Характеристика научного знания

Гипотеза как форма развития естествознания. Интеграция фундаментальных и прикладных исследований. Единство эволюционного и революционного путей развития естествознания. Релятивистская квантовая физика. Эволюция пространственно временных представлений.

Рубрика Биология и естествознание
Вид шпаргалка
Язык русский
Дата добавления 12.01.2012
Размер файла 2,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Аналогично характеризуется состояние электромагнитного поля в теории Лоренца, описывающей микроскопические электромагнитные процессы. Основные уравнения этой теории - уравнения Максвелла - Лоренца, связывающие движение отдельных заряженных частиц с созданным ими электромагнитным полем, подобны уравнениям Максвелла

Итак, классическая физика считала, что состояние физической системы всегда задается физическими параметрами. Это, например, координата, импульс, температура, вектор намагничивания и т.д. Состояние системы - это значение таких параметров системы в определенный момент времени, которые позволяют решать определенные классы задач по отношению к данной системе. Бессмысленно задавать состояние физической системы безотносительно к классу поставленных по отношению к системе задач. Какие именно параметры характеризуют конкретное состояние системы определяется законами, на основании которых и решаются поставленные задачи.

Любая система может быть описана лишь с какой-то степенью приближения. Это касается и набора параметров, задающих состояние системы, и значения параметров, которые всегда, конечно, приближенны. Другими словами, всегда существует разница между истинным состоянием системы и описанием этого состояния.

Всевозможные состояния, в которых может находиться то или иное вещество, прежде всего, разбиваются на так называемые агрегатные состояния: твердое, жидкое и газообразное. Эти состояния выделяются по основным физическим свойствам вещества.

Следует учесть, что у некоторых веществ нет резкой границы между различными агрегатными состояниями. Например, при нагревании стекла происходит постепенное его размягчение, и невозможно установить, когда оно переходит из твердого состояния в жидкое. При очень большом внешнем давления твердые металлы начинают “течь”, т.е. подобно жидкости, принимают форму сосуда, в котором они находятся.

Различные состояния одного и того же вещества можно отличать друг от друга также и по значениям физических величин, которые характеризуют эти состояния, например, по значениям объема, температуры и давления. Поэтому каждому агрегатному состоянию вещества соответствует бесконечное множество различных состояний, которые отличаются друг от друга различными значениями объема, давления, температуры и других физических величин. При изменении этих величин вещество переходит из одного состояния в другое, оставаясь твердым, жидким или газообразным.

Физические величины, характеризующие то или иное состояние вещества, иногда называют параметрами состояния. Основные параметры: объем V, внешнее давление Р и температура Т. Если между параметрами состояния существует какое-нибудь определенное однозначное соотношение, которое сохраняется при переходе из одного состояния в другое, то это соотношение называется уравнением состояния. Например, для разряженных газов соблюдается уравнение:

Это соотношение связывает между собой значения объема, давления и температуры для множества отличающихся друг от друга состояний данной массы газообразного вещества. Для других агрегатных состояний - твердого и жидкого - такие простые соотношения между параметрами не найдены.

Важным свойством термодинамических систем является существование у них равновесных состояний, в которых они могут пребывать сколь угодно долго. Для газа, заключенного в некотором сосуде, равновесным является состояние, в котором температура, давление и плотность (или число молекул в единице объема) в пределах объема газа одинаковы. Если в каком-нибудь месте этого объема вызвать местное нагревание или сжатие, то в системе начнется процесс выравнивания температуры и давления. Этот процесс будет происходить в течение того времени, пока имеется внешнее воздействие. Однако только после прекращения этого воздействия процесс выравнивания приведет систему к новому равновесному состоянию.

Состояния изолированных термодинамических систем, в которых они, несмотря на отсутствие внешних воздействий, не могут пребывать в течение конечных промежутков времени, называются неравновесными. Система, первоначально находящаяся в неравновесном состоянии, с течением времени переходит в равновесное состояние. Время перехода из неравновесного состояния в равновесное называется временем релаксации.

В физике широко используется понятие стационарного состояния. Состояние физической системы, при котором некоторые существенные для характеристики системы величины не меняются со временем называется стационарным. Например, состояние потока жидкости стационарно, если скорость движения (и другие характеристики) остаются в каждой точке пространства неизменными.

В квантовой механике стационарным состоянием называется состояние, в котором энергия имеет определенное значение. Стационарное состояние может быть равновесным и неравновесным.

Стационарным состоянием открытой системы является подвижное равновесие, при котором все макроскопические величины остаются неизменными, но непрерывно продолжаются макроскопические процессы ввода и вывода вещества.

Состояния микрообъектов методами классической физики описать нельзя. Это очевидно хотя бы из соотношения неопределенностей. Принцип неопределенности, установленный В. Гейзенбергом в 1927 г., записывается так:

где выступает как неточность (неопределенность) значения координаты х частицы;

- как неопределенность компоненты Px ее импульса .

