействием (четность, странность, "очарование").

Согласно, например, закону сохранения барионного заряда, в любом процессе должна оставаться неизменной разность между числом барионов и антибарионов. Протон--барион с наименьшей массой; следовательно, среди продуктов его распада барионов быть не может. Этим объясняется стабильность протона -- его распад приводил бы к некомпенсированному уничтожению бариона.

8.5 Законы сохранения и принципы симметрии

Мы рады той таинственности, которая находится за пределами нашей досягаемости.

Харлоу Шепли

Среди всех физических законов своей всеобщностью, высшей степени фундаментальностью выделяются законы сохранения энергии импульса, момента импульса и ряда других величин. Своим происхождением эти законы сохранения обязаны свойствам симметрии природы. Немецкий математик Эмми Нетер доказала в 1918 г. теорему, сущность которой заключается в утверждении, что различным симметриям физических законов соответствуют определенные законы сохранения. Свойства симметрии природы выражаются в неизменности вида физических законов, т. е. в их инвариантности, при некоторых преобразованиях. Тем самым была математически доказана связь между законами сохранения и симметрией законов природы. По выражению Р. Фейнмана, "среди наиболее мудрейших и удивительных вещей в физике эта связь -- одна из самых интересных и красивых".

Симметрия предполагает неизменность объекта или свойств объекта по отношению к каким-нибудь преобразованиям, операциям, выполняемым над объектом. Слово это греческое и переводится как "соразмерность, пропорциональность, одинаковость в расположении частей". Симметрию можно понимать в геометрическом смысле -- как симметрию положений. Например, рассмотрение объектов по отношению к отражениям, поворотам, переносам. Симметрия имеет определенную структуру, состоящую из трех факторов: 1) объект или явление, симметрия которого рассматривается; 2) изменение или преобразование, по отношению к которому рассматривается симметрия; 3) инвариантность или неизменность, сохранение каких-либо свойств объекта, выражающих рассматриваемую симметрию.

Важное значение имеет симметрия физических законов, которые в основном связаны со свойствами пространства и времени. Остановимся более подробно на физическом содержании свойств законов по отношению к преобразованиям фундаментальной симметрии.

1. Симметрия по отношению к сдвигу начала отсчета времени, или свойство однородности времени, проявляется в физическом эквиваленте разных его моментов. Разные моменты времени эквивалентны в том смысле, что любой физический процесс протекает одинаковым образом независимо от того, когда он начался. При этом условия, существенные для процесса, в будущем должны быть такие же, как и в прошлом. Свойство однородности времени позволяет сравнить результаты опытов, проделанных в разное время. Однородность времени нужно понимать как физическую неразличимость всех моментов времени свободных объектов. Другими словами, если объекты не взаимодействуют с окружением, то для них любой момент времени может быть принят за начальный. Мы считаем, что изученные закономерности в поведении атомов были теми же самыми и многие миллионы лет тому назад. Отсутствие однородности времени вело бы к тому, что люди не могли бы прогрессировать в познании.

Однородность времени, т. е. симметрия по отношению к преобразованию t = t0 + t', приводит к закону сохранения энергии. Этот закон выполняется для систем, находящихся в неизменных во времени внешних условиях. Такие условия создаются только потенциальными внешними полями и называются стационарными. Действительно, выбор начала отсчета времени несущественен, если только неизменны во времени внешние условия, в которых находится система. Энергия, таким образом, может быть определена как физическая величина, сохранение которой обусловлено указанной симметрией.

2. Симметрия по отношению к сдвигу начала координат, или свойство однородности пространства, означает, что все точки физического пространства эквиваленты. Эта эквивалентность выражается в том, что явление, произошедшее в одной области пространства, повторится без изменений, если будет вызвано в другом месте. При этом необходимо перенести в новое место всю совокупность факторов существенно обусловливающих явление. Отметим, что надо сравнивать результаты одинаковых экспериментов, поставленных в разных лабораториях.

Однородность пространства означает, что любая его точка физически равноценна, т. е. перенос любого объекта в пространстве никак не влияет на процессы, происходящие с этим объектом.

Так, мы совершенно уверены, что свойства атомов у нас на Земле, в условиях Луны, других планет и на Солнце одни и те же. Если бы эти кажущиеся столь очевидными свойства однородности пространства и времени отсутствовали, то было бы почти бессмысленно заниматься наукой. В самом деле, представьте себе, к чему бы вело отсутствие однородности пространства -- законы физики в Москве были бы одни, в Махачкале -- другие.

