Концепции современного естествознания

Этапы развития естественно-научной картины мира, современные представления о строении и развитии природы микро-, макро- и мегамиров. Эволюция представлений о пространстве. Становление естественно-научной картины мира. История человеческого познания.

Рубрика Биология и естествознание
Вид учебное пособие
Язык русский
Дата добавления 17.12.2013
Размер файла 2,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В развитии Вселенной принято выделять следующие четыре стадии: адронная эра, лептонная эра, эра излучения и эра вещества. Адронная эра продолжалась до t = 10-4 с. При этом р > 1014 г/см3; Т > 1012 К. Важной особенностью этой стадии является сосуществование вещества (протонов и нейтронов) с антивеществом (антинейтронами и др.). Причем количество частиц в единице объема было того же порядка, что и фотонов. Основной вклад в гравитацию давали тяжелые частицы -- адроны. Они аннигилируют с античастицами, остается лишь небольшой избыток нуклонов, который в дальнейшем и определяет свойства нашего мира, т. е. значения его фундаментальных мировых постоянных. Самое начало (т. е. сингулярность) пока недоступно исследованию, так как при этом все главные параметры Вселенной (плотность, температура и т. п.) обращаются в бесконечность.

Далее (до t = 10 с) шла лептонная эра, на протяжении которой температура уменьшается от 1012 К до 5 109 К. С уменьшением температуры более эффективными становятся процессы соединения протонов с нейтронами и образованием дейтерия 2Н, трития 3Н и изотопов 3Не и 4Не. Именно в это время и образуется основная часть гелия, содержащегося в звездах и галактиках. На долю гелия приходится около 30%, на долю водорода -- около 70%, а на долю остальных химических элементов -- менее 1% массы вещества. За счет термоядерных реакций в Галактике может образоваться около 2% гелия по массе. Поэтому основная масса гелия должна была присутствовать в Галактике изначально. По теории горячей Вселенной за первые 100 секунд образуется 25% Не и 75% Н, что подтверждает и современный химический состав Метагалактики.

Эра излучения продолжалась от 10 с до 1013с, или 1 млн лет. При этом 300 К < Т < 1010К, 10-21 < р < 104г/см3. Основной вклад в гравитационную массу Вселенной давало излучение. В начале эры закончился синтез гелия и продолжались процессы аннигиляции электронов с позитронами. Все это время температура излучения оставалась одинаковой с температурой вещества. Но как только температура уменьшилась до величины Т = 3000 К, энергия фотонов уже недостаточна для ионизации атомов водорода. Поэтому процессы рекомбинации электронов с протонами уже не уравновешиваются обратными процессами ионизации и происходит "отрыв" излучения от вещества. С этого момента главную роль в расширении Вселенной начинает играть не излучение, а вещество.

Эра вещества начинается с момента рекомбинации и продолжается до сих пор. На ее определенном этапе и начинаются процессы формирования галактик и звезд.

В заключение мы можем констатировать, что гипотеза Большого взрыва позволяет удовлетворительным образом интерпретировать все пять рассмотренных выше экспериментальных фактов. Именно поэтому современные представления о возникновении нашей Метагалактики основаны на изложенной нами модели, хотя многие вопросы все еще остаются открытыми.

12.3 Космологические модели Вселенной

Если бы вся Вселенная обратилась в одно государство, то как не установить повсюду одинаковых законов.

Козьма Прутков

Таким образом, сейчас Метагалактика расширяется, а что будет с ней в будущем? Теория А. А. Фридмана допускает здесь различные возможности в зависимости от средней плотности материи во Вселенной. При этом в зависимости от значения средней плотности вещества во Вселенной расширение может происходить неограниченно во времени или же со временем расширение сменится сжатием. Эта зависимость определяется значением критической плотности, рассчитанной из теории Фридмана и равной

Если р > р , то расширение Вселенной со временем сменится сжатием. При этом геометрические свойства пространства определяются сферической геометрией Римана. Эта модель получила название закрытой (замкнутой) модели Вселенной.

Если р = р , то геометрия Вселенной евклидова и расширение будет происходить неограниченно; такая модель получила название стационарной модели Вселенной.

Если р < р , то геометрия Вселенной аналогична геометрии на поверхности Лобачевского, расширение не ограничено во времени. Модели Вселенной с р < ркр получили название открытой модели Вселенной.

Внегалактическая астрономия дает среднее значение для постоянной Хаббла, равной; следовательно, ркр = 510-30 г/см3.

Подсчеты галактик показывают, что в Метагалактике их около 1011. Если принять, что масса каждой из них такая же, как и у нашей Галактики, то при размере Метагалактики около 600 Мпк средняя плотность вещества в ней 5 * 10-31 г/см3. Так как это значение плотности на порядок меньше критического, то модель нашей Вселенной описывается геометрией пространства отрицательной кривизны, и наблюдаемое ее расширение будет носить неограниченный характер.

При оценке средней плотности вещества в нашей Вселенной учитывалась только наблюдаемая (излучающая) масса вещества. В настоящее время обсуждается вопрос о существовании невидимой массы, или скрытой массы вещества, которую трудно обнаружить по ее излучению. Эта масса, возможно, сосредоточена в форме маломассивных звезд малой светимости, в черных дырах или в форме нейтрино. Учет этой невидимой массы может увеличить значение средней плотности вещества во Вселенной.

Но является ли теория расширяющейся Вселенной окончательным словом науки, исключающим любые другие космологические модели? "Моделям однородной Вселенной, -- пишут ученые В. А. Амбарцумян и В. В. Казютинский, -- противостоит реальная Вселенная, фундаментальным свойством которой является неоднородность распределения вещества. Пренебрегать этим фактом нельзя. Отсюда следует, что модели Вселенной, построенные на столь грубом упрощении, как предположение об однородном распределении вещества, едва ли стоит фетишизировать".

Ни одна частная наука, например астрономия, не знает достоверно, каков мир в целом. Только основываясь на достижениях всех наук, можно по этому вопросу высказывать лишь более или менее правдоподобные предположения. Понятия неисчерпаемости и бесконечности материи меняются с развитием науки. В настоящее время многие ученые склоняются в пользу идеи о множественности миров с разными фундаментальными постоянными и типами пространств и времен.

ВЫВОДЫ

Космологическими проблемами вынуждали заниматься возникшие парадоксы -- фотометрический, гравитационный и термодинамический, которые были разрешены в модели расширяющейся Вселенной. Расширение Вселенной было установлено Э. Хабблом, сравнивая скорости разбегания, измеренные по красному смещению в спектрах галактик расстояния до них.