Принцип неопределенностей подчеркивает различие в описании состояния систем в классической и в квантовой теории. Мы уже неоднократно подчеркивали, что состояние классической материальной точки описывается с помощью координат и импульса. Квантовая же частица в состоянии с определенными координатами не обладает определенным импульсом. Иными словами, для квантовой частицы не существует состояний, в которых ее координаты и импульс имели бы одновременно точное значение. Поэтому в квантовой теории состояние микрообъектов, как уже подчеркивалось, описывается принципиально по-новому - с помощью волновой функции.

Великий австрийский физик Эрвин Шрёдингер, проникшись идеей де Бройля о волнах материи, создал теорию, в которой дискретные стационарные состояния энергии уподоблялись стоячим волнам какой-либо системы. В аппарат квантовой теории прочно вошло в качестве ее основного уравнения - уравнение Шрёдингера относительно волновой функции ?. Сам Шрёдингер интерпретировал ?-функцию как реальный волновой процесс в пространстве и во времени, который, в конечном счете, должен приводить к отрицанию дискретных состояний и квантовых скачков. Однако дальнейшее развитие теории показало неадекватность подобных представлений, и волновая функция ? стала интерпретироваться как волна вероятности, а квадрат ее модуля -- как мера вероятности обладания микрообъектом определенной координаты или в другой, дополнительной к первой, физической ситуации -- определенного импульса. Итак, волновая функция получила статус волны вероятности, чем еще раз подчеркивается статистический, вероятностный характер поведения микрообъектов. Казалось бы, что о причинно-следственном описании движения объектов следует забыть. Однако это не так. Уравнение Шрёдингера описывает эволюции ?-функции с течением времени, является детерминированным и обратимым. Волновая функция представляет собой, полную характеристику состояния: зная волновую функцию ?, можно вычислить вероятность обнаружения определенного значения физической величины и средние значения физических величин.

Законы сохранения

Сегодня физика представляет собой комплекс дисциплин, объединенных идеей сохранения фундаментальных физических величин.

Идея сохранения первоначально возникла в античности как чисто философская догадка о существовании постоянного, неизменного начала при наличии внешне разнообразных изменений, происходящих в мире. Она сформировалась в понятиях неуничтожимой и несотворимой материи и вечного движения.

Законы сохранения - это физические законы, утверждающие постоянство во времени физических величин, относящихся к изолированной системе, т.е. к системе, взаимодействием которой с другими системами можно пренебречь.

Важнейшие законы сохранения универсальны, т.е. справедливы для любых изолированных систем. Это законы сохранения энергии, импульса, момента количества движения, электрического, барионного и лептонного зарядов.

Рассмотрим кратко некоторые из них.

Идея неуничтожимости и несотворимости материи и вечного движения в ХIХ веке была сформулирована в виде закона сохранения массы и энергии. Дальнейшая эволюция этих законов сохранения связана с открытием теории относительности.

Согласно этой теории, инертная масса тела завbсит от ее скорости. Она характеризует не только количество материи, но и ее движения. Соответственно сохраняется так называемая полная энергия Е. Полная энергия Е обобщает понятия кинетической энергии классической механики. Полная энергия Е связана с массой соотношением Эйнштейна: Е=Мс2.

Таким образом, закон сохранения энергии в теории относительности объединяет законы сохранения массы и энергии классической механики.

Утверждение о сохранении энергии не зависит ни от формы, в которой она проявляется (механическая, тепловая, электромагнитная, ядерная и т.д.), ни от конкретной системы, к которой она относится (элементарные частицы, макроскопические тела, звезды, галактики и т.д.). Такая универсальность делает законы сохранения важной составной частью любой физической теории и полезным инструментом при исследовании новых явлений.

Столкнувшись с кажущимся нарушением какого-либо закона сохранения, современная физика тщательно анализирует возможные альтернативные объяснения этого явления, прежде чем отказаться от закона сохранения. Например, именно на таком пути в 1931 г. было предсказано существование нейтрино как альтернатива несохранению энергии при -распаде.

Дж. Чедвик в 1914 г. обнаружил, что электроны, испускаемые при -распаде атомных ядер, имеют непрерывный энергетический спектр. Это явление находилось в явном противоречии с теорией квантов, требовавшей, чтобы при квантовых переходах между стационарными состояниями ядер выделялась дискретная порция энергии (постулат Н. Бора). Поскольку при испускании -частиц и -квантов это требование выполнялось, возникло предположение, что при -распаде нарушается закон сохранения энергии.

В 1930 году Паули высказал гипотезу о существовании электрически нейтральной, сильно проникающей частицы, которая испускается при -распаде вместе с электроном. Она получила название нейтрино.