Однородность пространства, т. е. симметрия по отношению к преобразованию сдвига , приводит к закону сохранения импульса.

Закон сохранения импульса соблюдается для изолированных систем. Импульс, или количество движения, таким образом, является физической величиной, сохранение которой связано с однородностью пространства.

Симметрия по отношению к повороту координатных осей, или свойство изотропности пространства, есть физическая эк вивалентность направлений в пространстве. Она выражается в том, что в повернутой установке, аппаратуре, лаборатории и т. д. все процессы протекают точно так же, как и до поворота. При этом повороту должно быть подвергнуто все, определяющее течение процесса.

Изотропность пространства, т. е. симметрия по отношению к поворотам, приводит к закону сохранения момента импульса. Этот закон также соблюдается для изолированных систем. Момент импульса частицы или системы сохраняется также центрально-симметричным силовым внешним полем. Момент импульса является величиной, сохранение которой связано с изотропностью пространства.

Симметрия по отношению к переходу от покоя к состоя нию равномерного и прямолинейного движения, или свойство галилеевской (нерелятивистской) инвариантности, заключается в физической эквивалентности покоя и равномерного прямоли нейного движения. В любой системе все процессы происходят независимо от того, покоится система или движется равномерно и прямолинейно, если только переход от одного состояния к дру гому осуществляется со всем существенным окружением.

Вследствие однородности пространства и времени движение свободного тела (тело, настолько удаленное от всех окружающих тел, что можно пренебречь его взаимодействием с ними) будет равномерным, т. е. за равные промежутки времени тело должно проходить равные расстояния; оно будет к тому же и прямолинейным, ибо пространство "плоское" -- Евклидово. Такое движение свободных тел называют движением по инерции. Движение тел по инерции есть проявление своеобразной симметрии пространства и времени, их однородности.

Симметрия относительно перехода к движущейся системе отсчета, т. е. по отношению к преобразованиям Галилея, в нерелятивистском случае приводит к закону сохранения инерции. Он выполняется только для изолированных систем. Закон сохранения импульса недостаточен для обоснования закона сохранения центра инерции. Необходимо знать связь между импульсом и скоростью. Эта связь устанавливается с использованием фундаментальной симметрии относительно переходов от состояния покоя к равномерному прямолинейному движению. Выполнение всех этих законов сохранения в изолированной системе означает эквивалентность всех инерциальных систем, провозглашаемую принципом относительности.

Трехмерность пространства предопределяет векторную природу импульса и момента импульса; закон сохранения этих величин -- векторные законы. Одномерность времени предопределяет скалярную природу энергии и соответствующего закона сохранения.

Тот факт, что закон сохранения энергии вытекает из однородности времени, означает, что течение времени само по себе не может вызвать изменение физических состояний системы. Связь закона сохранения импульса со свойством однородности пространства означает, что перемещение системы недостаточно для изменения ее состояния; последнее может произойти только в результате взаимодействия данной системы с другими системами. Связь закона сохранения момента импульса со свойством изотропности пространства означает, что поворот системы в пространстве не изменяет ее свойств.

В классической механике законы сохранения выводят из законов движения. Так, для получения закона сохранения импульса используют второй и третий законы Ньютона. Однако законы сохранения могут быть получены не на основе законов движения, а непосредственно из принципов симметрии. Область применимости законов сохранения шире, нежели область применимости тех или иных законов движения. Законы сохранения энергии, импульса, момента импульса применяются не только в классической механике, но и в квантовой; в то время как законы динамики Ньютона в квантовой механике не работают. Для тех, кто выводит законы сохранения из принципов инвариантности, ясно, что область применения этих законов выходит за рамки любых частных теорий (гравитации, электромагнетизма и т. д.), практически обособленных друг от друга в современной физике. Очевидно, что область применения законов сохранения должна быть столь же широка, как и область применения соответствующих принципов инвариантности. Это дает основание считать законы сохранения универсальными законами.

Симметрия относительно зеркального отражения означает, что физические законы не меняются при замене левого на правое, а правого на левое. С симметрией законов природы относительности отражения или частиц и античастиц связаны определенные законы сохранения. С первой симметрией связано сохранение физической величины, называемой пространственной четностью, а со второй -- сохранение величины, называемой зарядовой четностью. Оба этих закона сохранения не вполне универсальны, поскольку соответствующие им симметрии нарушаются в слабых взаимодействиях.

