Концепции современного естествознания
Этапы развития естественно-научной картины мира, современные представления о строении и развитии природы микро-, макро- и мегамиров. Эволюция представлений о пространстве. Становление естественно-научной картины мира. История человеческого познания.
Рубрика | Биология и естествознание |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 17.12.2013 |
Размер файла | 2,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
7.5 Электронная оболочка атома
Если человек не понимает проблемы, он пишет много формул, а когда поймет, в чем дело, их остается в лучшем случае две.
Н.Бор
В 1925 г. В. Паули установил квантово-механический закон, называемый принципом Паули, или принципом исключения.
В своей простейшей формулировке он гласит: в любом атоме не может быть двух электронов, находящихся в двух одинаковых стационарных энергетических состояниях, определяемых набором четырех квантовых чисел: главного п, орбитального l, магнитного m и спинового ms.
Применительно к системе электронов в атоме принцип Паули можно записать следующим образом: Z (n, l, m, ms) = О или l, где z (n, l, т, ms) есть число электронов, находящихся в состоянии, описываемом набором квантовых чисел n, l, m, ms. Пользуясь принципом Паули, можно найти максимальное число электронов в атоме, имеющих заданные значения трех (n, l, m), двух (п, l) и одного п квантовых чисел. Принцип Паули сыграл выдающуюся роль в развитии современной атомной и ядерной физики. Так, например, удалось теоретически обосновать периодическую систему элементов Д. И. Менделеева.
В начале XX в. опытами по облучению тонкой фольги а-частицами Э. Резерфорд определил структуру атома. Он показал, что атом имеет планетарную модель, т. е. состоит из плотного положительно заряженного ядра, вокруг которого обращается рыхлая электронная оболочка. В целом атом является электронейтральной элементарной структурой химического элемента. Физический смысл порядкового номера Z-элемента в периодической системе элементов был установлен в планетарной модели атома Резерфорда. Z совпадает с числом положительных элементарных зарядов в ядре, закономерно возрастающих на единицу при переходе от предыдущего элемента к последующему. Химические свойства элементов и ряд их физических свойств объясняются поведением внешних, так называемых валентных, электронов их атомов. Поэтому периодичность свойств химических элементов должна быть связана с определенной периодичностью в расположении электронов в атомах различных элементов. Теория периодической системы основывается на следующих положениях:
а) порядковый номер химического элемента равен общему числу электронов в атоме данного элемента;
б) состояние электронов в атоме определяется набором их квантовых чисел n, l, m и ms. Распределение электронов в атоме по энергетическим состояниям должно удовлетворять принципу минимума потенциальной энергии: с возрастанием числа электронов каждый следующий электрон должен занять возможное энергетическое состояние с наименьшей энергией;
в) заполнение электронами энергетических состояний в атоме должно происходить в соответствии с принципом Паули.
Электроны в атоме, занимающие совокупность состояний с одинаковым значением главного квантового числа п, образуют электронную оболочку, или электронный слой. В зависимости от значений п различают следующие оболочки: К при n = 1, L при n = 2, М при n = 3, N при n = 4, О при п = 5 и т. д. Максимальное число электронов, которые могут находится в оболочках, согласно принципу Паули: в К-оболочке -- 2 электрона, в оболочках L, М, N и О соответственно 8, 18, 32 и 50 электронов. В каждой из оболочек электроны распределяются по подгруппам или по-доболочкам, каждая из которых соответствует определенному значению орбитального квантового числа.
В атомной физике принято обозначать электронное состояние в атоме символом nl, указывающим значение двух квантовых чисел. Электроны, находящиеся в состояниях, характеризуемых одинаковыми квантовыми числами n и l, называются эквивалентными. Число Z эквивалентных электронов указывается показателем степени в символе nlz. Если электроны находятся в некоторых состояниях с определенными значениями квантовых чисел п и l, то считается заданной так называемая электронная конфигурация. Например, основное состояние атома кислорода можно выразить следующей символической формулой: 1s2, 2s2, 2р4. Она показывает, что два электрона находятся в состояниях n = 1 и l = 0, два электрона имеют квантовые числа n = 2 и l = 0 и четыре электрона занимают состояния n = 2 и l = 1.
Порядок заполнения электронных состояний в оболочках атомов, а в пределах одной оболочки -- в подгруппах (подоболоч-ках) должен соответствовать последовательности расположения энергетических уровней с данными п и Z. Сначала заполняются состояния с наименьшей возможной энергией, а затем состояния со все более высокой энергией. Для легких атомов этот порядок соответствует тому, что сначала заполняется оболочка с меньшим п и лишь затем должна заполняться электронами следующая оболочка. В пределах одной оболочки сначала заполняются состояния с l = 0, а затем состояния с большими l, вплоть до l = n - 1. Взаимодействие между электронами приводит к тому, что для достаточно больших главных квантовых чисел п состояния с большим п и малым l могут иметь меньшую энергию, т. е. быть энергетически более выгодными, чем состояния с меньшим п, но с большим l. Из изложенного следует, что периодичность химических свойств элементов объясняется повторяемостью электронных конфигураций во внешних электронных подгруппах у атомов родственных элементов.
Исследования спектров излучения разряженных газов (т. е. спектров излучения отдельных атомов) показали, что каждому газу присущ вполне определенный линейчатый спектр, состоящий из отдельных спектральных линий или групп близко расположенных линий. Самым изученным является спектр наиболее простого атома -- атома водорода.
Спектр водорода может быть рассчитан обобщенной формулой, предложенной эмпирически швейцарским ученым И. Бальмером, описывающей все известные тогда линии водорода:
R = 3,29 * 1015с-1 -- постоянная Ридберга, где m имеет в каждой данной серии постоянное значение т=1,2,3,4,5,б (определяет серию), п принимает целочисленные значения начиная от m + 1 (определяет отдельные линии этой серии). Исследование более сложных спектров -- спектров паров щелочных металлов (например, Li, Na, К) -- показало, что они представляются набором незакономерно расположенных линий.
Первая попытка построения качественно новой -- квантовой -- теории атома была предпринята в 1913 г. датским физиком Нильсом Бором. Он поставил перед собой цель связать в единое целое эмпирические закономерности линейчатых спектров, планетарную модель атома Резерфорда и квантовый характер излучения и поглощения света. В основу своей теории Бор положил два постулата.