Эйнштейн при работе над общей теорией относительности не знал о красном смещении в спектрах и расширении Метагалактики, поэтому исходил из идеи о стационарной Вселенной. Уравнения, полученные Эйнштейном, были детально исследованы де Ситтером и Фридманом. Последний нашел три модели развития Вселенной, определяемые средней плотностью вещества в ней.

Леметр связал эти модели с данными астрономических наблюдений и пришел к проблеме "начала" из точки, а также первоначальных условий, в которой находилась Вселенная. Эти условия характеризуются наличием высокой температуры и давления в сингулярности, в которой была сосредоточена материя. Их называют Большим взрывом. Такое допущение вполне согласуется с установлением расширения Вселенной, которое могло начаться с некоторого момента, когда она находилась в очень горячем состоянии и постепенно охлаждалась по мере расширения.

Гамов разработал модель горячей Вселенной, которую назвал космологией Большого взрыва. Теория получила подтверждение после открытия фонового излучения, которое осталось со времени Большого взрыва и названо реликтовым. Так была повержена теория стационарной Вселенной, разрабатываемая Ф. Хойлом.

По мере расширения и охлаждения во Вселенной происходили процессы разрушения существовавших раньше симметрий и возникновения на этой основе новых структур.

Гут и Линде разработали разные варианты первых долей секунды после "начала", называемые моделями инфляционной, или раздувающейся, Вселенной.

Дальнейшее развитие Вселенной разделяют на четыре эры: адронную, лептонную, излучения и вещества. В адронную и лептонную эру, продолжавшуюся 10 с, температура Вселенной после взрыва упала до б млрд градусов и образовался основной химический состав вещества Вселенной, состоящий из 75% водорода и 25% гелия. На стадии излучения происходило непрерывное превращение вещества в излучение и, наоборот, излучения в вещество. Вследствие этого между веществом и излучением сохранялась симметрия.

Вопросы для контроля знаний

На какую физическую теорию опирается современная космология?

Какие этапы в своем развитии прошла эта космология?

Что собой представляет стандартная модель Вселенной?

Когда по стандартной модели произошел Большой взрыв?

Как реликтовое излучение подтверждает стандартную модель?

Как связана эволюция Вселенной с разрешением прежних симметрии между физическими взаимодействиями?

Расскажите о значении открытий в космологии для формирования научного мировоззрения.

Сформулируйте закон Хаббла.

Какими наблюдениями подтверждается расширение Вселенной?

Охарактеризуйте кратко эволюцию Вселенной.

Почему в результате первичного нуклеосинтеза не могли образоваться химические элементы, наблюдаемые в современной Вселенной?

Как можно доказать, что все произошло из ничего?

На какие экспериментальные данные опирается современная космология?

Расскажите вкратце об эволюции Вселенной до возникновения макротел.

Чем отличается космология, космогония, астрономия, астрофизика, космонавтика?

Как влияют фундаментальные взаимодействия на разные уровнях организации материи?

Какова природа реликтового излучения?

13. ПРОИСХОЖДЕНИЕ И ЭВОЛЮЦИЯ НЕБЕСНЫХ ТЕЛ, ЗЕМЛИ

...Сущность Вселенной не имеет в себе силы, которая могла бы противостоять мужеству познания.

Г. Гегель

13.1 Происхождение и эволюция галактик и звезд

При построении рассмотренной нами выше космологической модели Вселенной принималось, что вещество в ней распределено однородно и изотропно. Имеется в виду среднее по Метагалактике распределение вещества. В действительности в настоящее время значительная масса вещества сконденсирована в форме галактик и скоплений галактик. Возникают следующие вопросы: какие причины приводят к фрагментации первоначально однородно распределенного, расширяющегося вещества Вселенной и почему наиболее существенные свойства галактик -- их формы, размеры и массы -- именно таковы?

Впервые вопрос о фрагментации однородно распределенного вещества рассмотрел английский ученый Дж. Джинс в 1902 г. Он исходил из того, что если в однородной среде возникает по каким-либо причинам сгущение -- неоднородность с размерами г, то она может либо продолжать уплотняться (расти) под действием собственного тяготения, либо рассасываться (затухать) под действием газового давления. Направление протекания процесса зависит от того, будет ли размер сгущения больше или меньше критического. Критический размер легко оценить, если приравнять газовое давление в сгустке , давлению силы тяжести

Из этого условия следует, что размер сгущения определяется следующим соотношением:

Сгущения определенной массы могут формироваться лишь при определенных соотношениях между величинами Т и р. Если, например, плотность догалактического вещества р10-24 г/см3 (это средняя плотность Галактики), то сгущение массой m1011 mc может образоваться лишь в случае, если температура Т106 К. При меньшей температуре образуются сгущения меньшей массы.

Наряду с массой важнейшей характеристикой галактики является мера ее осевого вращения -- вращательный момент на единицу массы. Мера вращения у эллиптических галактик гораздо меньше, чем у спиральных галактик. Очень медленное вращение эллиптических галактик не может объяснить их наблюдаемую эллиптичность, т. е. сплюснутость, подобно, например, тому, как действием центробежной силы можно объяснить сплюснутость земного шара у полюсов. По-видимому, сплюснутость эллиптических галактик объясняется самим характером звездных движений в таких галактиках. В противоположность этому влияние центробежной силы у сравнительно быстро вращающихся рукавов спиральных галактик весьма существенно. Есть среди части ученых мнение, что различия между эллиптическими и спиральными галактиками не являются эволюционным эффектом. Другими словами, галактики рождаются либо как спиральные, либо как эллиптические, и в процессе эволюции тип галактики сохраняется. Структура галактики определяется начальными условиями ее образования, например характером вращения того сгустка газа, из которого она образовалась.

В настоящее время имеются уже довольно хорошо разработанные модели превращения огромного облака газа, сжимающегося в результате действия закона всемирного тяготения сперва в протогалактику, а потом в галактику. В самом начале следует представить себе огромный газовый шар, сжимающийся по закону свободного падения к центру. Первоначальная температура этого газа могла быть достаточно высокой, быстро уменьшалась, причем из-за гравитационной неустойчивости образовывались больших размеров сгущения, эволюционировавшие в облака. Благодаря беспорядочным движениям, эти облака сталкивались, что вело к их дальнейшему уплотнению. На этом довольно раннем этапе из облаков стали образовываться звезды "первого поколения", состоящие в основном из водорода и гелия. Наиболее массивные из них успевали проэволюционировать задолго до того, как прекратилось сжатие протогалактик. Взрываясь как сверхновые, они обогащали межзвездную среду металлами. По этой причине звезды следующих поколений имели уже другой химический состав. Это привело, например, к тому, что звезды вблизи центра эллиптических галактик более богаты тяжелыми элементами, чем находящиеся на периферии, что как раз и наблюдается.