Законы сохранения занимают в естествознании особое место. Существует следующая точка зрения на эти законы: они представляют собой наиболее глубокие, фундаментальные законы природы, к которым, возможно, сведутся в будущем все закономерности естествознания. В нашем знании о мире есть три последовательные ступени. На низшей ступени находятся явления, на следующей -- законы природы, на третьей -- принципы симметрии. Законы природы позволяют предсказать явления, принципы симметрии позволяют предсказать законы природы. Прогресс в научном познании мира основывается, в конечном счете, на познании принципов симметрии. Но при этом необходимо иметь в виду не просто симметрию, а симметрию в диалектической взаимосвязи с асимметрией.

ВЫВОДЫ

Все то, из чего состоит окружающая нас известная сейчас и познаваемая нами часть Вселенной, называют материей. Философское определение материи -- это объективная реальность вне и независимо от человеческого сознания и отражаемая им. Материя существует в различных формах (например, вещество, поле).

Вещества Вселенной при различных температурах и давлениях могут находиться в четырех агрегатных состояниях: твердом, жидком, газообразном и плазменном.

Мерой различных форм движения материи является энергия. Она бывает в различных видах: механическая, тепловая, внутренняя, химическая, электрическая, магнитная, солнечная, атомная, ядерная, термоядерная и др.

Фундаментальными законами природы являются законы сохранения. Существуют законы сохранения различных величин: массы, энергии, количества движения, момента количества движения, заряда и др.

В природе существуют принципы симметрии объектов и физических законов. Различным симметриям физических законов в природе соответствуют определенные законы сохранения. Закон сохранения энергии есть следствие однородности времени. Закон сохранения импульса есть следствие однородности пространства. Закон сохранения момента импульса есть следствие изотропности пространства.

Вопросы для контроля знаний

В чем качественная особенность философского определения материи от естественно-научного его понимания?

Какими всеобщими свойствами обладает материя?

Какие основные формы и виды, материи вы знаете?

В чем смысл теоремы Э. Нетер?

Какие виды энергии вам известны?

Чем обусловливается важность развития энергетики?

Дайте краткую характеристику традиционным источникам энергии.

Каковы перспективы развития атомной энергетики?

Какими факторами обусловливается относительно медленное развитие гелиоэнергетики?

Каковы перспективы широкого использования источников энергии ветра, Мирового океана и геотермальных источников?

9. СОСТАВ, СТРУКТУРА И ВЗАИМОПРЕВРАЩЕНИЯ ВЕЩЕСТВ

Истинный химик должен уметь доказывать познанное... то есть давать ему объяснение...

М. В. Ломоносов

9.1 Концептуальные уровни в познании веществ

Закономерности, происходящие в веществах, процессы их превращения, при которых происходит изменение их состава и структуры, изучает раздел естествознания -- химия. Она занимается явлениями природы, сопровождающими химические изменения вещества, изучает причины и законы управления химическими процессами, а также рассматривает составные части вещества и их применение на практике. Отдельные химические процессы (получение металлов из руд, крашение тканей и др.) использовались еще на заре становления человеческой цивилизации. Позже, в III--IV вв., зародилась алхимия, задачей которой было превращение неблагородных металлов в благородные (золото, серебро). Начиная с эпохи Возрождения химические исследования все в большей мере стали использовать для практических целей (металлургия, стеклоделие, керамика, получение красок и т. д.).

Химию можно определить как науку, изучающую вещества и процессы их превращения, сопровождающиеся изменением состава и структуры. Химический процесс сопровождается изменением состава веществ, их структуры и обязательно энергетическими изменениями в реагирующей системе. Вследствие взаимосвязанности форм движения материи и их взаимопревращаемости в результате химических реакций имеет место превращение химической энергии в теплоту, свет и проч. Химия нужна человечеству для того, чтобы из вещества природы получать по возможности все необходимое -- металлы, цемент, бетон, керамику, фарфор, стекло, каучук, пластмассы, искусственные волокна, лекарства и многое другое.