Первый постулат Бора (постулат стационарных состояний): в атоме существуют стационарные (не изменяющиеся со временем) состояния, в которых он не излучает энергии. Стационарным состояниям атома соответствуют стационарные орбиты, по которым движутся электроны. Движение электронов по стационарным орбитам не сопровождается излучением электромагнитных волн. В стационарном состоянии атома электрон, двигаясь по круговой орбите, должен иметь дискретные квантованные значения момента импульса, удовлетворяющие условию
,
где m -- масса электрона, -- скорость по n-й орбите радиуса
Второй постулат Бора (правило частот): при переходе электрона с одной стационарной орбиты на другую излучается (поглощается) квант излучения с энергией hv = En -- Em, равной разности энергий соответствующих стационарных состояний [(Еn и Еm -- соответственно энергии стационарных состояний атома до и после излучения (поглощения)]. При Еm < Еn происходит излучение кванта (переход атома в состояние с большей энергией, т. е. переход электрона на более удаленную от ядра орбиту). Набор возможных дискретных частот v = (En - Em) / h квантовых переходов и определяет линейчатый спектр атома.
Квантовая механика позволила объяснить вопрос об излучении спектральных линий атомом, находящимся в возбужденном состоянии, а также процессы поглощения излучения, которое падает на атом в полном согласии с опытом. Предположим, что электрон находится в некотором энергетическом состоянии, характеризуемом главным квантовым числом п. Вероятность нахождения электрона в элементе объема dV внутри атома выразится как . Было показано, что в квантовом состоянии, характеризуемом главным квантовым числом п, вероятность местоположения электрона в атоме не зависит от времени, не изменяется с течением времени. Электрон в таком состоянии не будет совершать колебаний и излучать энергию. Его энергия Еn не будет изменяться. Энергетическое состояние электрона, характеризуемое определенной энергией Еn, является стационарным. Находясь в этом состоянии, электрон не излучает энергии. Это есть объяснение первого постулата Н. Бора о наличии у атома стационарных состояний, находясь в которых электроны атома не излучают энергии. С точки зрения квантовой механики стационарное состояние атома должно сохраняться как угодно долго, если нет причин, вызывающих изменение энергии атома. Однако опыт показывает, что атом, находящийся в возбужденном энергетическом состоянии, сам собой переходит в нормальное, невозбужденное состояние, излучая свет. Такое излучение, происходящее в отсутствие внешних причин, изменяющих энергию атома, называется самопроизвольным, или спонтанным, излучением. В квантовой физике переход атома из одного состояния в другое, связанный с излучением или поглощением кванта Е = hv, описывается с помощью общего уравнения Шредингера, в котором волновая функция электрона зависит не только от координат, но и от времени,
Идеи де Бройля о волновых свойствах микрообъектов были весьма плодотворны, именно на их основе был сформулирован основной закон движения микрочастиц. Его нашел в 1926 г. швейцарский физик Э. Шредингер:
В этом уравнении V (х, у, z) -- потенциальная энергия,
m -- масса микрочастицы,-- сумма вторых производных по
пространственным координатам, h -- постоянная Планка,
Квантовая механика позволила преодолеть непоследовательность теории Бора. Оказалось, что уравнение Шредингера составлено так удачно, что его решение для электронов в атоме позволяет без всяких постулатов и правил отбора получить все объяснения данных наблюдений. Переход атома из одного состояния в другое означает переход между этими состояниями его оптического электрона, описываемого волновой функцией . Естественно, что сам спектр излучения состоит из отдельных линий, соответствующих переходам между дискретными уровнями энергии в атоме и охватывает весьма широкий диапазон частот. Наблюдаемое дискретное излучение атомов охватывает область инфракрасного излучения, видимую область, ультрафиолетовую часть спектра и даже рентгеновский линейчатый спектр (в случае тяжелых атомов). Атомы разных химических элементов обладают различными спектрами излучения. На этом основан спектральный анализ химического состава таких небесных тел, как Солнце и звезды.
Таким образом, в области микромира согласно современной естественно-научной картине мира, на смену "волнам материи" пришли "волны вероятности". Вероятностная трактовка волновой функции отражает присущие микрообъектам элементы случайного в их поведении. Необходимой оказывается лишь вероятность поведения микрообъекта. Это означает, что предсказания в квантовой физике имеют, вообще говоря, вероятностный характер и, следовательно, физика микрообъектов является принципиально статистической теорией. Случаен факт обнаружения электрона в том или ином месте около ядра; вероятность же его обнаружения в данном месте определяется формой и размерами соответствующего "электронного облака".
Вероятность лежит в самой основе квантовой механики и вообще квантовой физики.
Академик В. А. Фок писал: "В квантовой механике понятие вероятности есть понятие первичное, оно играет там фундаментальную роль". "Статистические методы в физике, -- писал Борн, -- по мере развития науки распространялись все больше и больше, и сегодня можно сказать, что современная физика полностью опирается на статистическую основу... Это является событием в истории человеческого мышления, значение которого выходит за пределы самой науки".
Вероятностный подход к описанию явлений микромира совершенно не означает, что движение микрочастиц непредсказуемо и произвольно. Зная волновую функцию, можно определить вероятность появления частицы в любом месте и в любое время. На смену жестко детерминизированным законам классической физики, справедливым в макромире, пришли вероятностные законы, работающие в микромире. Они являются отражением специфики микрообъектов, проявлением новых свойств материи на уровне ее мельчайших структурных единиц. Принцип соответствия работает и здесь -- при переходе к макрообъектам квантово-механический аспект движения становится неощутим из-за малости постоянной Планка п. Динамические законы есть предельный случай более общих вероятностных закономерностей. Последние не являются свидетельством неполноты нашего знания, а отражают глубокое понимание свойств материи на новом качественном уровне.
ВЫВОДЫ
Обнаружено, что элементарные частицы могут взаимно превращаться, т. е. не являются "последними кирпичиками" мироздания. Стало ясно, что число элементарных частиц не должно быть особенно большим.
В механике микромира уравнение Шредингера для волновой функции играет ту же роль, что и уравнение Ньютона в классической механике. В уравнении, объясняющем поведение электрона в атоме, содержится волновая функция, квадрат модуля которой определяет положение электрона в данной точке в каждый момент времени.
Главным открытием квантовой механики является вероятностный характер законов микромира.