Все законы сохранения почерпнуты из опыта. Все они являются обобщением и количественной формулировкой эмпирически найденных закономерностей. Квантовая физика, в частности физика атома и элементарных частиц, дала новый класс таких закономерностей - правил отбора. Они есть строгие и приближенные. Их специфика состоит в том, что на опыте совсем не наблюдаются или наблюдаются с малой вероятностью некоторые реакции и переходы, не запрещаемые никакими уже известными физическими принципами или законами сохранения. В связи с этим и выдвигается новый закон сохранения (точный или справедливый лишь для некоторых типов взаимодействий), запрещающий такие реакции. Таково происхождение, в частности, законов сохранения барионного и лептонного зарядов, странности, изотопического спина, “очарования” и др.

Рассмотрим для примера суть законов сохранения барионного заряда, лептонного заряда и изотопического спина.

Барионный заряд, или говорят барионное число, обозначается символом В. Это одна из внутренних характеристик элементарных частиц, отличная от нуля для барионов и равная нулю для всех остальных частиц.

Барионы - это группа “тяжелых” элементарных частиц с массой, не меньше массы протона. К барионам относятся нуклоны (протон и нейтрон), гипероны и барионные резонансы - это короткоживущие возбужденные состояния барионов. Единственный стабильный барион - это протон. Все остальные барионы нестабильны, и путем последовательных распадов превращаются в протон и легкие частицы, т.е. частицы, масса которых значительно меньше массы протона.

Барионный заряд барионов полагают равным единице. Барионный заряд антибарионов равен минус единице. Барионный заряд системы частиц равен разности между числами барионов и антибарионов в системе. В любом процессе, т.е. при всех видах взаимодействия элементарных частиц (сильном, электромагнитном и слабом), выполняется закон сохранения барионного заряда. Этот закон гласит: разность между числом барионов и антибарионов в любых реакциях остается неизменной.

Точность сохранения барионного заряда характеризуется стабильностью протона. Экспериментальное время жизни его превышает 1030 лет.

Лептонный заряд или лептонное число - это особое квантовое число, характеризующее лептоны. Обозначается буквой L. Лептоны - это класс элементарных частиц, не обладающих сильным взаимодействием. Это означает, что лептоны участвуют лишь в электромагнитном, слабом и гравитационном взаимодействиях. К лептонам относятся электрон, мюон, тяжелый лептон //, нейтрино и соответствующие им античастицы.

Введение лептонного заряда позволяет простейшим образом интерпретировать установленный на опыте закон сохранения числа лептонов. Согласно этому закону, разность числа лептонов и числа антилептонов в замкнутой системе остается постоянной при любых происходящих в системе процессах.

Ни одного случая нарушения закона сохранения лептонного заряда не обнаружено. Однако точность, с которой проверен этот закон, невелика. Поэтому не исключено, что закон сохранения лептонного заряда является приближенным и в определенных условиях нарушается.

Если бы этот закон оказался нестрогим, то могли бы существовать переходы между нейтрино и антинейтрино в вакууме.

Лептонный заряд, в отличие от электрического заряда, с точки зрения современных данных не является источником какого-либо дальнодействующего поля.

Роль лептонного заряда в физике элементарных частиц полностью еще не раскрыта.

Рассмотрим теперь суть закона сохранения изотопического спина.

Существующие в природе частицы, обладающие сильным взаимодействием, называются адронами. Их можно разбить на группы “похожих” частиц. В каждую такую группу входят частицы с примерно равными массами и одинаковыми внутренними характеристиками. Исключением является электрический заряд, а следовательно и магнитный момент.

Такие группы адронов называются изотопическими мультиплетами. Оказывается, что сильное взаимодействие для всех частиц, входящих в один и тот же изотопический мультиплет, одинаково, т.е. не зависит от электрического заряда. В этом и состоит симметрия сильного взаимодействия, которая называется изотопической инвариантностью.

Простейшим примером частиц, которые могут быть объединены в один изотопический мультиплет, являются протон и нейтрон. Опыт показывает, что сильное взаимодействие протона с протоном, нейтрона с нейтроном и протона с нейтроном одинаково, если они находятся в одинаковых состояниях.

Протон и нейтрон рассматриваются как два разных зарядовых состояния одной частицы - нуклона. Они образуют изотопический дублет. П-мезоны (П+, П-, По) образуют изотопический триплет и т.д. Величина J, определяющая число частиц в изотопическом мультиплете, называется изотопическим спином. Число же частиц в изотопическом мультиплете определяется формулой:

n = 2J + 1.

Переход от одной частицы к другой из того же изотопического мультиплета не меняет величины изотопического спина.

Изотопический спин сохраняется в сильном взаимодействии.

Открытие приближенных, не универсальных законов сохранения привело к исследованию точности, с которой установлены на опыте законы сохранения. Например, проверка закона сохранения электрического заряда состояла в поисках запрещенного только этим законом распада электрона на нейтрино и -квант.

За несколько месяцев наблюдений за электронами атомов йода в кристалле NaJ не произошло ни одного распада. Это соответствует тому, что электрон не теряет своего заряда по крайней мере за 3,5х1023 лет.