Основой химической науки является атомно-молекулярное учение (АМУ), закон сохранения материи, периодический закон и теория строения вещества, учение о химическом процессе (кинетика). Химические процессы подчиняются всеобщим законам природы -- закону сохранения массы вещества и закону сохранения энергии. Закон сохранения массы вещества открыли М. В. Ломоносов и А. Л. Лавуазье почти независимо друг от друга. Они далеко продвинули развитие химии тем, что при химических реакциях применили физические методы, в частности взвешивание. Закон сохранения массы в химических процессах можно сформулировать так: сумма масс исходных веществ (соединений) равна сумме масс продуктов химической реакции. Например, при разложении воды масса воды будет равна сумме массы водорода и массы кислорода. Из закона сохранения вещества вытекает, что вещество нельзя ни создать из ничего, ни уничтожить совсем. Количественным выражением закона сохранения массы веществ применительно к производственному химическому процессу является материальный баланс, в котором подтверждается, что масса веществ, поступивших на технологическую операцию, равна массе полученных веществ. Закон сохранения энергии действует во всех случаях и повсюду, где одна форма энергии переходит в другую.

Несмотря на обилие эмпирического материала о свойствах различных веществ и их соединений, особенностях протекания разнообразных реакций, в химии, до открытия в 1869 г. периодической системы химических элементов Д. И. Менделеева не существовало той объединяющей концепции, с помощью которой можно было бы объяснить весь накопленный фактический материал. Было бы, однако, неправильно не учитывать той громадной исследовательской работы, которая привела к утверждению системного взгляда на химические знания. Развитие теоретических основ химии диктуется потребностью химического производства совершенствовать управление химическим процессом для получения веществ с заранее заданными свойствами.

Историю развития теоретических основ химии можно представить в виде следующих этапов.

В период зарождения химии как науки (вторая половина XVII в.) возникло первое концептуальное учение о составе. Объяснение свойств веществ связывалось с их составом, а изменением состава объяснялось химическое превращение. Последующее становление учения (концептуального уровня) о составе определило открытие стехиометрических законов (закона постоянства состава, закона эквивалентов и закона кратных отношений), развитие понятия химического элемента, представлений о валентности, периодическом законе и периодической системе химических элементов Д. И. Менделеева, методах исследования состава соединений и др.

Второй концептуальный уровень развития химии связан с зарождением структурной химии (XIX в.). Было замечено, что огромное разнообразие веществ растительного и животного происхождения образовано весьма небольшим числом химических элементов (углерод, водород, кислород, азот и некоторые др.). К тому же при одинаковом составе вещества (изомеры) имеют разные свойства. Это означало, что свойства веществ зависят не только от состава, но и от структуры (А. М. Бутлеров разработал основные положения). Если при зарождении химии как науки главным направлением был химический анализ, то с появлением структурной химии стал органический синтез. Сегодня структурная химия строится на квантово-механических представлениях о химической связи, строении молекул и кристаллов, на методах исследования структуры веществ, изучении влияния структуры на свойства веществ и проч.

Третий уровень в развитии химии связан с возникновением (конец XIX в.) и развитием учения о химическом процессе -- о его принципиальной возможности и условиях протекания. Это было вызвано резким возрастанием потребностей и масштабов производства продуктов химической переработки нефтяного сырья. Учение о химическом процессе рассматривает энергетику химических процессов, химическое равновесие и условия его смещения, кинетику и механизмы реакций и т. д. Этот уровень познания представляет собой исследование внутренних механизмов и условий протекания химических процессов, таких как температура, давление, скорость протекания реакций и некоторые другие.

Наконец, четвертый концептуальный уровень является дальнейшим развитием предыдущего уровня, связанным с более глубоким изучением природы реагентов, участвующих в химических реакциях, а также с применением катализаторов, значительно ускоряющих скорость их протекания. На этом уровне мы встречаемся уже с простейшими явлениями самоорганизации, изучаемыми синергетикой.

В наши дни наблюдается новый уровень развития химии, который направлен на создание наиболее экономичного и экологически чистого безотходного химического производства, использование в промышленных масштабах закономерностей химических превращений живой природы.

Тридцатые годы ознаменовались следующим скачком -- появлением теории молекулярных орбиталей (МО). Теория МО позволила успешно описать строение, электронное устройство многих органических соединений. Так, например, были выведены правила, позволяющие предсказать, будет ли еще не синтезированное соединение ароматическим. Концептуальные системы химии изображены на рис. 9.1, в котором вертикальная координата у представляет массив всей теоретической и эмпирической информации, накопленной со времен Бойля и до настоящего времени, а горизонтальная координата t -- историческое время.