Частицам вещества в микромире присущ корпускуляр-но-волновой дуализм: в одних явлениях они проявляют волновые свойства, а в других -- корпускулярную природу. Поэтому для изучения свойств микромира применяют принцип дополнительности, введенный Н. Бором в 1927 г.
Фундаментальным в квантовой теории является принцип неопределенности, определяющий границы применимости классических представлений при описании свойств микромира. Невозможно с одинаковой точностью определить и положение, и импульс микрочастиц.
В результате экспериментов по рассеянию а-частиц Резерфордом была предложена планетарная модель строения атома. При заполнении электронами орбит в атоме соблюдается принцип Паули: два электрона не могут находиться в одном и том же энергетическом состоянии.
Важнейший философский вывод из квантовой механики заключается в принципиальной неопределенности результатов измерений и, следовательно, невозможности точного предвидения будущего в микромире.
Вопросы для контроля знаний
Какие новые открытия в науке опровергли представления об атомах как последних, неделимых частицах материи?
Охарактеризуйте строение атома по модели Э. Резерфорда.
Что принципиально нового внес в эту модель Н. Бор?
Какие частицы называются элементарными и где они были открыты?
Какими общими свойствами обладают элементарные частицы?
Какие частицы называются кварками и почему они не существуют в свободном состоянии?
Что такое вещество и антивещество?
Что называют аннигиляцией элементарных частиц?
Какие эксперименты доказывают существование волновых свойств у микрочастиц материи?
Существуют ли волновые свойства микрочастиц отдельно от корпускулярных? Что означает дуализм микрочастиц?
Сформулируйте принцип дополнительности и расскажите, где он применяется.
Почему принцип неопределенности служит фундаментом квантовой механики?
В какой форме выражаются законы квантовой механики?
8. КОНЦЕПЦИИ ВЕЩЕСТВА И ЭНЕРГИИ
Есть многое на свете, друг Гораций, что и не снилось нашим мудрецам. У. Шекспир
8.1 Многообразие форм материи
Все то, из чего состоит окружающая нас Вселенная, мы называем материей. Философское определение материи -- это объективная реальность, существующая вне и независимо от человеческого сознания и отражаемая им. Философское понятие материи может быть определено путем соотношения его с понятием сознания, что его отражает. Если материя есть объективная реальность, то сознание -- это субъективная реальность. Сознание есть свойство высокоорганизованной материи как идеальное отражение материального мира. Кроме указанного свойства материя обладает следующими всеобщими свойствами: субстанциональностью, активностью, сохраняемостью, структурностью, неисчерпаемостью, способностью отражения, конечностью и бесконечностью, абсолютностью и относительностью, прерывностью и непрерывностью и др.
Субстанциональность материи состоит в том, что объективная реальность есть причина самой себя, она не сотворима и не уничтожима.
Активность материи выражается в ее беспредельной способности к самодвижению, развитию, ведущему к непрестанным качественным изменениям мира, его постоянному обновлению. Существование материи -- это вечно живой, внутренне активный процесс образования, развития и взаимодействия многообразных видов и свойств.
Сохраняемость материи заключается в том, что она как объективная реальность не может возникать из ничего и бесследно исчезать. Происходит лишь превращение одних материальных форм в другие. Доказательством сохраняемости материи являются законы сохранения массы, энергии, количества движения, электрического заряда и т. д.
Структурность материи означает ее принципиальную несводимость к понятию последним и неизменным "элементам". Каким бы простым ни казался любой материальный объект, он всегда обладает сложной структурой. Структурность связана целостной системой.
Неисчерпаемость материи заключается в бесконечном многообразии видов и свойств объективной реальности (микро-, макро- и мегамиров), форм их взаимодействия и взаимопереходов. На каждом структурном уровне материи действуют свои специфические закономерности.
Свойство отражения присуще всей материи, как органической, так и неорганической. Свойство отражения заключается в способности материального объекта при взаимодействии с другими воспроизводить в своих изменениях (в виде отпечатков, следов, образов и т. д.) особенности взаимодействующих объектов. Чем сложнее уровень организации материи, тем становятся сложнее сами формы отражения -- от простой механической формы в неорганическом мире к раздражимости в органической природе. И как самая высшая форма материи, присущая человеческому мозгу, -- это психическое отражение в виде сознания (ощущения, восприятия, представления, понятия, суждения и умозаключения).
С точки зрения современной науки основные формы материи -- это:
система неживой природы (элементарные частицы и поля, вакуумы, атомы, молекулы, макроскопические тела, космические системы различных порядков);
живые системы (вся биосфера -- от микроорганизмов до человека);
социально-организованные системы (человек, общество).
Материя в природе существует в виде вещества и поля.
Таким образом, материя (лат. materia) -- все, из чего состоит окружающий мир, множество явлений, объектов и их систем, носитель всех разнообразных свойств, отношений, взаимодействий объектов и форм движения. Все существующее в природе материально. Многообразные явления в мире представляют собой различные виды движения материи.
8.2 Вещество и его состояния
На случаи наталкиваются именно те ученые, которые делают все, чтобы на них натолкнулись.
К. Тимирязев
Вещество -- один из видов материи, из которого состоит весь окружающий нас мир. Его образуют большие скопления различных частиц, структур. Вещество представляет собой однородный (гомогенный) вид материи, т. е. такой материи, каждая частица которой имеет одинаковые физические свойства. Разные изделия, имеющие различное назначение и форму, могут быть изготовлены из одного и того же материала, и их вещество будет одинаковым. Под веществом будем понимать чистую материю, без примесей. Под материалом -- вещество того же наименования, полученное в реальных условиях, т. е. имеющее неизбежные примеси.