Аналогично, закон сохранения барионного заряда проверялся в поисках запрещенного только им распада протона на П+-мезон и -квант. Здесь точность еще выше: протон не теряет барионного заряда минимум 1030 лет. На опыте не наблюдалось ни одного перехода, нарушающего закон сохранения лептонного заряда.

Физическая теория связывает каждый закон сохранения с фундаментальным принципом симметрии. Так, закон сохранения энергии связан с однородностью времени, а импульса - с однородностью пространства, т.е. с тем свойством пространства, что начало отсчета в нем можно выбирать произвольно. Это означает, что никакие физические эффекты не зависят от такого выбора. Аналогично с произвольностью выбора пространственных осей, т.е. отсутствием выделенных направлений в пространстве, связан закон сохранения момента импульса. Экспериментальная проверка этих законов сохранения есть проверка соответствующих фундаментальных свойств симметрии пространства-времени.

Другие универсальные законы сохранения - электрического, барионного и лептонного зарядов - связаны не со свойствами симметрии пространства-времени, в котором находятся частицы, а с внутренними симметриями самих частиц.

Корпускулярный подход к описанию и объяснению природы

В основе структурной физики лежит корпускулярный подход к описанию и объяснению природы. Он основан на атомистическом учении.

Впервые понятие об атоме как последней и неделимой частице тела возникло в Античной Греции в рамках натурфилософского учения школы Левкиппа-Демокрита. Согласно этому взгляду в мире существуют только атомы, которые движутся в пустоте. Непрерывность материи древние атомисты считали кажущейся. Различные комбинации атомов образуют разнообразные видимые тела. Эта гипотеза не основывалась на данных экспериментов. Она была лишь гениальной догадкой. Но она определила на многие столетия вперед все дальнейшее развитие естествознания.

Гипотеза об атомах как неделимых частицах вещества была возрождена в естествознании, в частности, в физике и химии для объяснения некоторых закономерностей, которые устанавливались опытным путем (например, законов Бойля-Мариотта и Гей-Люссака для идеальных газов, теплового расширения тел и т.д.). Действительно, закон Бойля-Мариотта утверждает, что объем газа обратно пропорционален его давлению, но он не объясняет, почему это так. Аналогично, при нагревании тела его размеры увеличиваются. Но какова же причина такого расширения? В кинетической теории вещества с помощью атомов и молекул объясняются эти и другие установленные опытом закономерности.

Действительно, непосредственно наблюдаемое и измеряемое уменьшение давления газа при увеличении его объема в кинетической теории вещества объясняется как увеличение свободного пробега составляющих его атомов и молекул. Именно вследствии этого и возрастает объем, занимаемый газом. Аналогично этому, расширение тел при нагревании в кинетической теории вещества объясняют возрастанием средней скорости движущихся молекул.

Объяснения, при которых свойства сложных веществ или тел пытаются свести к свойствам более простых их элементов или составных частей, называют редукционизмом. Такой способ анализа позволил решить в естествознании большой класс задач.

Вплоть до конца XIX в. считалось, что атом - это мельчайшая, неделимая, бесструктурная частица вещества. Однако, открытия электрона, радиоактивности показали, что это не так. Возникает планетарная модель атома Резерфорда. Потом ее сменяет модель Н. Бора. Но по-прежнему мысль физиков устремлена на то, чтобы свести все многообразие сложных свойств тел и явлений природы к простым свойствам небольшого числа первичных частиц. Впоследствии эти частицы были названы элементарными. Сейчас их общее число превышает 350. Поэтому вряд ли все такие частицы можно назвать подлинно элементарными, не содержащими других элементов. Это убеждение усиливается в связи с гипотезой о существовании кварков. Согласно ей, известные элементарные частицы состоят из частиц с дробными электрическими зарядами. Их называют кварками.

По типу взаимодействия, в котором участвуют элементарные частицы, все они, кроме фотона, могут быть отнесены к двум группам:

1) адроны. Для них характерно наличие сильного взаимодействия. Однако они могут участвовать также в слабом и электромагнитном взаимодействиях;

2) лептоны. Они участвуют только в электромагнитном и слабом взаимодействиях;

По времени жизни различают:

а) стабильные элементарные частицы. Это электрон, фотон, протон и нейтрино;

б) квазистабильные. Это частицы, которые распадаются вследствие электромагнитного и слабого взаимодействия. Например, к+ + +;

в) нестабильные. Они распадаются за счет сильного взаимодействия, например, нейтрон.

Электрические заряды элементарных частиц являются кратными наименьшего заряда, присущего электрону. Кроме того, элементарные частицы делят на пары частица - античастица, например е- - е+ (у них все характеристики одинаковы, а знаки электрического заряда противоположны). Электрически нейтральные частицы тоже имеют античастицы, например, п -, - .