Как видно, в развитии химии происходит не смена, а строго закономерное последовательное появление концептуальных систем. При этом каждая вновь появляющаяся система не отрицает низлежащую предыдущую, а наоборот, опирается на нее и включает ее в себя в преобразованном виде. Так, например, учение о химических процессах предполагает наличие знаний о составе исходного сырья, о строении молекул исходных реагентов и об их реакционной способности, потому что эти знания позволяют химику подобрать исходное сырье для получения целевого продукта.

Но этих знаний недостаточно для того, чтобы осуществить химический процесс с максимальным экономическим эффектом и соблюдением экологических требований охраны окружающей среды. Для этого дополнительные знания дает учение о химических процессах -- термодинамика, химическая кинетика, химическая технология.

9.2 Состав вещества и химические системы

Во тьме должны обращаться физики, а особливо химики, не зная внутренних, нечувствительных частиц строения.

М. В. Ломоносов

В настоящее время химическим элементом называют вещество, все атомы которого обладают одинаковым зарядом ядра, хотя и различаются по своей массе, вследствие чего атомные веса элементов не выражаются целыми числами.

Молекулой по-прежнему называют наименьшую частицу вещества, которая определяет его свойства и может существовать самостоятельно. Однако к молекулам теперь относят также разнообразные другие квантово-механические системы (ионные, атомные монокристаллы, полимеры и другие макромолекулы). Последнее особенно важно для ясного понимания структуры с точки зрения системного подхода, где под структурой подразумевают упорядоченную связь и взаимодействие между элементами системы, благодаря которой и возникают новые целостные ее свойства. В такой химической системе, как молекула, именно специфический характер взаимодействия составляющих ее атомов определяет свойства молекулы.

Химия изучает процессы превращения молекул при взаимодействиях и при воздействии на них внешних факторов (теплоты, света, электрического тока, магнитного поля), во время которых образуются новые химические связи. Под химической связью понимается результат взаимодействия между атомами, выражающийся в создании определенной конфигурации атомов, отличающий один тип молекулы от другого. Химические связи порождают взаимодействие электронных оболочек атомов. Если атомные конфигурации подходят друг к другу, возникает одна округлая структура, несколько большая, чем до этого был каждый атом в отдельности. Так получается насыщенная молекула, и присоединить к ней еще какой-то атом почти невозможно, т. е. химические связи отличаются насыщенностью. С введением понятия валентности ею стали объяснять строение и химические свойства молекул. Наиболее распространены четыре вида химических связей: ионная, ковалентная, металлическая и водородная. Химическая связь, осуществляемая за счет образования общих для взаимодействующих атомов электронных пар, называется ковалентной связью. Химическая связь, в основе которой лежит электростатическое взаимодействие ионов, называется ионной. Химическая связь, основанная на обобществлении валентных электронов всех атомов в кристалле, называется металлической. Химическая связь, обусловленная взаимодействием полярных молекул, одной из которых является водород, называется водородной. Химические связи можно рассматривать с точки зрения превращения энергии: если при создании молекулы ее энергия меньше, чем сумма энергий составляющих ее изолированных атомов, то она может существовать, т. е. ее связь устойчива.

Каждое вещество характеризуется определенными физическими и химическими свойствами. Когда какое-нибудь простое вещество вступает в химическую реакцию и образует новое вещество, то оно при этом теряет большинство своих свойств. Например, железо, соединяясь с серой, теряет металлический блеск, ковкость, магнитные свойства и др. Следовательно, в сульфиде железа нет железа, каким мы знаем его в виде простого вещества. Но так как из сульфида железа (FeS) при помощи химических реакций можно снова получить металлическое железо, то говорят что в состав сульфида железа входит элемент железо, понимая под этим тот материал, из которого состоит металлическое железо. Точно так же водород (Н) и кислород (О), входящие в состав воды, содержатся в воде не в виде газообразных водорода и кислорода с их характерными свойствами, а в виде элементов -- водорода и кислорода. Если же элементы находятся в "свободном состоянии", т. е. не связаны химически ни с каким другим элементом, то они образуют простые вещества.

Долгое время не делалось различия между элементом и простым веществом. Понятие "элемент" в качестве научного термина впервые использовано Р. Бойлем в 1661 г. Со времен Бойля элементом считали всякое простое вещество, которое можно получить в результате разложения сложных веществ, но которое не способно к дальнейшему разложению на еще более простые вещества.

Также была опровергнута флогистонная теория окисления металла многочисленными экспериментами М. В. Ломоносова. Согласно этой теории процесс окисления металла рассматривался как реакция разложения: металл считался сложным веществом, а окалина простым, т. е. железо --» окалина + флогистон.