В спиральных протогалактиках звездообразование шло медленнее. Поэтому в них смог образоваться газовый диск довольно значительной массы. Этому способствовало также довольно быстрое вращение спиральных протогалактик, препятствующее оттоку всего газа в область ядра и превращению его там в звезды. Другими словами, вращение протогалактик уменьшает скорость звездообразования.

Таким образом, разные типы галактик происходят от прото-облаков с разными плотностями и разным разбросом скоростей внутренних движений. В частности, эллиптические галактики образовались из более плотных облаков газа, находящегося в состоянии довольно быстрого беспорядочного движения. В "бедных" разряженных скоплениях наблюдаются преимущественно спиральные галактики. Возраст галактик практически равен возрасту Вселенной.

Звезды могут образовываться в результате гравитационного сжатия неоднородностей в межзвездной среде. Межзвездная среда распределена очень неоднородно, она имеет клочковатую структуру. В некоторой области среды выполняется критерий Джинса и эти комплексы являются гравитационно неустойчивыми, они должны сжиматься. По мере сжатия критерий гравитационной неустойчивости Джинса начинает выполняться для неоднородностей внутри облака с меньшими массами, вплоть до солнечной. Массивное газопылевое облако начинает дробиться на менее массивные части, которые, сжимаясь, дают начало звездам.

Для того чтобы образовавшаяся неоднородность массой, равной массе звезды, -- протозвезда -- могла сжиматься дальше, необходимо, чтобы по мере сжатия из нее отводилось тепло, выделившееся при сжатии. Таким механизмом отвода тепла является инфракрасное излучение пыли и молекул межзвездного газа. Значит, протозвезды являются мощными источниками инфракрасного излучения. По мере того как протозвезда сжимается, плотность ее растет, растет ее непрозрачность к инфракрасному излучению.

Дальнейшее, более медленное сжатие происходит до тех пор, пока температура внутри звезды не повысится настолько, что становятся возможными термоядерные реакции синтеза гелия из водорода. Расчеты показывают, что сжатие протосолнца от радиуса R = 10Ro до R = 1R0 продолжалось около 20 млн лет. Более массивные протозвезды эволюционируют быстрее, менее массивные -- медленнее.

Стабильное по излучению и свойствам состояние звезды продолжается до тех пор, пока в ее недрах не исчерпается ядерное горючее -- водород. Ясно, что массивные звезды благодаря своей высокой светимости исчерпают свой водород быстрее, чем менее массивные.

По мере исчерпания водорода в центре звезды коэффициент непрозрачности вещества непрерывно уменьшается. Это приводит к непрерывной перестройке звезды, сопровождающейся сжатием ее ядра и ростом протяженности оболочки. Ядерные реакции синтеза гелия из водорода идут в узком слое, непосредственно окружающем ядро. По мере выгорания водорода в слоевом источнике масса гелиевого ядра постепенно увеличивается. Это приводит к увеличению силы тяжести, дальнейшему сжатию ядра и увеличению его температуры. При этом растет светимость звезды. Энергия не успевает переноситься наружу излучением, наступает конвенция. Сжатие ядра и повышение температуры происходит до тех пор, пока в нем не начнутся термоядерные реакции синтеза более тяжелых химических элементов. Например, при температуре в сотни миллионов градусов происходит синтез ядер атома углерода при слиянии трех ядер атома гелия, а затем при еще более высоких температурах образуются кислород, неон и т. д. При этом выделяется большое количество энергии, способное остановить сжатие ядра. Реакции синтеза идут с выделением энергии вплоть до образования ядер атомов железа. Образование более тяжелых химических элементов требует затраты энергии и приводит к охлаждению звезды. После выгорания водорода в ядре звезда становится красным гигантом или сверхгигантом в зависимости от массы звезды.

Если масса звезды меньше 1,2 массы Солнца, то после исчерпания водорода в ядре оно начнет сжиматься. Сжатие ядра останавливается давлением вырожденного электронного газа, т. е. ядро звезды представляет собой звезду -- белый карлик. В то же время оболочка звезды увеличивается в размерах до 10-100 радиусов Солнца, так что сама становится красным гигантом. Довольно быстро оболочка вообще отделяется от ядра и на месте звезды остается ядро -- звезда белый карлик и расширяющаяся оболочка, т. е. феномен планетарной туманности. Затем за несколько тысяч лет расширяющаяся оболочка рассеивается в межзвездной среде, а белый карлик еще в течение сотен миллионов лет высвечивает тепловую энергию, запасенную им при сжатии.

Такая судьба ожидает и наше Солнце через 5 млрд лет. Структура его определяется давлением вырожденного электронного газа, а перенос энергии из центра определяется теплопроводностью.

Если же первоначальная масса ядра звезды превосходит 1,2 раза массы Солнца, но была меньше 2,4 массы Солнца, то в ней после исчерпания ядерного горючего происходит катастрофа в виде вспышки сверхновой. Сила тяжести настолько велика, что даже давление вырожденного электронного газа не в состоянии ей противодействовать. Поэтому по мере сжатия ядра здесь происходит распад ядер тяжелых элементов на более простые и превращение всех частиц в нейтроны. Протоны, которые входят в состав атомных ядер, образовавшихся на предыдущей стадии эволюции звезды, в конце концов превращаются в нейтроны. При больших плотностях (109 кг/м3) из-за принципа запрета Паули в нейтронном газе будет также действовать специфическая сила отталкивания, и равновесие поддерживается давлением нейтронного газа. Подтверждением наличия нейтронных звезд во Вселенной являются пульсары (пульсирующие звезды, обнаруженные в 1967 г.).

Если масса ядра звезды превосходит 2,5-3 масс Солнца, то ее неограниченное сжатие под давлением силы гравитации уже ничем не остановить. Она превращается в черную дыру. Скорость, необходимая для удаления с этой звезды, становится больше скорости света. Основываясь на законе всемирного тяготения и конечности скорости распространения света, возможность существования черных дыр предсказал еще в XVIII в. Лаплас. Звезда массой, равной солнечной, при обращении в черную дыру имела бы радиус 3 км. Теоретические оценки показывают, что число черных дыр в Галактике может достигать сотен миллионов. Черную дыру можно обнаружить, если она является компонентом двойной звезды -- она может быть мощным источником рентгеновского излучения. Примером такого источника можно назвать мощный рентгеновский источник Лебедь Х-1.