Итак, атомистическая концепция опирается на представление о дискретном строении материи. Атомистический подход объясняет свойства физического объекта, исходя из свойств составляющих его мельчайших частиц, которые на определенном этапе познания считаются неделимыми. Исторически, такими частицами сначала признавались атомы, затем элементарные частицы, а сейчас - кварки. Трудность такого подхода -- это полная редукция сложного к простому, при которой не учитываются качественные различия между ними.

Вплоть до конца первой четверти ХХ века идея единства строения макро- и микрокосмоса понималась механистически, как полное тождество законов и как полное сходство строения того и другого.

Микрочастицы трактовались как миниатюрные копии макротел, т.е. как чрезвычайно малые шарики (корпускулы), двигающиеся по точным орбитам, которые совершенно аналогичны планетным орбитам, с той лишь разницей, что небесные тела связываются силами гравитационного взаимодействия, а микрочастицы -- силами электрического взаимодействия.

После открытия электрона (Томсон, 1897 г.), создания теории квантов (Планк, 1900 г.), введения понятия фотон (Эйнштейн, 1905 г.), атомное учение приобрело новый характер. Идея дискретности была распространена на область электрических и световых явлений, на понятие энергии (в XIX веке учение об энергии служило сферой представления о непрерывных величинах и функциях состояния). Важнейшую черту современного атомного учения составляет атомизм действия. Он связан с тем, что движение, свойства и состояния различных микробъектов поддаются квантованию, т.е. могут быть выражены в форме дискретных величин и отношений. Новая атомистика признает относительную устойчивость каждого дискретного вида материи, его качественную определенность, его относительную неделимость и непревращаемость в известных границах явлений природы. Например, будучи делимым некоторыми физическими способами, атом неделим химически, т.е. в химических процессах он ведет себя как нечто целое, неделимое. Молекула, будучи делима химически на атомы, в тепловом движении (до известных пределов) ведет себя как целое, неделимое и т.д.

Особенно важно в концепции новой атомистики признание взаимопревращаемости любых дискретных видов материи.

Разные уровни структурной организации физической реальности (кварки, микрочастицы, ядра, атомы, молекулы, макротела, мегасистемы) имеют свои специфические физические законы. Но как бы ни отличались изучаемые явления от явлений, изучаемых классической физикой, все опытные данные должны описываться с помощью классических понятий. Существует принципиальное различие между описанием поведения изучаемого микрообъекта и описанием действия измерительных приборов. Это результат того, что действие измерительных приборов в принципе должно описываться языком классической физики, а изучаемый объект может и не описываться этим языком.

Корпускулярный подход в объяснении физических явлений и процессов всегда сочетался с континуальным подходом с момента возникновения физики взаимодействия. Он выражался в понятии поля и раскрытии его роли в физическом взаимодействии. Представление поля как потока определенного рода частиц (квантовая теория поля) и приписывание любому физическому объекту волновых свойств (гипотеза Луи де Бройля) соединила вместе эти два подхода к анализу физических явлений.

Основные представления о химии как науке

Пожалуй, единственное, что постоянно в нашем мире - это изменения. Все окружающее нас дает многочисленные примеры изменений, происходящих в нас самих и в нашем окружении. Понимание изменений тесно связано с пониманием природы и строения материи (вещества). Материя является физическим материалом Вселенной, это - нечто, занимающее часть пространства и имеющее массу. Химия как наука имеет дело прежде всего с веществом и с происходящими с ним изменениями.

Химия - это наука о веществах и законах, которым подчиняются их превращения, одна из отраслей естествознания.

Происхождение слова "химия" спорно. Чаще всего его связывают с наименованием Древнего Египта - “Хем”, что означает “темный”, “черный” (очевидно, по цвету почвы в долине реки Нил); смысл же названия - “египетская наука”. Мы не будем останавливаться на истории становления и развития химической науки, об этом можно самостоятельно узнать из любого учебника. Поэтому отметим лишь следующее.

Современная химия составляет обширнейшую область человеческого знания и играет огромную роль. Объекты и методы исследования химии настолько разнообразны, что многие ее разделы являются по существу самостоятельными научными дисциплинами. Химию принято подразделять на пять разделов: неорганическая химия, органическая химия, физическая химия, аналитическая химия и химия высокомолекулярных соединений. Важнейшие особенности современной химии:

1. Дифференциация главных разделов химии на самостоятельные научные дисциплины, основанная на различии объектов и методов исследования.

2. Интеграция химии с другими науками. В результате этого процесса возникли биохимия, биоорганическая химия и молекулярная биология, изучающие химические процессы в живых организмах.

3. Появление новых, главным образом физико-химических и физических методов исследования.

Неотъемлемая черта теоретической и экспериментальной химии - применение новейшей быстродействующей вычислительной техники для квантовохимических расчетов, выявления кинетических закономерностей, расчета структуры и свойств сложных молекул.

Глубокие изменения физико-химических свойств веществ происходят в результате химических реакций.