М. В. Ломоносов, проведя эксперименты в запаянных ретортах, установил, что масса сосуда с прокаленным железом не меняется, если взвесить, не вскрывая его. Французский ученый А. Лавуазье также показал, что горение есть реакция соединения вещества с кислородом воздуха. Лавуазье поставил на ноги всю химию, которая в своей флогистонной форме стояла на голове.

Начало XIX в. ознаменовалось открытием новых количественных закономерностей. Разработка атомно-молекулярной теории позволила Дальтону высказать атомную гипотезу и ввести в химию понятие об относительном атомном весе элементов и определить атомные веса некоторых элементов. По Дальтону, элемент можно определить как вид атомов, характеризующихся определенным значением атомного веса, а простые вещества состоят из определенного вида атомов, следовательно, простые вещества суть элементы. Путаница была устранена позже, когда было установлено, что многие простые вещества образованы из молекул, а не из атомов. Впервые Менделеев в связи с этим указал на необходимость ясно различать два понятия: элемент и простое вещество, или простое тело. Если простому веществу (телу) соответствует понятие о частице, то элементу -- об атоме. Углерод есть элемент, а уголь, графит и алмаз суть тела простые.

Пользуясь понятием о химических элементах, можно сказать, что важнейшая задача химии состоит в изучении свойств элементов в отыскании общих закономерностей в их поведении и в отношении между собой. К середине XIX в. насчитывалось уже 63 элемента и был накоплен достаточно богатый экспериментальный материал, касающийся их физических и химических свойств, и были установлены групповые общие свойства. Были накоплены сведения и о таких характеристиках, как атомная масса элементов и их валентность, т. е. способность образовывать различные формы соединений. Прежде всего нужно было решить основной вопрос: являются ли химические элементы разрозненными, независимыми или они закономерно связаны между собой в единую систему.

Первые попытки решения этой задачи относятся к первой половине XIX в. Деберейнер (1829 г.) сгруппировал элементы в триады; Одлинг (1857 г.) разместил 48 элементов в единую таблицу из 13 групп сходственных элементов; Ньюлендс и де Шаркунтуа (1863 г.) распределили 63 элемента в порядке возрастания их атомной массы, была опубликована немецким химиком Л. Мейером таблица элементов, в которой отсутствовали бор, алюминий и водород. Всего попыток классификации было не менее пятидесяти, и все были по существу безуспешны. В основе неудач лежал метафизический способ их мышления. Наконец в 1869 г. Д. И. Менделеев предложил периодическую систематизацию свойств элементов.

Диалектико-материалистический подход к систематизации элементов является основной причиной успеха Д. И. Менделеева. Периодическая система элементов оказала большое влияние на последующее развитие химии, она явилась могучим орудием для дальнейших исследований. На основании периодического закона Д. И. Менделеев предсказал существование 12 новых элементов, причем для трех из них (галий -- Ga, германий -- Ge и скандий -- Sc) описал подробно их свойства. В течение полувека были обнаружены в природе почти все элементы, расположенные до урана. Путеводной нитью для поиска и установления химической природы элементов явился периодический закон и метод предсказания, использованный Д. И. Менделеевым. Периодический закон и периодическая система получили свое полное подтверждение и дальнейшее развитие при установлении строения атомов элементов. Сейчас фактические данные в химии выросли в тысячи раз. Имеются сведения о 8 миллионах индивидуальных химических соединений постоянного состава и миллиардах соединений переменного состава.

Современная формулировка периодического закона следующая: от величины положительного заряда ядра атома зависят все свойства элемента и его положение в периодической системе. Теория строения атома объясняет периодическое изменение свойств элементов при переходе от одного периода к другому: с ростом Z строение электронных оболочек атомов повторяется.

Особенно это касается внешних энергетических уровней, на которых расположены валентные электроны. В пределах одного периода с увеличением заряда ядра наружные слои заполняются постепенно, достигая своей завершенности в атомах благородных газов. Эта последовательность повторяется в каждом периоде, вследствие чего в них наблюдается переход от металлов в начале периода к неметаллам и благородному газу в его конце. В свете теории строения атома периодический закон получил современную формулировку: свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядра атома.