Название "черная дыра" связано с тем, что могучее поле тяготения сжавшейся звезды не выпускает за ее пределы никакое излучение (свет, рентгеновское излучение и т. д.). Поэтому черную дыру нельзя увидеть ни в каком диапазоне электромагнитных волн. В случае тесной двойной звезды гравитационное воздействие черной дыры притягивает газ с поверхности обычной звезды, образуя диск вокруг нее. Температура газа в этом вращающемся диске может достичь 107 К. При температуре в миллионы Кельвинов газ будет излучать в рентгеновском диапазоне. И по нему можно определить наличие в данном месте черной дыры.

С эволюцией звезд тесно связан вопрос о происхождении химических элементов. Если водород и гелий являются элементами, которые остались от ранних стадий эволюции расширяющейся Вселенной, то более тяжелые химические элементы могли образоваться только в недрах звезд при термоядерных реакциях.

Внутри звезд в ходе термоядерных реакций может образоваться до 30 химических элементов.

В конце эволюции в зависимости от массы звезда либо взрывается, либо сбрасывает более спокойно вещество, уже обогащенное тяжелыми элементами. При этом образуются остальные элементы периодической системы. Из обогащенной тяжелыми элементами межзвездной среды образуются звезды следующих поколений. Например, Солнце -- звезда второго поколения, образовавшаяся из вещества, уже однажды побывавшего в недрах звезд и обогащенного тяжелыми элементами. Вот почему о возрасте звезд можно судить по их химическому составу, определенному методом спектрального анализа.

Дальнейшее развитие науки покажет, какие из сегодняшних представлений о происхождении галактик и звезд окажутся правильными. Но уже теперь нет сомнения в том, что звезды, во-первых, подчиняясь законам природы, рождаются, живут и умирают, а не есть однажды созданные и вечно неизменные объекты Вселенной, и, во-вторых, звезды рождаются группами, причем процесс звездообразования продолжается в настоящее время.

13.2 Происхождение планет Солнечной системы

Все у нас, Луцилий, чужое, одно лишь время нагие. Только время ускользающее и текучее дала нам во владенье природа, но и его кто хочет, тот и отнимет.

Сенека

Для изучения вопросов происхождения небесных тел важным является определение их возраста. Определение возраста земной коры основано на исследовании содержания в ней радиоактивных элементов (урана, тория и др.), а также радиоактивных изотопов таких элементов, как калий, аргон и др. Как известно, радиоактивные элементы непрерывно распадаются, причем процесс распада совершенно не зависит от внешних воздействий. При радиоактивном распаде образуются изотопы соседних элементов периодической системы Менделеева. Эти изотопы сами нередко оказываются радиоактивными, а значит, и они распадаются. Распад заканчивается, когда атомы радиоактивных элементов превращаются в нерадиоактивные атомы химических элементов и их изотопы. Например, распад урана (238U) завершается образованием нерадиоактивного изотопа свинца (206РЬ). Промежуток времени (Т), по истечении которого остается половина начального количества радиоактивных атомов, характеризуется скоростью распада и называется периодом полураспада. Для определения возраста земной коры используются медленно распадающиеся изотопы, например урана (Т4,5-109 лет), радиоактивный изотоп калия 40К (Т1,3109 лет) и др. Чтобы определить возраст земной коры, сравнивают содержание радиоактивных элементов и продуктов их распада в многочисленных пробах, взятых для анализа. Такое сравнение показывает, что возраст земной коры около 4,5 млрд лет. Примерно таков же возраст Земли как оформившейся планеты. К 3,5-4,5 млрд лет близок возраст лунных пород и метеоритов. Солнце, конечно, не может быть моложе Земли и Луны. Скорее всего возраст Солнца (желтой звезды) -- 5 млрд лет. Сопоставление возраста Солнечной системы с возрастом Метагалактики (будем считать его равным 15 млрд лет) показывает, что Солнце нельзя отнести к звездам "первого поколения". Скорее всего в состав его и планет вошел газ, уже побывавший в недрах более старых звезд. На ранних стадиях расширения Метагалактики, как вы уже знаете, вообще не было тяжелых химических элементов, которые впоследствии стали центрами конденсации твердых частиц, необходимых для формирования планет.

Кроме этого факта гипотеза, объясняющая происхождение, развитие Солнечной системы, должна дать ответы и объяснить следующие основные закономерности, наблюдаемые в строении, движении, свойствах Солнечной системы:

Орбиты всех планет (кроме орбиты Плутона) лежат практически в одной плоскости, почти совпадающей с плоскостью солнечного экватора.

Все планеты обращаются вокруг Солнца по почти круговым орбитам в одном и том же направлении, совпадающем с направлением вращения Солнца вокруг своей оси.

Направление осевого вращения планет (за исключением Венеры и Урана) совпадает с направлением их обращения вокруг Солнца.

Средние расстояния планет от Солнца (за исключением Нептуна и Плутона) подчиняются определенному закону (правилу Тициуса--Воде).

Суммарная масса планет в 750 раз меньше массы Солнца (почти 99,9% массы Солнечной системы приходится на долю Солнца), однако на их долю приходится 98% суммарного момента количества движения всей Солнечной системы.

Планеты делятся на две группы, резко различающиеся между собой по строению, физическим свойствам, -- планеты земной группы и планеты-гиганты.

Подавляющее число спутников обращается вокруг планет практически по круговым орбитам, лежащим в большинстве случаев в плоскости экватора планеты, причем (за несколькими исключениями) направление этого движения совпадает с направлением осевого вращения планет.

История науки знает множество гипотез о происхождении Солнечной системы. Причем эти гипотезы появились значительно раньше, чем стали известны многие важные закономерности Солнечной системы. Значение первых космогонических гипотез состояло прежде всего в том, что они пытались объяснить происхождение небесных тел как результат естественного процесса, а не одновременного акта божественного творения. Кроме этого, некоторые ранние гипотезы содержали правильные идеи о происхождении небесных тел.

Немецкий философ И. Кант в своей книге "Всеобщая естественная история и теория неба" (1755 г.) развил гипотезу, согласно которой в начале мировое пространство было заполнено материей, находившейся в состоянии первозданного хаоса. Под действием двух сил--притяжения и отталкивания--материя со временем переходила в более разнообразные формы. Элементы, имеющие большую плотность, по закону всемирного тяготения притягивали менее плотные, вследствие этого образовались отдельные сгустки материи. Под действием же сил отталкивания (которые якобы особенно эффективны, когда вещество находится в распыленном состоянии) прямолинейное движение частиц к центру тяготения заменялось кругообразным. Вследствие столкновения частиц вокруг отдельных сгустков и формировались планетные системы. Все это представлялось Канту настолько очевидным, что он не удержался от замечания, ставшего как бы символом естествознания: "Дайте мне материю, и я построю из нее мир, т. е. дайте мне материю, и я покажу всем, как из нее должен образоваться мир..."