Важнейшая особенность химических реакций связана с тем, что их протекание сопровождается изменениями энергии. Большая часть энергии, производимая в современном обществе, получается в результате химических реакций, главным образом при сгорании угля, нефтепродуктов и природного газа.

Резкий скачок в потреблении энергии произошел во времена промышленной революции, которая, в сущности, явилась энергетической революцией: ее первым достижением было изобретение паровой машины. Были созданы машины, потребляющие энергию угля затем нефти и природного газа. Открытие химических источников энергии позволило перейти от пешего перемещения и гужевого транспорта к автомобильному транспорту и ракетам.

Деятельность современного общества невозможна без надежных источников достаточно дешевой энергии. Где взять энергию, если мы уже исчерпали существенную часть имеющихся запасов ископаемых (угля, нефти, газа)? Кроме того, становится все очевиднее, что сжигание горючих ископаемых может привести к опасным изменениям климата Земли.

С тех пор как стало ясно, что существующих источников энергии хватит ненадолго, возник повышенный интерес к сохранению энергии, стали уделять большое внимание возможности более эффективного использования угля, запасы которого относительно велики, превращая его в более удобные виды горючего, например, в синтетический бензин, синтетический газ или жидкие горючие масла.

По-видимому, будет уделяться больше внимания и превращению растительного сырья в ценные сорта горючего, например, в спирты. Подобные меры должны сыграть важную роль в потреблении энергии в предстоящие десятилетия, пока не будет достигнуто долгосрочное решение проблем использования ядерной энергии, в частности проблемы управляемого термоядерного синтеза. Поэтому ключевую роль в эффективной эксплуатации источников энергии, от которых мы будем сильнее всего зависеть в обозримом будущем, должна сыграть химия.

С целью оптимального осуществления хода химического процесса необходимо знать общие законы, определяющие превращения энергии при химическом взаимодействии веществ. Для установления взаимных связей между явлениями и обобщения экспериментального материала в практике химии широкое распространение нашел термодинамический метод. Прежде чем перейти к изложению основ химической термодинамики, постараемся дать определение исходных понятий и объекта приложения термодинамического метода - термодинамической системы.

Под системой понимают тело или группу тел, мысленно выделенных из окружающей среды. Представим себе, что требуется определить теплоту сгорания жидкого бензола. Опыт осуществляют в калориметрической бомбе, которую можно рассматривать как систему.

В зависимости от рассматриваемого явления система может быть сложной и различного размера, но всегда она должна состоять из большого числа частиц, т.е. быть макроскопической. Только для макроскопических систем можно оперировать такими понятиями, как температура, давление, теплота, и некоторыми другими. Исходя из характера взаимодействия различных систем с окружающей средой, их подразделяют на открытые, закрытые и изолированные системы.

Открытой системой называется система, которая может обмениваться с окружающей средой энергией и веществом. К открытой системе, например, можно отнести стакан с водным раствором сахара. В результате постепенного испарения воды из раствора в окружающую среду и теплообмена, будет изменяться как масса системы, так и ее энергия.

Закрытой системой называют систему, в которой отсутствует обмен веществом с окружающей средой, но возможен обмен энергией с ней. Примером такой системы может служить раствор сахара, помещенный в стакан, закрытый пробкой. Когда стакан закрыт пробкой, процесс в растворе будет осуществляться при постоянном объеме. Если температура раствора Т1 будет отличаться от температуры T2 окружающей среды, то при T1 больше T2 часть энергии от раствора будет передаваться в окружающую среду, и наоборот, при Т1 меньше T2 энергия системы будет увеличиваться за счет перехода какой-то части энергии из окружающей среды в раствор. Масса системы при этом изменяться не будет.

Изолированной системой называют такую, объем которой остается постоянным, и которая не обменивается энергией и веществом с окружающей средой. К этому типу систем можно будет отнести водный раствор сахара, помещенный в закрытый сосуд, стенки которого изготовлены из идеального теплоизоляционного материала. Понятие "изолированная система" является понятием идеальным (абстрактным), так как на практике не существует материала, который абсолютно не проводил бы теплоту.

Система может быть гомогенной (однородной) или гетерогенной (неоднородной).

Система называется гомогенной, если она состоит из одной фазы. Гетерогенная система обязательно содержит несколько фаз.

Совокупность всех химических и физических свойств системы называется состоянием системы. Обычно рассматривают те свойства. которые могут быть однозначно выражены через функции температуры. давления и концентрации веществ системы. Такие свойства называются термодинамическими (теплоемкость, внутренняя энергия, энтальпия и т. п. ), они являются частью общих свойств (физических и химических) системы. Для полного описания состояния системы достаточно знать наименьшее число термодинамических свойств, которые наиболее легко определяются экспериментальным путем (давление Р, объем V, температура Т и концентрации (C1) компонентов). Параметры состояния системы связаны между собой соотношением, которое называется уравнением состояния. Если система состоит из одного вещества и в качестве параметров выбраны давление, объем и температура, то уравнение состояния в общем виде можно записать так:

f(P, V, T)=0

Для моделей идеального газа уравнением состояния является уравнение Менделеева-Клапейрона:

PV=RT

Применяя основные понятия, рассмотрим энергетику химических процессов.