В зависимости от условий среды вещество может находится в твердом, жидком, газообразном и плазменном агрегатных состояниях. Микроструктура и состояние движения частиц в этих состояниях вещества носят различный характер. Рассмотрим их:
Твердое состояние. При достаточно низких температурах вещество находится в твердом состоянии, энергия системы минимальна и из всех возможных взаимных расположений частиц реализуются упорядоченные, называемые кристаллическими. Под понятием "кристалл" (кристаллическое тело) подразумевают прежде всего периодичность его микроскопической структуры. В кристалле каждый атом окружен расположенными определенно другими атомами, и если эта конфигурация атомов обладает наименьшей возможной энергией, ясно, что она должна повторяться и в любых других местах тела. Простейшая конфигурация атомов, которая периодически повторяется вдоль тела во всех трех измерениях, образует элементарную ячейку кристаллической решетки. Кристаллическая решетка обладает симметрией переноса вдоль соответствующего направления. Естественно, физические величины также обладают такой же периодичностью. Число типов симметрии в природе ограничено. В решетках между атомами существует ионная, ковалентная, металлическая и ван-дер-ваальсовая связи. В реальных кристаллических телах существуют различные дефекты решетки: точечные дефекты (вакансии -- пустые незаполненные места в узлах решетки; межузельные атомы внедрения), линейные дефекты, к которым относятся дислокации -- наличие в решетке лишней кристаллической полуплоскости. По энергетическому характеру распределения электронных состояний в кристаллах в природе существуют три основные группы кристаллических твердых тел: металлы, диэлектрики и полупроводники. Они имеют различные свойства электрической проводимости тока. Атомы в твердом теле не могут значительно удаляться от своих равновесных положений -- узлов кристаллической решетки. Их движение в основном сводится к колебаниям вблизи узлов решетки. Геометрия кристаллического состояния вещества при обычных давлениях и температурах отличается необычайным разнообразием, хотя число типов решеток и ограничено. Свойства веществ определяются не только характером атомов, но и их взаимным расположением. В качестве примера можно указать на алмаз и графит -- вещества, состоящие из одних и тех же атомов углерода, но имеющие различные кристаллические решетки. Тела могут сильно отличаться в отношении механических, тепловых, электрических, магнитных и оптических свойств. Зная атомную природу тел и зависимость указанных свойств от нее, можно целенаправленно создавать новые материалы.
Жидкое состояние. При повышении температуры скачкообразно происходит фазовый переход кристалл--жидкость (плавление) и при этом поглощается удельная теплота перехода. Каждое вещество имеет строго определенную температуру плавления. Жидкость -- это вещества, в которых взаимодействие между частицами велико и в то же время тепловое движение частиц является сложным. В жидком состоянии атомы уже не являются строго локализованными, т. е. связанными с какими-то определенными положениями в теле. Они совершают колебательное движение и могут перескакивать, поэтому жидкости, сохраняя объем, могут изменять свою форму. Тепловые свойства конкретных жидкостей существенно индивидуальны. Лишь при температурах, близких к абсолютному нулю, возможно исследование тепловых свойств жидкостей в общем виде. Однако в природе имеется только одно вещество -- гелий, которое остается жидким при Т --> 0 К.
Газообразное состояние. При дальнейшем повышении температуры вещества также скачкообразно, при определенной температуре, характерной данному веществу, совершают фазовый переход жидкость--газ. В газах частицы совершают хаотическое поступательное движение. Вещество в газообразном состоянии представляет собой совокупность многих слабо взаимодействующих частиц и оно практически полностью теряет свою индивидуальность. Это связано с малой плотностью газообразного вещества. В разряженных газах по-существу отсутствует взаимное влияние атомов, а значит, не проявляется их индивидуальная атомная структура. Газы всех веществ (при нормальных условиях) с хорошей точностью подчиняются одинаковым закономерностям.
Плазменное состояние. Дальнейшее весьма значительное повышение температуры (до 104-105 К) среды ведет к ионизации атомов, т. е. распаду их на ионы и свободные электроны. Частично или полностью ионизированный газ образует особое состояние вещества, называемое плазмой. Поскольку ионы и электроны, в отличие от атомов, несут нескомпенсированные электрические заряды, их взаимное влияние становится существенным. Плазма в противовес газам может проявлять коллективные свойства, что сближает ее с конденсированным состоянием, т. е. с твердыми телами и жидкостями. В плазме легко возбуждаются всякого рода упругоэлектрические колебания. Особыми свойствами обладают вещества при сверхвысоких температурах и больших плотностях. При температурах ~ 107 К достигается полная ионизация плазмы: вещество состоит из "голых" ядер и свободных электронов. При дальнейшем повышении температуры начинаются ядерные превращения (~ 108 К). При температурах свыше 109 К ядра разрушаются; при этом вещество состоит из протонов и электронов. Наконец, при температурах свыше 1013 К возможно широкое превращение частиц друг в друга. Это все рассматривалось при нормальном давлении. При невысокой температуре изменение давления также приводит к изменению состояния вещества. При сжатии вещества до ~ 108 атм. электронные оболочки атомов деформируются и возможно свободное движение внешних электронов, т. е. "металлизация" вещества. При достаточном сжатии вещества до ~ 1012 атм. роль взаимодействия электронов с ядрами становится несущественной и вещество можно рассматривать как электронный газ большой плотности. Когда давление газа становится порядка 1018 атм., происходит захват электронов ядрами с испусканием нейтрино и уменьшением заряда и энергии связи ядра. При давлении 1024 атм. нейтроны преобладают над электронами и вещество можно рассматривать как нейтронный газ. При давлении 1027 атм. нейтронный газ имеет плотность ядерного вещества.
8.3 Энергия и ее проявления в природе
Наука научила людей пользоваться энергией, скрытой в сокровищницах Земли. Она должна вести человека в сокровищницы неба и научить его улавливать там энергию солнечных лучей.
К. Э. Циолковский
Понятие энергии занимает фундаментальное положение в структуре современного естествознания. Под энергией понимают единую меру различных форм движения и взаимодействия материи. Она проявляется во множестве различных видов.
В механике различают два вида энергии: кинетическую и потенциальную. Кинетической энергией тела называют энергию, являющуюся мерой его механического движения и измеряемую той работой, которую может совершить тело при его торможении до полной остановки. Потенциальная энергия определяется как свойство системы материальных тел совершать работу при изменении положения или конфигурации тел в системе. Работа, совершаемая консервативными силами при изменении конфигурации системы, т. е. расположения всех ее частей по отношению к системе отсчета, не зависит от того, как было осуществлено это изменение при переводе системы из начальной конфигурации в конечную, в которых система имела различные значения энергии. Значит, работа может быть определена как мера изменения энергии, а энергия -- как способность тела совершать работу. Причем применительно к механическим процессам полная энергия замкнутой консервативной системы тел, равная сумме их потенциальной и кинетической энергии, остается величиной постоянной. То есть всякое изменение потенциальной и кинетической энергии есть превращение потенциальной энергии в кинетическую, а кинетической в потенциальную. В случае механического движения передача энергии происходит в форме работы в процессе силового взаимодействия тел.