Совершенно другая гипотеза о происхождении планет была изложена в книге П. Лапласа "Изложение системы мира" (1769 г.). По Лапласу, на ранней стадии своего развития Солнце представляло собой огромную, медленно вращающуюся туманность. Под действием силы тяжести протосолнце сжималось, поэтому оно принимало сплюснутую форму. И как только на экваторе сила тяжести уравновешивалась центробежной силой инерции, от протосолнца отделялось гигантское кольцо, которое в дальнейшем охлаждалось и разрывалось на отдельные сгустки. Из них и формировались планеты. Такой отрыв колец от протосолнца, по Лапласу, происходил несколько раз. Аналогичным путем образовались и спутники планет. Гипотеза Лапласа, бывшая весьма популярной на протяжении почти ста лет, оказывалась не в состоянии объяснить перераспределение момента количества движения между Солнцем и планетами. Расчет показывает, что если бы все планеты упали на Солнце (т. е. вернули ему потерянный им момент количества движения), то скорость его вращения была бы недостаточной для того, чтобы могло происходить отделение колец. Кроме того, для этой и других гипотез, по которым планеты и их спутники образуются из горячего газа, камнем преткновения является еще следующее: из горячего газа планета сформироваться не может, так как этот газ очень быстро расширяется и рассеивается в пространстве.

В 20-е годы XX в. английский астроном Д. Джинс разработал приливную теорию происхождения Солнечной системы. По этой теории в результате случайного сближения Солнца с какой-то звездой на Солнце образовалась гигантская приливная волна, приведшая к тому, что из двух противоположных точек его поверхности началось мощное извержение струй газа. Эти газовые массы очень быстро сгущались в облака, в которых росли планетезимали -- небольшие твердые тела, из которых в дальнейшем сформировались планеты.

В 30-х годах было высказано предположение (Г. Рессел), что в прошлом Солнце было двойной звездой. Один из компонентов был разорван встречной звездой и образовал облако, из которого позже сформировались планеты. В дальнейшем эту гипотезу видоизменили (Ф. Хойл в 1944 г.). Было выдвинуто предположение, что один из компонентов вспыхнул как сверхновая, сбросил газовую оболочку. Звезды разошлись, а из газовой оболочки образовалась планетная система.

Большую роль в разработке установившихся в настоящее время взглядов на происхождение планетной системы сыграли работы нашего соотечественника О. Ю. Шмидта. В основе теории О. Ю. Шмидта лежат два предположения: планеты сформировались из холодного газопылевого облака; это облако было захвачено Солнцем при его обращении вокруг центра Галактики. На основе этих предположений Шмидту удалось объяснить некоторые закономерности в строении Солнечной системы -- распределение планет по расстояниям от Солнца, вращение и др. Гипотез было много, но если каждая из них хорошо объясняла часть исследований, то другую часть не объясняла (рис. 13.1).

При разработке космогонической гипотезы прежде всего необходимо решить вопрос: откуда взялось вещество, из которого со временем сформировались планеты? Здесь возможны три варианта:

Рис. 13.1. Образование планет по гипотезе О. Ю. Шмидта

1. Планеты образуются из того же газопылевого облака, что и Солнце (И. Кант).

2. Облако, из которого образовались планеты, захва чено Солнцем при его обращении вокруг центра Галактики (О. Ю. Шмидт).

3. Это облако отделилось от Солнца в процессе его эволюции (П. Лаплас, Д. Джинс и др.).

Общую схему развития нашей планетной системы можно описать следующим образом.

Около 5 млрд лет назад в протяженном газопылевом облаке, пронизанном магнитными силовыми линиями, образовалось центральное сгущение -- протосолнце, которое медленно сжималось. Другая часть облака, массой в 10 раз меньшей, медленно вращалась вокруг него. В результате столкновения атомов, молекул и пылинок туманность постепенно сплющивалась и разогревалась. Так вокруг Солнца образовался протяженный газопылевой диск. Его магнитное поле, "наматываясь" на протосолнце, способствовало передаче момента внешним слоям диска.

По одному из вариантов эволюции протопланетного облака, рассмотренному В. С. Сафроновым, вначале в этом облаке произошло деление компонентов -- газа и пыли. Оседание пыли к центральной плоскости произошло примерно за 1000 оборотов облака вокруг Солнца. Одновременно протекал процесс роста пылинок до к 1 см.

Под действием светового давления легкие химические элементы водород и гелий "выметались" из близких окрестностей Солнца. И, наоборот, попадая на пылинки, световые лучи тормозили их движение вокруг Солнца. При этом пылевые частицы теряли свой орбитальный момент количества движения и приближались к Солнцу. Этот механизм торможения "работает" даже в случае, если размеры частицы достигают нескольких метров. В конечном итоге это и привело к существенному различию в химическом составе планет, их разделению на две группы. Таким образом, вблизи экваториальной плоскости Солнца образовался слой пыли повышенной плотности. Как только плотность этого слоя достигла критического значения, в нем возникла гравитационная неустойчивость. Вначале образовались кольца, которые быстро распались на отдельные сгущения. Их исходные размеры и массы на расстоянии в одну астрономическую единицу от Солнца достигали 40 км и 5 * 1013 кг, а на расстоянии Юпитера -- соответственно 105 км и 1019кг. За счет собственной тяжести происходило дальнейшее сжатие сгустков, их уплотнение, рост больших и разрушение малых. Превращение сгущенной пыли в отдельные твердые тела продолжалось всего 10 000 лет на расстоянии в 1 а.е. и около 1 млн лет на расстоянии Юпитера от Солнца.

Далее в результате взаимных столкновений происходило слипание отдельных пылинок и образование твердых тел. Расчеты показывают, что эффективность взаимных столкновений пропорциональна четвертой степени радиуса сгущения (плане-тезимали). Это привело к быстрому росту размеров наибольших из них. В результате столкновений их орбиты приближались к круговым, а сами они превращались в зародыши планет. Со временем выживали лишь те из них, орбиты которых с учетом их взаимного притяжения оказались устойчивыми.