Энергетика химических процессов

Любая система состоит из материальных частиц (атомов, молекул, ионов), находящихся в непрерывном движении. Количественной характеристикой движения является их энергия. В соответствии с формой движения частиц в системе различают поступательную и вращательную энергию молекул, колебательную энергию атомов и групп атомов в молекуле, энергию движения электронов, внутриядерную и другие виды энергии. Совокупность всех видов энергии частиц в системе называется внутренней энергией системы. Внутренняя энергия является частью полной энергии системы.

В величину полной энергии входят внутренняя, кинетическая и потенциальная энергии системы в целом.

Внутренняя энергия системы зависит от природы вещества, его массы и от параметров состояния системы. Внутренняя энергия, как и любое термодинамическое свойство системы, является функцией состояния, т.е. изменение ее не будет зависеть от того через какие промежуточные стадии идет процесс, а будет определяться только исходным и конечным состоянием системы. Это положение вытекает непосредственно из закона сохранения энергии, согласно которому энергия не исчезает и не возникает вновь из ничего при протекании процесса, она лишь может переходить из одной формы в другую в строго эквивалентных соотношениях.

Абсолютное значение внутренней энергии не может быть определено. При расчетах всегда оперируют ее изменением

U1-U2=U,

где U1 и U2 - значения внутренней энергии в начальном и конечном состояниях системы соответственно;

U - конечное изменение свойства системы.

Большинство химических реакций, в частности реакции, протекающие в живых организмах, осуществляются при практически постоянном атмосферном давлении. Кроме того, реагирующая система нередко поглощает теплоту или отдает ее окружающей среде, так что температура системы остается постоянной. Например, сгорание сахара, представляющее собой экзотермический процесс, происходит в человеческом организме при постоянной температуре, приблизительно равной 37° С.

При обсуждении химических превращений, происходящих при постоянном давлении, удобно пользоваться термодинамическим понятием теплосодержания, или энтальпии, обозначаемым латинской буквой Н.

H=U+PV,

где U - внутренняя энергия, Р - давление системы, V - объем системы.

Так как второе слагаемое PV можно отождествить с потенциальной энергией системы, то энтальпию иногда называют "энергией расширенной системы". Так как в правой части уравнения внутренняя энергия, давление и объем являются термодинамическими свойствами системы, то энтальпия системы будет функцией состояния.

Изменение энтальпии системы в ходе процесса, протекающего при постоянном давлении, обозначаемое символом Н (читается "дельта-аш"), равно теплоте, выделяемой или поглощаемой системой в ходе этого процесса.

При протекании химической реакции изменение энтальпии представляет собой разность между суммарной энтальпией продуктов и суммарной энтальпией реагентов:

Н реакции = Н (продукты) - Н (реагенты).

Изменение энтальпии в результате химического или физического процесса проявляется различными способами. Например, ее можно обнаружить по выделению теплоты или света либо по поглощению теплоты; энергия, соответствующая изменению энтальпии может использоваться для получения электрической энергии, как, например, в электрических батареях; при выделении энергии в мышечных тканях может выполняться механическая работа. Изменение энтальпии не зависит от того, как проводится процесс - с выделением только теплоты или с частичным выделением теплоты и частичным совершением механической работы. Например, сгорание 1 моля метана, основного компонента природного газа, описывается уравнением:

СН4 (г)+2О2 (г) --> CO2 (г) +2Н2О(г).

естествознание гипотеза квантовый временной

Это количество метана можно сжечь в сопле горелки, в результате чего выделяется только теплота, или использовать как горючее для турбины, в которой сгорание метана приводит к одновременному выделению теплоты и совершению механической работы. Однако в любом случае изменение энтальпии системы, состоящей из 1 моля СН4(г) и 2 молей 02(r) оказывается одинаковым, если одинаково конечное состояние продуктов.

Экспериментально установлено, что при сгорании 1 моля метана СН4 выделяется 802КДж теплоты, если процесс протекает при постоянном давлении. Этот факт можно записать следующим образом:

СН4 (г)+2О2 (г) --> CO2 (г) +2Н2О(г); Н=-802КДж..

Отрицательное значение Н указывает на то, что процесс является экзотермическим. Из закона сохранения энергии следует, что количество теплоты, выделяемой или поглощаемой в реакции, прямо пропорционально количеству участвующих в ней веществ. Следовательно, сгорание 1 моля СН4 приводит к выделению 802КДж, а сгорание 2 молей СH4 приводит к выделению 1604КДж теплоты.

Нетрудно понять, что изменение энтальпии реакции равно по величине, но обратно по знаку изменению энтальпии обратной реакции. Например:

CO2(г)+2H2O(г) CH4(г)+2O2(г); H=802 КДж.