В случае, когда помимо консервативной силы, зависящей только от положения тела, в системе действуют и силы трения, тогда любая работа, совершаемая над телом извне, равна сумме приращений кинетической, потенциальной и внутренней энергии. Значит, механическая энергия при трении переходит во внутреннюю энергию, что сопровождается изменением состояния, степени нагретости или объема тела. Величину внутренней энергии (U) можно увеличить двумя эквивалентными способами -- совершая над телом механическую работу (А) или сообщая ему количество теплоты (Q):
Значит, количество теплоты является мерой изменения внутренней энергии тела и выражает тепловую энергию. Установлен эквивалент между количеством теплоты и работой. Теплота может передаваться от тела к телу, переходить в работу, возникать при трении, но при этом она не является сохраняющей величиной. Механическая и тепловая энергии -- это только две из многих форм энергии. Все, что может быть превращено в какую-либо из этих форм, есть тоже форма энергии. Химические реакции протекают с выделением или поглощением теплоты, показывая взаимопревращение химической энергии и теплоты. Работы Фарадея и Ленца приводят к открытию взаимопревращений электрической и магнитной энергий. Изучение процессов, происходящих в контактах двух металлических проводников, проделанных Пельтье и Ленцем, свидетельствуют о взаимопревращении электрической энергии и теплоты. Джоуль устанавливает соотношение между величиной количества теплоты, выделяемой при прохождении электрического тока через проводник, и величиной самого тока и сопротивления проводника (закон Джоуля--Ленца).
Электрическая и магнитная энергии могут проявляться как единая электромагнитная энергия. В частном случае электромагнитную энергию испускают нагретые тела (примером этого служит солнечная энергия). Иногда солнечную энергию рассматривают лишь как прямое солнечное излучение, которое накапливается на Земле в виде гидроэнергии и энергии ископаемого горючего. Интенсивность солнечной энергии на поверхности Земли в средних широтах в летнее время примерно составляет 1 кВт/м2. Если 0,1% всей поверхности Земли преобразуют эту солнечную энергию в электрическую с эффективностью 5%, то электрическая энергия, генерируемая ежегодно, будет в 40 раз больше современного годового уровня потребления ее во всем мире.
В теории относительности было показано, что энергия покоя является энергетическим выражением массы тела, находящегося в состоянии покоя. А Эйнштейн показал, что энергия покоя тела с массой m0 равна Е0 = m0 с2. Согласно этой формуле один грамм вещества обладает энергией покоя 9 ¦ 1013 Дж (1033 эВ). В обычных условиях колоссальная энергия покоя находится как бы в скрытом состоянии. Условия, при которых возможно освобождение всей энергии покоя вещества, весьма необычны: каждый атом тела должен встречаться с антиатомом антитела. При такой встрече произойдет процесс аннигиляции, т. е. превращение энергии покоя обоих тел в другую форму энергии (например, в энергию покоя и кинетическую энергию образующихся при аннигиляции более легких, чем нуклоны, частиц). Разумеется, аннигиляция элементарных частиц пока практического значения (как источник энергии) не имеет, так как для создания условий, при которых она может происходить, приходится затрачивать неизмеримо больше энергии, чем ее выделяется при аннигиляции.
Далеко не все вещества пригодны как источники энергии, и величины выделяемой энергии веществами имеют существенные различия. Например, величина энергии, необходимой для того чтобы удерживать валентный электрон в атоме, составляет всего несколько электронвольт (эВ), в то время как величина энергии, связывающей нуклоны (протоны и нейтроны) в атомном ядре, достигает порядка 10 млн эВ на каждый нуклон. Следовательно, энергия, высвобождаемая на один атом при сжигании ископаемого горючего, составляет несколько электронвольт, в то время как энергия, высвобождаемая в результате ядерных взаимодействий, исчисляется миллионами электронвольт (МэВ). Химическая реакция (химическая энергия):
Полная энергия, запасенная во всех делящихся материалах, имеет такой же порядок величины, что и энергия, запасенная во всех месторождениях ископаемых топлив. Энергия же, выделяемая в результате синтеза ядер, практически неограниченная.
Современная энергетика в основном базируется на горючих ископаемых, каковыми являются каменный и бурый уголь, сланцы, торф, нефть и газ. В настоящее время в мире добывают около 7 млрд т условного топлива в год. Из той энергии, которая вырабатывается из органического топлива, около 25% расходует транспорт (автомобильный, авиационный, железнодорожный, морской) и сельскохозяйственные машины, 30-35% потребляют тепловые электростанции, около 30% идет в металлургическую и химическую промышленность, в машиностроение и производство стройматериалов и, наконец, не более 10% расходуется на бытовые нужды. Естественные запасы органического топлива пока еще велики, но не безграничны. Считают, что с учетом постоянного, но все уменьшающегося пополнения этих запасов их будет достаточно еще на 80 лет или, по другим данным, на 120-140 лет. Поэтому совершенно естественно и давно встал вопрос о новых источниках энергии. Решается этот вопрос во многих направлениях. Наиболее надежным из них считается расширение перспектив привлечения гидроресурсов, доля которых в стационарной энергетике сегодня составляет 17%. Но расширение сети гидроэлектростанций возможно лишь до определенного предела, разрешенного экологическими нормами. И этот предел применительно к большим рекам нашей страны достигнут, хотя в Дагестане еще есть резервы. Ставится задача использования энергии приливов и отливов морей, энергии ветра и волн. Не прекращается поиск новых запасов нефти на шельфах морского побережья. Но сжигание даже добываемых ныне семи миллиардов тонн органического топлива ведет к выбросу в атмосферу 15-17 млрд т углекислого газа с примесями СО и даже SO2 со всеми вытекающими отсюда последствиями.