Подобно планетам земной группы, формировались зародыши планет-гигантов -- Юпитера и Сатурна, хотя время их конденсации было в несколько раз большим. В данном случае, как только масса протопланеты достигала величины двух-трех масс Земли, начиналась интенсивная аккреция газа, входящего в протопланетное облако.

Чтобы согласовать расчеты с наблюдениями, приходится ввести допущение, что в процессе роста планет-гигантов значительное количество твердого вещества было выброшено из Солнечной системы. Это привело к образованию на ее периферии облака комет, которое частично сохранилось и до наших дней.

Направление и скорость вращения планеты вокруг своей оси устанавливаются статистически как суммарный результат объединения многих планетезималей и выпадения на зародыш планеты тел из "спутникового роя", окружающего каждую планету на раннем этапе ее формирования. Как оказалось, по наклону оси вращения планеты к плоскости эклиптики можно оценить массу самых больших тел, выпадавших на планету. В частности, для нашей планеты эти массы не превышали 0,001 массы Земли. То, что ось вращения Урана наклонена к плоскости ее орбиты под углом 98°, связано с влиянием Юпитера и Сатурна. Как только массы этих планет возросли до двух-трех масс Земли, они своим притяжением вносили возмущения в движение других планетезималей, придавая им большие скорости, достаточные для того, чтобы вылетать за пределы Солнечной системы. Случайное столкновение этих тел с протоураном и привело к упомянутой аномалии в его вращении вокруг своей оси. Массы наибольших тел, выпадавших на Уран, достигали величины 0,07 массы этой планеты.

Зародыши планет-гигантов не только препятствовали формированию планеты в зоне астероидов между Марсом и Юпитером, но привели и к значительному уменьшению конечной массы планеты Уран.

Несмотря на сходство образования и состава исходного материала планет земной группы, в настоящий момент заметно различие в достигнутом уровне развития планет. На других планетах отсутствуют не только признаки жизни, но даже такие химические соединения, которые в ходе дальнейшей эволюции могли бы привести к появлению примитивных органических форм. Земля же обладает богатым, в высшей степени развитым органическим миром.

Сравнение физических характеристик планет земной группы позволило выявить ряд общих закономерностей их происхождения и последующей эволюции. В раннюю историю своего существования все планеты, как Земля, пережили три общие для них фазы развития:

1) фазу аккреции; 2) фазу расплавления внешней среды (а возможно, и недр) и 3) лунную фазу (стадию первичной коры). Совокупность этих фаз составляет раннюю историю планет. В раннюю историю Земля в своем развитии не отличалась от других планет. Во все последующее время до современной эпохи включительно, т. е. на протяжении 3,5-4,0 млрд лет, все планеты, за исключением Земли, развивались более или менее однотипно, хотя степень активности как внутренних, так и внешних планетных процессов была разной. Чем большую массу имеет планета, тем большее количество радиогенной и гравитационной энергии образуется в ее недрах. Соответственно и более активно протекают у планеты эндогенные процессы -- вулканизм и тектонические движения. У небесных тел (Луны и Меркурия) вулканизм прекратился уже более 3 млрд лет назад. На Марсе он до недавнего времени был весьма активным. На Венере (по косвенным данным) и на Земле интенсивный вулканизм продолжался на протяжении всей их истории, вплоть до настоящего времени.

К числу общих закономерностей развития планет земной группы относятся следующие:

1. Все планеты произошли из единого протопланетного газопылевого облака (туманности) в результате его конденсации и аккреции образовавшихся сгустков материала и рассеянного вещества. Более крупные скопления росли быстрее за счет присоединения к себе меньших агрегатов и рассеянного материала и превращались в зародыши планет -- планетезимали.

В конце стадии аккреции, т. е. приблизительно 4,5 млрд лет назад, под влиянием быстрого накопления тепловой энергии за счет трансформированной метеоритной кинетической энергии внешняя оболочка планет претерпела полное расплавление.

В результате последующего остывания внешних слоев литосферы образовалась кора. В ее состав вошли более легкие компоненты основной магмы. Более тяжелые, благодаря гравитационной дифференциации, сконцентрировались ниже коры, образовав мантию планеты. На этот же период приходится расплавление и центральной области планеты за счет накопления радиогенной и гравитационной энергии. Таким образом, на раннем этапе существования планет произошла дифференциация их вещества на ядро, мантию и кору.

Индивидуально происходило развитие внешней области планет. Формирование природной обстановки происходило и происходит под влиянием климатического фактора, но степень его полноты весьма неодинаковая на разных планетах, а отсюда и неодинаков эффект его действия. Важнейшим условием здесь является наличие или отсутствие у планеты атмосферы и гидросферы. Причем определяющим следует признать не сам факт их наличия или отсутствия, а определенное сочетание их параметров. Для атмосферы это будут химический состав, плотность, температурный режим, циркуляция и т. д.; для гидросферы -- общая масса воды и ее фазовое состояние -- твердое, жидкое или газообразное. Из них наибольшей активностью обладает вода в жидкой фазе.

Вследствие полного отсутствия воды на безатмосферных Луне и Меркурии или наличия ее в малом количестве и не в жидкой фазе на Марсе и Венере на этих планетах экзогенные процессы не могут подавить морфологический эффект метеоритной бомбардировки, поэтому кратерный тип рельефа безраздельно господствует на Луне, Меркурии, Венере и преобладает на Марсе. Марс в прошлом имел более теплый и влажный климат, жидкую воду и относительно высокую активность экзогенных процессов, действие которых выразилось в существенной переработке первичного рельефа ударных кратеров.

С циркуляцией воды во внешней оболочке Земли связано функционирование на нашей планете мощного комплекса экзогенных процессов, оказывающих огромное влияние на другие компоненты -- литосферу, органический мир, вовлечение их в глобальные круговороты.

13.3 Происхождение и эволюция Земли

Человек познает сам себя только в той мере, в какой он познает мир.

И. Гете

Время существования Земли делится на два существенно различных периода: ранняя история и геологическая история.

I. Ранняя история Земли разделяется на три фазы эволюции: фазу рождения, фазу расплавления внешней сферы и фазу первичной коры (лунную фазу). Охарактеризуем их кратко.

Фаза рождения продолжалась 100 млн лет. При этом на растущую Землю падало большое количество крупных тел. Вместе с крупными телами на Землю падали и самые крупные объекты -- планетезимали, зародыши "неудавшихся" планет. Их поперечники измерялись многими километрами и даже первыми десятками километров. В фазу рождения Земля приобрела приблизительно 95% современной массы.