Атомный вес элемента определяется как среднее арифметическое величин масс изотопов, из которых состоит элемент. Атомы, обладающие одинаковым зарядом ядра (и, следовательно, тождественными химическими свойствами), но разным числом нейтронов, называют изотопами. Например, хлор состоит из двух изотопов с массовыми числами на 75,53% из изотопа 35Сl и на 24,47% -- из 37Сl, в результате средняя атомная масса хлора равна 35,453. Открытие изотопов потребовало пересмотра понятия "химический элемент". Химический элемент -- это вид атомов, характеризующийся определенной величиной положительного заряда ядра. Существование химического элемента в виде нескольких простых веществ называется аллотропией. Графит, алмаз, уголь -- аллотропные видоизменения элемента углерода.

С развитием количественных методов исследования в химии были накоплены экспериментальные факты, обобщение которых привело к открытию так называемых стехиометрических законов -- закона постоянства состава, закона эквивалентов и закона кратных отношений. Именно эти законы способствовали окончательному утверждению в химии атомно-молекулярного учения. Основой химической науки являются атомно-молекулярное учение, закон сохранения материи, периодический закон Д. И. Менделеева и теория химического строения.

Основные положения атомно-молекулярного учения заключаются в следующем:

Вещества состоят из молекул; молекулы различных веществ отличаются между собой химическим составом, размерами, физическими и химическими свойствами.

Молекулы находятся в непрерывном движении; между ними существует взаимное притяжение и отталкивание. Скорость движения молекул зависит от агрегатного состояния веществ.

При физических явлениях состав молекул остается неизменным, при химических -- они претерпевают качественные и количественные изменения и из одних молекул образуются другие.

Молекулы состоят из атомов. Атомы характеризуются определенными размерами и массой. Свойства атомов одного и того же элемента одинаковы и отличаются от свойств атомов других элементов.

Масса атома, выраженная в атомных единицах массы (а.е.м.), называется относительной атомной массой. 1 а.е.м. = = 1,667 10-27кг.

Элементы, соединяясь в разных количественных соотношениях друг с другом, образуют химические соединения -- сложные вещества. Что собой представляет химическое соединение? Обладает ли сложное вещество переменным или постоянным составом?

Известный французский химик Ж. Пруст в отличие от К. Бертолле считал, что любое химически чистое соединение независимо от способа его получения имеет вполне определенный состав. Именно на этом законе, получившем название закона постоянства состава, Ж. Пруст объяснил различие между химическими соединениями и смесями. Например СO2 (углекислый газ) можно получить несколькими способами:

но в чистом СO2 всегда содержится 27,29% С и 72,71% O2 по массе.

Многие элементы, соединяясь друг с другом, могут образовывать разные вещества, каждое из которых характеризуется определенным соотношением между массами этих элементов. Так, углерод и кислород образуют оксид углерода -- СО и С02--диоксид углерода. Изучая подобные соединения, английский ученый Д. Дальтон, установил закон кратных отношений: если два элемента образуют друг с другом несколько соединений, то массы одного из элементов, приходящиеся в этих соединениях на одну и ту же массу другого, относятся между собой как небольшие числа.

Дальтон придерживался атомной теории строения вещества; изучая свойства газов, открыл закон парциальных давлений газов. Закон непосредственно свидетельствовал о том, что элементы входят в состав соединений лишь определенными порциями, что свидетельствует о прерывном строении вещества. Развивая атомно-молекулярную теорию, Дальтон ввел близкое к современному представление об атомах и об относительных атомных массах элементов. Но в отличие от закона сохранения массы, справедливость которого полностью подтверждена открытиями, сделанными после его установления, законы постоянства состава и кратных отношений оказались не столь всеобщими. В связи с открытием изотопов выяснилось, что соотношение между массами элементов, входящих в состав данного вещества, постоянно лишь при условии постоянства изотопного состава этих элементов. Например, тяжелая вода содержит 20% (масс) водорода, а обычная вода лишь 11%.

В начале XX в. (более чем через 100 лет) русский ученый Н. С. Курнаков, изучая сплавы металлов, открыл соединения переменного состава, в которых на единицу массы данного элемента может приходиться различная масса другого элемента. Для многих соединений переменного состава установлены пределы, в которых может изменяться их состав, и формула TiO2 более точно выражает свой состав в виде TiO1.9_2.0. Конечно, такого рода формулы указывают не состав молекулы (вещества имеют атомную структуру), а лишь отражают границы состава вещества. Периодическая система представляет пример упорядоченного конечного счетного множества химических элементов. А можно ли подобным образом упорядочить множество химических соединений, число которых хоть и велико, но не безгранично? И вот оказалось, что вещества с одинаковыми суммами атомных номеров, молекулярных масс и плотностями обладают чрезвычайно близкими физико-химическими свойствами. Достаточно знать химический состав вещества и его плотность, чтобы предсказать и все его прочие свойства. Н. С. Курнаков предложил назвать соединения бертоллоидами в честь К. Бертолле, который впервые предсказал существование веществ переменного состава.