В связи с этим в настоящее время особенно заманчивым является процесс преобразования энергии покоя в кинетическую энергию ("превращение массы в энергию"). Так как при обычных условиях любое тело обладает огромным резервом неиспользуемой энергии покоя Е0 = m0 с2, то даже ничтожно малое уменьшение массы покоя должно приводить к заметному возрастанию кинетической энергии. Атомная энергия получается за счет "переработки" примерно 0,1% массы самого тяжелого из существующих в природе веществ -- урана, термоядерная энергия -- за счет переработки части массы наиболее легких веществ, например дейтерия. В каждом из этих направлений есть две задачи: мгновенное и медленное преобразование массы в энергию. В первом направлении полностью решены обе задачи: ученые и инженеры умеют освобождать атомную энергию как в мгновенном процессе взрывного типа (атомная бомба), так и в медленном управляемом процессе (ядерный реактор). В настоящее время атомная энергия широко используется в науке, промышленности и на транспорте. Во втором направлении пока решена только половина задачи -- термоядерную энергию научились освобождать в мгновенном процессе взрывного типа (водородная бомба). Осуществление процесса медленного управляемого термоядерного синтеза оказалось настолько трудной задачей, что сейчас нельзя даже приблизительно указать, когда она будет решена. Но она будет решена, так как эти трудности, по-видимому, не носят принципиального характера.
Любое атомное ядро состоит из некоторого количества (Z) протонов и (A-Z) нейтронов, удерживаемых вместе ядерными силами притяжения (сильные взаимодействия). Ядерные силы отличаются очень большой интенсивностью на расстояниях ~ 10-13 см и чрезвычайно быстро ослабевают с ростом расстояния. Так как для разделения ядра на нуклоны (протоны и нейтроны) надо совершить работу на преодоление ядерных сил притяжения, то энергия атомного ядра меньше энергии тех нуклонов, из которых ядро состоит. А так как энергия и масса связаны соотношением Е = m с2, то масса атомного ядра также меньше суммарной массы всех составляющих его нуклонов. Разность их значений, выраженная в энергетических единицах, называется энергией связи AW.
Энергиясвязи любого ядра положительна, и она должна составлять заметную часть, приблизительно равную 1% от его энергии покоя. Если же мы заинтересуемся ее точными значениями для различных ядер и подсчитаем их по приведенной формуле, то убедимся, что они довольно сильно колеблются, в особенности у легких ядер. Доля, которую составляет энергия взаимодействия нуклонов от энергии покоя, зависит от числа взаимодействующих нуклонов. С ростом числа нуклонов она сначала возрастает, а затем уменьшается. Другими словами, нуклоны особенно прочно связаны в средних (по весу) ядрах, слабее -- в тяжелых и очень легких ядрах. Главная причина различия в энергии связи разных ядер заключается в следующем. Все нуклоны, из которых состоит ядро, можно условно разделить на две группы: внутренние и поверхностные. Внутренние нуклоны окружены соседними нуклонами со всех сторон, поверхностные же -- только с внутренней стороны. Поэтому внутренние нуклоны взаимодействуют с остальными нуклонами сильнее, чем поверхностные. Но процент внутренних нуклонов особенно мал у легких ядер (у самых легких ядер все нуклоны можно считать поверхностными) и постепенно увеличивается по мере их утяжеления. Поэтому энергия связи должна расти вместе с ростом числа нуклонов в ядре. Однако этот рост не может продолжаться очень долго, так как начиная с некоторого достаточно большого числа нуклонов (А = 50 - 60) количество протонов в ядре становится настолько большим, что делается заметным их взаимное отталкивание даже на фоне сильного ядерного притяжения. Это отталкивание и приводит к уменьшению энергии связи у тяжелых ядер. Поэтому ядра одних атомов устойчивы, стабильны, а других атомов химических элементов -- неустойчивы и нестабильны.
Из сказанного понятно и то, откуда берется энергия при синтезе легких ядер, так же как при делении тяжелых, получаются более прочные (более устойчивые) ядра (с большей взаимосвязанностью нуклонов), чем исходные. Поэтому при слиянии легких ядер должна выделяться энергия.
Количество энергии синтеза, приходящейся на единицу массы, может в несколько раз превосходить удельную энергию деления.
Хорошо известно, что целый ряд атомных ядер из числа встречающихся в природе, например радий, уран, торий и др., обладают способностью самопроизвольно испускать -частицы, электроны и -кванты. Такие ядра и элементы называются радиоактивными. Про них говорят, что они обладают естественной радиоактивностью. Кроме того, было получено множество радиоактивных ядер. Явление самопроизвольного превращения одних атомных ядер в другие, сопровождаемое испусканием элементарных частиц, называют радиоактивностью. Такие превращения претерпевают только нестабильные ядра. К числу радиоактивных процессов относятся (рис. 8.1):
-распад;
-распад (в том числе электронный захват);
-излучение ядер;
Существует три типа распада радиоактивных изотопов: испускание -частиц, в котором ядро одновременно теряет два протона и два нейтрона (-частицу); -распад, в котором теряется один высокоэнергетический электрон, и электронный захват, в котором теряется один высокоэнергетический фотон
В 1934 г. Ирен и Фредерик Жолио-Кюри обнаружили, что у некоторых веществ (AI, В, Mq) способность испускать позитроны сохраняется на некоторое время и после того, как облучение а-частицами уже прекращено. Изучение этого явления показало, что по своим свойствам оно аналогично естественной радиоактивности тяжелых элементов.
Радиоактивность, наблюдающаяся у ядер, существующих в природных условиях, называется естественной. Радиоактивность ядер, полученных посредством ядерных реакций, называется искусственной. Между искусственной и естественной радиоактивностью нет принципиального различия. Процесс радиоактивного превращения в обоих случаях подчиняется одинаковым законам. Во всех видах радиоактивного превращения выполняются законы сохранения энергии, импульса, момента количества движения, электростатического, барионного и леп-тонного зарядов.
Одной из самых замечательных ядерных реакций является реакция деления. Делением называется реакция расщепления атомного ядра на две примерно равные по массе части (осколки деления). Тяжелые ядра (Z90) делятся как самопроизвольно (спонтанное деление), так и принудительно (вынужденное деление). В отличие от спонтанного вынужденное деление происходит практически мгновенно (t10-14 с). Для вынужденного деления ядер с Z90 достаточно их предварительно слабо возбудить, например облучая нейтронами с энергией около 1 МэВ. Некоторые ядра, например уран-235, делятся даже под действием тепловых нейтронов.
Масса (а значит, и энергия) делящегося ядра значительно превышает сумму масс осколков. В связи с этим при делении освобождается очень большая энергия Q200 МэВ, значительную часть которой (170 МэВ) уносят осколки в виде кинетической энергии. Осколки деления имеют большой избыток нейтронов. Поэтому они обладают-радиоактивными цепочками из продуктов деления, а также испускают мгновенные (два-три на один акт урана) и запаздывающие (1% мгновенных) нейтроны.