Фаза расплавления датируется 4,6-4,2 млрд лет назад (длительность 0,4 млрд лет). Во время аккреции Земля долго оставалась холодным космическим телом, и только в конце этой фазы, когда началась предельно интенсивная бомбардировка ее крупными объектами, произошло сильное разогревание, а затем полное расплавление вещества сначала внешней зоны планеты, потом и внутренней области. Наступила продолжительная фаза гравитационной дифференциации вещества: тяжелые химические элементы и их соединения опускались вниз, легкие поднимались вверх. Поэтому постепенно в процессе дифференциации вещества в центре Земли сосредоточивались тяжелые химические элементы (железо, никель и др.), из которых образовалось ядро, из более легких соединений возникла мантия Земли. Кремний и другие химические элементы стали основой формирования континентов, а самые легкие химические соединения образовали океаны и атмосферу Земли. В земной атмосфере первоначально было много водорода, гелия и таких водородосодержащих соединений, как метан, аммиак, водяной пар. Со временем водород и гелий улетучились.

Лунная фаза продолжалась 400 млн лет от 4,2 до 3,8 млрд лет назад. При этом остывание расплавленного вещества внешней сферы Земли привело к образованию тонкой первичной коры базальтового состава. В это же время происходило формирование гранитного слоя материковой коры. Континенты сложены в основном гранитами и гнейсами, т. е. горными породами, содержащими 65-70% кремнезема Si02 и значительное количество щелочей -- калия и натрия. Между тем ложе океанов выстилается базальтами -- породами, содержащими 45-50% Si02 и богатыми магнием и железом. Таким образом, континенты оказываются построенными менее плотным, более легким материалом, чем дно океанов. К тому же кора континентов намного толще (в среднем 35-40 км), чем кора океанов (5-7 км). Благодаря этому континенты минимум на 5-6 км возвышаются над ложем океанов. На некоторой глубине, где в верхней мантии находится пластичный слой (так называемая астеносфера), легкие, но толстые континентальные глыбы и тяжелые, но тонкие океанские плиты должны уравновешивать друг друга (закон изостазии, равновесия). Поэтому, главным фактором формирования рельефа земной поверхности является взаимодействие движущихся в горизонтальном направлении литосферных плит. В зонах разлома плит, проходящих в океанах, происходит образование срединно-океанских хребтов.

Из-за широкого распространения метеорных кратеро фаза существования ранней коры называется лунной фазой В лунную фазу существования Земля постепенно охлаждалас от температуры плавления базальтов (1000-800 °С) до 100 °С. С преодолением температурного рубежа +100 °С связано все последующее преобразование природной среды и эволюция земной коры.

II. Геологическая история -- это принципиально новый период развития Земли как планеты в целом, так и особенно ее коры и природной среды. После охлаждения земной поверхности до температуры ниже 100 °С на ней образовалась огромная масса жидкой воды, которая представляла собой не простое скопление неподвижных вод, а находящихся в активном глобальном круговороте. В структурном отношении круговорот распадался на звенья: атмосферное (испарение, перенос влаги, осадки), ли-тосферное (поверхностные и подземные стоки), океаническое. В процессе круговорота происходит поглощение солнечной энергии и распределение ее по земной поверхности.

Глобальная эволюция Земли происходила под влиянием факторов -- космического, эндогенного и экзогенного. К эндогенной энергии относится гравитационная энергия. Земля обладает наибольшей массой из планет земной группы и поэтому имеет наибольшую внутреннюю энергию -- радиогенную, гравитационную и др.

В экзогенном факторе необычайную активность проявила вода, находившаяся раньше в виде пара в атмосфере. Земля стала тем космическим телом, которое оказалось неблагоприятным для длительного сохранения ударных кратеров вследствие высокой активности действующих на ней экзогенных процессов разрушения.

За счет парникового эффекта температура поверхности повышается на 38°; вместо 250 К (-23 °С) стало 288 К (+15 °С). Если бы этого не произошло, то в природной среде жидкой воды было бы не 95% общего количества в гидросфере, а во много раз меньше. Мощность потока солнечной радиации у верхней границы земной атмосферы (солнечная постоянная) составляет 1,95 (кал/см2) мин, что в годовом исчислении выражается в 1000 (ккал/см2) год. В связи же с шарообразностью Земли, а следовательно, с учетом неосвещенной Солнцем стороны планеты, а также тех пространств земной поверхности, где солнечные лучи падают под острым углом, средняя мощность потока солнечной радиации оказывается равной приблизительно 250 (ккал/см2) год. При альбедо (коэффициент отражения света) Земли 0,33-0,35 в земную атмосферу вступает энергетический поток напряженностью лишь 167 (ккал/см2) год. Часть этой энергии поглощается атмосферой, и лишь 79 (ккал/см2) год задерживается земной поверхностью, трансформируется ею и работает, т. е. возбуждает и поддерживает течение экзогенных процессов.

Поглощаемая земной поверхностью солнечная радиация 79 (ккал/см2) год используется следующим образом: 66 (ккал/ см2) год идет на испарение; 11 (ккал/см2) год -- на турбулентный теплообмен тропосферного воздуха; 1 (ккал/см2) год -- на биологические процессы и химические превращения минералов коры выветривания. Мощность теплового потока из недр Земли на континентах 0,033 (ккал/см2) год. Таким образом, земная поверхность использует на природные процессы солнечную радиацию в количестве 79 (ккал/см2) год, т. е. в 2182 раза больше, чем тепловой поток Земли.

Поэтому глобальный процесс формирования географической оболочки и ее функционирования возможен только на основе солнечной радиации с учетом потенциальной энергии силы тяжести масс горных пород. Солнце снабжает Землю теплом, необходимым для поддержания ее температуры в подходящем диапазоне, охватывающем всего около 100°, не нагревая ее чрезмерно. Следует, однако, иметь в виду, что небольшое изменение всего лишь на несколько процентов количества тепла, получаемого Землей от Солнца, приведет к сильным изменениям земного климата. Земная атмосфера играет чрезвычайно важную роль в поддержании температуры в допустимых пределах. Она действует как одеяло, не допуская слишком сильного повышения температуры днем и чрезмерного понижения температуры ночью.