Таким образом, существует обширный класс соединений, не подчиняющихся стехиометрическим соединениям, законам, т. е. нарушение законов связано с вполне определенным агрегатным состоянием вещества.

В принципе, нет четкой границы между соединениями постоянного и переменного состава с точки зрения современной физики. Соединение может быть образовано и из атомов одного химического элемента -- простое вещество. Сложное вещество образовано из атомов различной природы, т. е. в состав молекулы сложных веществ входят различные элементы. Вода образована атомами водорода и кислорода, а вещество кислород только из молекул одного элемента -- кислорода. Но один элемент кислород образует два аллотропных видоизменения простых веществ кислород и озон, которые отличаются строением, структурой, физическими и химическими свойствами.

9.3 Структура вещества и его свойства

Надо было исследовать предметы, прежде чем можно было приступить к исследованию процессов. Надо сначала знать, что такое данный предмет, чтобы можно было заняться теми изменениями, которые с ним происходят.

Ф. Энгельс

Характер любого химического соединения зависит не только от качественного и количественного состава, но и от взаимного влияния атомов и строения молекулы -- мельчайшей химической системы.


Подобные документы

  • Характеристика современной естественно-научной картины мира. Междисциплинарные концепции как важнейшие элементы структуры научной картины мира. Принципы построения и организации современного научного знания. Открытия XX века в области естествознания.

    контрольная работа [21,9 K], добавлен 18.08.2009

  • Античное естествознание как синтез натурфилософских идей и научных прозрений о "природы вещей". Эра механицизма в естествознании как становление системного знания действительной науки. Современная космологическая естественно-научная картина мира.

    реферат [54,3 K], добавлен 05.06.2008

  • Исторические этапы познания природы, логика и закономерности развития науки. Понятие научной картины мира и теория относительности. Антропный принцип космологии и Учение Вернадского о ноосфере. Современные концепции экологии, задачи и принципы биоэтики.

    шпаргалка [64,8 K], добавлен 29.01.2010

  • Общие контуры и основные принципы построения современной естественно-научной картины мира. Синтетическая теория эволюции (синтез генетики и дарвинизма). Постулат о способности материи к саморазвитию в философии. Общий смысл комплекса синергетических идей.

    реферат [23,8 K], добавлен 26.07.2010

  • Под картиной мира понимается целостная система представлений о мире, его общих свойствах и закономерностях. Различают общенаучную, естественно-научную, социально-историческую, специальную, механическую, электромагнитную и квантово-полевую картины мира.

    реферат [109,7 K], добавлен 18.01.2009

  • Исторические этапы и структура процессов эволюции. Суть теории бифуркации в синергетике. Кризис современной цивилизации и пути выхода. Синергетика как составляющая научной картины мира. Идея самоорганизации системы. Эволюционно-синергетическая концепция.

    презентация [23,6 M], добавлен 22.11.2011

  • Особенности формирования научной картины мира в эпоху становления классического естествознания. Развитие физики как науки. Исследование роли внутренних и внешних факторов в формировании физической картины мира. Новая гелиоцентрическая парадигма Коперника.

    реферат [36,3 K], добавлен 27.12.2016

  • История науки свидетельствует, что естествознание, возникшее в ходе научной революции XVI–XVII вв., было связано с развитием физики. Механистическая, электромагнитная картины мира. Становление современной физической картины мира. Материальный мир.

    реферат [15,1 K], добавлен 06.07.2008

  • Определение возраста Солнца, звезд, Вселенной. Диапазон временных интервалов во Вселенной. Представление о научной методологии и формировании критерия истины. Отличие современной научной картины мира от классической. Преемственность идей и концепций.

    контрольная работа [28,1 K], добавлен 16.10.2010

  • Первичные процессы синтеза нуклонов и образования атомов. Самоорганизация Вселенной. Сущность естественно-научной концепции развития. Эволюция Вселенной. Современный этап в развитии космологии. Исследование проблемы начала космологического расширения.

    реферат [42,0 K], добавлен 30.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.