Большое энерговыделение, испускание нескольких нейтронов, возможность деления при небольшом возбуждении ядра позволяют осуществить цепную реакцию деления. Идея цепной реакции деления заключается в использовании вылетевших в процессе деления нейтронов для деления новых ядер с образованием новых нейтронов деления и т. д. Для нарастания цепного процесса необходимо, чтобы отношение числа нейтронов в двух последовательных положениях (так называемый коэффициент размножения нейтронов К) было больше единицы (К > 1).
Значения коэффициента размножения зависит от числа нейтронов, испускаемых в одном акте деления; от вероятности их взаимодействия с ядрами урана и других элементов при разных энергиях; от конструкции и размеров реакторной установки. В частности, активная зона реактора (область, где развивается цепная реакция) должна иметь размеры не меньше некоторой критической величины.
Цепная реакция, протекающая в уран-графитовом реакторе на тепловых нейтронах при К1,005, относится к классу медленных управляемых цепных ядерных процессов. Естественный уран не пригоден для осуществления быстрого цепного ядерного процесса взрывного типа на быстрых нейтронах. Такой процесс был осуществлен в 1945 г. на чистом изотопе урана-235 и на обладающем аналогичными свойствами изотопе плутоний-239 трансуранового элемента плутония.
Принцип работы атомной бомбы заключается в очень быстром сближении нескольких порций ядерного горючего, общее количество которых после их объединения превосходит по массе и размерам критические значения. Энергетическая эффективность атомной бомбы примерно в миллион раз превышает эффективность обычной бомбы.
После окончания Второй мировой войны основные усилия ученых-атомщиков были направлены на освоение атомной энергии в мирных целях. В 1954 г. у нас в стране была пущена первая в мире атомная электростанция, в 1957 г. спущен на воду атомный ледокол. В настоящее время атомная энергия применяется практически во всех областях народного хозяйства и науки и вносит все больший вклад в мировую энергетику. Построено и работает много ядерных реакторов разных типов (на тепловых, промежуточных и быстрых нейтронах) с различными замедлителями (графит, вода, тяжелая вода, бериллий и др.) и совсем без замедлителя (на быстрых нейтронах), с разным ядерным горючим (естественный уран, обогащенный уран, плутоний и др.). Они используются и для получения энергии (атомные электростанции, суда и др.), и для различных научных исследований. И хотя чернобыльская трагедия резко снизила восторг от успехов атомной энергетики, ее развитие обещает в дальнейшем широкие возможности и электрификации, и теплофикации, и даже химизации. Проблемы надежности работы атомных электростанций и их безаварийности более всего связаны с решением вопросов защиты атомных реакторов от внешних экстремальных воздействий (например, в условиях пожара) и захоронения радиоактивных отходов. Но в ближайшей перспективе по мере развития ядерной энергетики и радиохимии хранилища изотопов, т. е. осколки ядерного деления, могут превратиться в очаги производства ценнейших элементов, в частности платиноидов. Сегодня изотопы легких платиновых металлов, образующиеся в процессе деления ядер урана и плутония на атомных станциях, доставляют хлопоты: куда бы их подальше спрятать и изолировать. Но радиохимия, изучающая химические свойства и химические превращения радиоактивных веществ, уже в ближайшее время должна решить задачу выделения этих ценных металлов и очищения их от радиоактивных примесей.
И все-таки современные электростанции нельзя считать верхом достижения атомной энергетики и энергетики вообще, хотя они сегодня вносят около 12% вклада в общий энергетический баланс. Их недостаток не только в опасности типа Чернобыля, а еще и в том, что они работают, используя в качестве ядерного топлива изотоп урана-235, доля которого в природном уране составляет всего-навсего 0,7%. Поэтому развитие атомной энергетики на основе современного поколения АЭС определяется ресурсами урана, которые по энергетическому запасу сравнимы с запасами нефти.
Кроме реакции деления тяжелых ядер существует еще один способ освобождения внутриядерной энергии -- реакция синтеза легких ядер. Величина энерговыделения в процессе синтеза настолько велика, что при большой концентрации взаимодействующих ядер ее может оказаться достаточно для возникновения цепной термоядерной реакции. В этом процессе быстрое тепловое движение ядер поддерживается за счет энергии реакции, а сама реакция -- за счет теплового движения. Для достижения необходимой кинетической энергии температура реагирующего вещества должна быть очень высокой (107-108 К). При такой температуре вещество находится в состоянии горячей, полностью ионизированной плазмы, состоящей из атомных ядер и электронов. Совершенно новые возможности открываются перед человечеством с осуществлением термоядерной реакции синтеза легких элементов. Можно представить себе три способа осуществления этой реакции:
Медленная термоядерная реакция, самопроизвольно происходящая в недрах Солнца и других звезд.
Быстрая самоподдерживающая термоядерная реакция неуправляемого характера, происходящая при взрыве водородной бомбы.
Управляемая термоядерная реакция. Неуправляемая термоядерная реакция -- это водородная бомба, взрыв которой происходит в результате ядерного взаимодействия:
приводящего к синтезу изотопа гелия Не3, содержащего в ядре два протона и один нейтрон, и обычного гелия Не4, содержащего в ядре два протона и два нейтрона. Здесь п -- это нейтрон, а р -- протон, Д -- дейтерий и Т -- тритий. При обеих реакциях Д + Д и Д + Т выделяется огромное количество тепла: один грамм газа, "сгорая", образует столько энергии, сколько получается при сгорании примерно 12 т угля! Реакции протекают при температуре 107--108 К. Поэтому удерживать столь высоко разогретую массу, состоящую из ядер, протонов и нейтронов (она получила название плазмы), невозможно ни в каком котле, изготовленном из сколь угодно жаропрочного материала. Это обстоятельство оказалось главным препятствием на пути осуществления управляемой термоядерной реакции.
Но уже в 1950-х годах наши отечественные физики первыми выдвинули и экспериментально обосновали принцип магнитной изоляции ядерной плазмы, которая позволяет уменьшить теплопередачу от плазмы к стенкам реактора. Впоследствии была сконструирована установка токамак -- тороидальная камера магнитного удержания ядерной плазмы как ступень к решению задачи -- управлению термоядерной реакцией.