Эволюция атмосферы. В фазу расплавления огромные массы выделявшихся газов образовали первичную атмосферу Земли. Основными компонентами выделявшихся из недр Земли газов были углекислый газ и водяной пар, что аналогично составу летучих компонентов при современных вулканических извержениях (80% вода,10% углекислый газ). После охлаждения земной поверхности до температуры ниже 100 °С произошел переход атмосферного водяного пара в жидкую воду. Так как углекислый газ легко растворяется в воде, то преобладающая его часть была поглощена водой. В настоящее время в океанических водах в 60 раз больше углекислого газа, чем его имеется в атмосфере. Воздушная среда не только утратила почти всю воду, находившуюся в ней в виде пара, но в ней осталось мало и С02. Во много раз уменьшилось и ее давление. Дальнейшая эволюция атмосферы связана главным образом с появлением и развитием органического мира, прежде всего растительного. Атмосфера предохраняет нас не только от огромных колебаний температур. Это неоценимая защита от метеорных тел, непрерывно бомбардирующих Землю из межпланетного пространства. Метеорные тела сталкиваются с Землей со скоростью до 72 км/с. Сила удара метеоритной частицы массой всего 0,001 г, несущейся с такой скоростью, такая же, как пули пистолета 45 калибра при выстреле в упор. Хотя размеры частицы не больше пылинки и меньше средней песчинки, она все же опасна для человека. Ежедневно в земную атмосферу вторгаются миллиарды частиц, создавая слабые метеоры, которые можно видеть только в телескоп. Слабейшие метеоры, видимые невооруженным глазом, в несколько раз крупнее. Большинство этих тел быстро испаряется в атмосфере из-за сопротивления воздуха. Наше счастье, что мы защищены атмосферой от метеорных тел, но все равно некоторые из них, наиболее массивные, способны достичь поверхности Земли и вызвать разрушения. Большой метеоритный кратер в Аризоне (США) образовался около 24 000 лет назад при взрыве громадного тела. Диаметр этого кратера больше километра и даже сейчас его глубина достигает приблизительно 200 м, несмотря на его заполнение породой вследствие эрозии. Вокруг Аризонского кратера были в изобилии найдены мелкие железные метеориты, но не удалось обнаружить ни одного крупного осколка ни путем бурения, ни с помощью радиодетектирования. Железный метеорит взорвался при ударе о землю с силой, намного превышающей силу любых известных взрывов. Тунгусский метеорит 1908 г. взорвался с такой силой, что деревья были повалены на расстоянии до 30 км от места взрыва. В этом случае упавшее тело было почти наверняка обломком кометы малой плотности, разрушившимся в атмосфере на высоте нескольких километров. В 1947 г. на Дальнем Востоке упал большой железный (Сихотэ-Алиньский) метеорит, образовавший большое число кратеров. В 1972 г. поблизости от западного побережья Северной Америки, на расстоянии всего лишь 50 км от земли, пронеслось тело массой не меньше 100 т. Если в текущем столетии были зарегистрированы падения двух крупных метеоритов на суше и одно падение вблизи побережья, то над океаном таких событий, которые остались незамеченными, возможно, было в несколько раз больше.

Исчезновение динозавров в конце мелового периода 65 млн лет назад, а также окончание других геологических периодов могло быть следствием падения на Землю тел размерами с астероид. Ученые обнаружили, что в осадках позднемелового периода содержание сравнительно редкого элемента иридия в 30-160 раз выше, чем в более ранних и более поздних пластах. В земных породах иридия гораздо меньше, чем на Солнце и метеоритах, вероятно потому, что он осел к центру Земли вместе с железом. Его повышенная концентрация в позднемеловом слое является сильным доводом в пользу того, что в то время в Землю врезался астероид диаметром около 10 км. В результате мощного взрыва в атмосферу были бы подняты тучи пыли (свыше тысячи кубических километров). Такого количества пыли достаточно для того, чтобы в течение нескольких лет преграждать путь солнечным лучам. Возможно при этом был нарушен процесс фотосинтеза, что прервало пищевую цепь и от голода вымерли многие позвоночные массой более 10 кг, исчезла половина всех видов живых организмов.


Подобные документы

  • Характеристика современной естественно-научной картины мира. Междисциплинарные концепции как важнейшие элементы структуры научной картины мира. Принципы построения и организации современного научного знания. Открытия XX века в области естествознания.

    контрольная работа [21,9 K], добавлен 18.08.2009

  • Античное естествознание как синтез натурфилософских идей и научных прозрений о "природы вещей". Эра механицизма в естествознании как становление системного знания действительной науки. Современная космологическая естественно-научная картина мира.

    реферат [54,3 K], добавлен 05.06.2008

  • Исторические этапы познания природы, логика и закономерности развития науки. Понятие научной картины мира и теория относительности. Антропный принцип космологии и Учение Вернадского о ноосфере. Современные концепции экологии, задачи и принципы биоэтики.

    шпаргалка [64,8 K], добавлен 29.01.2010

  • Общие контуры и основные принципы построения современной естественно-научной картины мира. Синтетическая теория эволюции (синтез генетики и дарвинизма). Постулат о способности материи к саморазвитию в философии. Общий смысл комплекса синергетических идей.

    реферат [23,8 K], добавлен 26.07.2010

  • Под картиной мира понимается целостная система представлений о мире, его общих свойствах и закономерностях. Различают общенаучную, естественно-научную, социально-историческую, специальную, механическую, электромагнитную и квантово-полевую картины мира.

    реферат [109,7 K], добавлен 18.01.2009

  • Исторические этапы и структура процессов эволюции. Суть теории бифуркации в синергетике. Кризис современной цивилизации и пути выхода. Синергетика как составляющая научной картины мира. Идея самоорганизации системы. Эволюционно-синергетическая концепция.

    презентация [23,6 M], добавлен 22.11.2011

  • Особенности формирования научной картины мира в эпоху становления классического естествознания. Развитие физики как науки. Исследование роли внутренних и внешних факторов в формировании физической картины мира. Новая гелиоцентрическая парадигма Коперника.

    реферат [36,3 K], добавлен 27.12.2016

  • История науки свидетельствует, что естествознание, возникшее в ходе научной революции XVI–XVII вв., было связано с развитием физики. Механистическая, электромагнитная картины мира. Становление современной физической картины мира. Материальный мир.

    реферат [15,1 K], добавлен 06.07.2008

  • Определение возраста Солнца, звезд, Вселенной. Диапазон временных интервалов во Вселенной. Представление о научной методологии и формировании критерия истины. Отличие современной научной картины мира от классической. Преемственность идей и концепций.

    контрольная работа [28,1 K], добавлен 16.10.2010

  • Первичные процессы синтеза нуклонов и образования атомов. Самоорганизация Вселенной. Сущность естественно-научной концепции развития. Эволюция Вселенной. Современный этап в развитии космологии. Исследование проблемы начала космологического расширения.

    реферат [42,0 K], добавлен 30.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.