Однако чем дальше углублялись в поиск решения этой задачи, тем больше появилось новых трудностей. И хотя ученые-физики нашей страны, США, Англии и других государств продвинулись в этом направлении довольно далеко, конечная цель, как они теперь полагают, может быть достигнута не ранее чем через сто лет.
Но существуют и другие препятствия на пути термоядерной энергии, главным из которых является возможный перегрев поверхности Земли в результате вьщеления тепла термоядерными реакторами. Собственно, речь идет о разумных экологических ограничениях производства термоядерной энергии в пределах не более чем 5% от солнечной энергии, поглощаемой Землей. Однако даже и в этих пределах производство термоядерной энергии поднимает разогрев земной поверхности на 3,7°. Считают, что разогрев выше этой предельной температуры может привести к существенному изменению климата всей нашей планеты, даже к всемирному потопу за счет таяния льдов Антарктиды и Гренландии. Так что нужны меры по поиску экологически безупречных и практически неисчерпаемых источников энергии.
Самой рациональной из таких мер является использование солнечной энергии. Эта мера никогда не приведет к перегреву Земли и к загрязнению ее атмосферы, поверхности и океанов. Солнце ежесекундно посылает на Землю 4 триллиона калорий тепла. Около половины его рассеивается и поглощается атмосферой и около 10% задерживается в капельно-жидких и пылевых облаках (рис. 8.2). И все же остающаяся доля доходящей до поверхности солнечной энергии оказывается грандиозной, в десятки раз превышающей предельно допустимое производство термоядерной энергии.
Известные в настоящее время способы преобразования солнечной энергии в те виды, которые можно использовать в энергетике, условно делят на четыре типа: теплотехнические, физические, химические и биологические. Сегодня самыми распространенными являются теплотехнические способы. Но они находятся в зависимости от климатических условий, а их КПД при превращении тепловой энергии в электрическую и механическую не превышает 5%. Физические преобразователи солнечной энергии, в основе которых находятся полупроводниковые фотоэлементы, пока не нашли широкого применения. Они используются в космических кораблях. А построенные на базе кремневых фотоэлементов в качестве опытных наземные электростанции выдают энергию, которая примерно в 100 раз дороже электроэнергии, получаемой на атомных станциях.
Биологическое преобразование солнечной энергии происходит в результате фотосинтеза, происходящего в растениях. Благодаря этому на Земле образовались ископаемые топлива. Хотя на фотосинтез расходуется менее одного процента от всей солнечной энергии, падающей на Землю, урожай зеленой массы растений за год по своей калорийности примерно равен добываемым за год из недр Земли горючим ископаемым.
В настоящее время стала актуальной задача химического преобразования солнечной энергии, т. е. аккумулирование и запасание солнечной энергии методом фотосинтеза. В этом отношении представляет интерес получение на основе преобразования солнечной энергии водорода из воды.
Разрабатываемые ныне искусственные молекулярные фотокаталитические системы все более приближаются к природным фотосинтезирующим объектам не только по принципу их действия, но и по самой организации систем.
Поэтому, возможно, в недалеком будущем удастся воспроизвести в искусственных условиях способность фотосинтезирующего аппарата растений запасать солнечную энергию в виде энергии химического топлива с одновременным выделением кислорода и КПД, близким к 40-50%. Во всяком случае, широкомасштабное преобразование солнечной энергии в энергию химических топлив поставлено на очередь дня. Водород является самым высококалорийным и экологически чистым топливом. Он удобен и для стационарной, и для транспортной энергетики. Бесспорно, это -- универсальное топливо энергетики будущего.
Подобные документы
Характеристика современной естественно-научной картины мира. Междисциплинарные концепции как важнейшие элементы структуры научной картины мира. Принципы построения и организации современного научного знания. Открытия XX века в области естествознания.
контрольная работа [21,9 K], добавлен 18.08.2009Античное естествознание как синтез натурфилософских идей и научных прозрений о "природы вещей". Эра механицизма в естествознании как становление системного знания действительной науки. Современная космологическая естественно-научная картина мира.
реферат [54,3 K], добавлен 05.06.2008Исторические этапы познания природы, логика и закономерности развития науки. Понятие научной картины мира и теория относительности. Антропный принцип космологии и Учение Вернадского о ноосфере. Современные концепции экологии, задачи и принципы биоэтики.
шпаргалка [64,8 K], добавлен 29.01.2010Общие контуры и основные принципы построения современной естественно-научной картины мира. Синтетическая теория эволюции (синтез генетики и дарвинизма). Постулат о способности материи к саморазвитию в философии. Общий смысл комплекса синергетических идей.
реферат [23,8 K], добавлен 26.07.2010Под картиной мира понимается целостная система представлений о мире, его общих свойствах и закономерностях. Различают общенаучную, естественно-научную, социально-историческую, специальную, механическую, электромагнитную и квантово-полевую картины мира.
реферат [109,7 K], добавлен 18.01.2009Исторические этапы и структура процессов эволюции. Суть теории бифуркации в синергетике. Кризис современной цивилизации и пути выхода. Синергетика как составляющая научной картины мира. Идея самоорганизации системы. Эволюционно-синергетическая концепция.
презентация [23,6 M], добавлен 22.11.2011Особенности формирования научной картины мира в эпоху становления классического естествознания. Развитие физики как науки. Исследование роли внутренних и внешних факторов в формировании физической картины мира. Новая гелиоцентрическая парадигма Коперника.
реферат [36,3 K], добавлен 27.12.2016История науки свидетельствует, что естествознание, возникшее в ходе научной революции XVI–XVII вв., было связано с развитием физики. Механистическая, электромагнитная картины мира. Становление современной физической картины мира. Материальный мир.
реферат [15,1 K], добавлен 06.07.2008Определение возраста Солнца, звезд, Вселенной. Диапазон временных интервалов во Вселенной. Представление о научной методологии и формировании критерия истины. Отличие современной научной картины мира от классической. Преемственность идей и концепций.
контрольная работа [28,1 K], добавлен 16.10.2010Первичные процессы синтеза нуклонов и образования атомов. Самоорганизация Вселенной. Сущность естественно-научной концепции развития. Эволюция Вселенной. Современный этап в развитии космологии. Исследование проблемы начала космологического расширения.
реферат [42,0 K], добавлен 30.06.2014