Если бы при сгорании CH4 выделилось больше теплоты, чем в обратной реакции, этими процессами можно было бы воспользоваться для получения неограниченного количества энергии. Сжигая некоторое количество СН4, достаточно было бы лишь сохранить ту часть полученной энергии, которая необходима для восстановления СН4, а остальную часть использовать для получения полезной работы. После восстановления СН4 его можно было бы снова сжечь и повторять этот процесс до бесконечности, постоянно извлекая энергию. Разумеется, это противоречит всему нашему опыту - такой процесс не подчиняется закону сохранения энергии.

Изменение энтальпии реакции зависит также от состояния реагентов и продуктов. Если бы в реакции сгорания метана вода была бы жидким, а не газообразным продуктом, то Н оказалось бы равным -890КДж вместо -802КДж. В этом случае во внешнюю среду передается большее количество теплоты, потому что при конденсации 2 молей газообразной воды в жидкое состояние

дополнительно выделяется еще 88 КДж:

2Н2О (г)-->2Н2О (ж); Н = -88КДж.

Большое значение для химии имеет одно из следствий первого закона термодинамики, известное под названием закон Гесса. Согласно закону Гесса, если реакция проходит в несколько последовательных стадий, то Н реакции должно быть равно сумме изменений энтальпии каждой стадии; другими словами, изменения энтальпии аддитивны. Например изменение знтальпии реакции сгорания метана с образованием диоксида углерода и жидкой воды можно вычислить по значениям Н стадии конденсации водяного пара и Н стадии сгорания метана с образованием газообразной воды:

СН4 (г)+2О2(г) СО2(г) +2Н2О(г); Н= -802КДж

(Прибавить) 2Н2О(г)2Н2О(ж); Н= -88КДж

- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

СН4 (г)+2О2(г)+2Н2О(г); СО2(г) +2Н2О(ж);

Н= -890КДж.

Исключая из левой и правой частей последнего уравнения одинаковые члены 2Н2О (г), получим суммарное уравнение:

СН4 (г)+2О2(г) СО2(г)+2Н2О(ж); Н= -890КДж.

Закон Гесса дает удобный способ вычисления энергетических изменений, которые трудно поддаются непосредственному измерению. Например, прямое измерение теплоты сгорания с превращением в монооксид углерода невозможно. При сгорании 1 моля углерода в присутствии 1/2 моля 02 образуется не только СО, но также и СО2, так что часть углерода остается неиспользованной.

Теплота сгорания углерода (C) с образованием CO2 равна -393 КДж/моль, а теплота сгорания СО с образованием CO2 равна -283 КДж/моль. Вычислим теплоту сгорания (С) с образованием СО. Для этого составим термохимические уравнения обеих реакций сгорания, затем обратим реакцию сгорания СО так, чтобы СО можно было рассматривать как продукт. После этого просуммируем оба уравнения, предварительно умножив первое уравнение на два, чтобы можно было исключить из обеих частей суммарного уравнения одинаковые члены. Поэтому пришлось соответственно удвоить величину Н первой реакции. При обращении реакции знак Н тоже изменится на противоположный.

2C(тв)+202(г)-->2СО2(г); Н = -2(393,5) = -787,0КДж

2С02(г)-->2СО(г)+02(г); Н=566,0КДж

2С(тв)+02(г)-->2СО(г), Н=-221,0КДж.

Итак, теплота сгорания С(тв) с образованием С0(г) равна 1/2 (-221,ОКДж)=-110,5КДж на моль образующегося СО.

Первый закон термодинамики, выраженный в форме закона Гесса, учит, что энергия химической реакции не зависит от способа проведения этой реакции. Например, вместо прямой реакции горения метана СН4 в кислороде O2 с образованием CO2 и Н2О можно представить себе двухстадийную реакцию, в которой сначала образуется СО, а затем происходит его сгорание до CO2. Но поскольку Н - функция состояния, реакция по любому пути приводит к одинаковому изменению содержания энтальпии в системе. Это означает, что Н1=Н2+Н3. Заметим, что в противном случае открывалась бы возможность непрерывного получения энергии, что противоречит закону сохранения энергии - первому закону термодинамики.

Пользуясь первым законом термодинамики, можно вычислить изменения энтальпии реакции по табулированным значениям теплот образования. Теплота образования соединения Нобр. - это изменение энтальпии, происходящее при образовании одного моля данного соединения из составляющих его элементов. Изменение энтальпии называется стандартным Н°, когда все реагенты и продукты находятся в их стандартных состояниях. Другими словами, все вещества находятся при этом в наиболее устойчивой форме при заданной температуре и нормальном атмосферном давлении. Например, стандартная теплота образования Нообр. этанола С2Н5ОН есть изменение энтальпии следующей реакции:

2С(графит)+ЗН2 (г)+l/2О2(г)С2Н5ОН(ж).

Элемент кислород представляет собой О2, а не О или О3, поскольку O2 является устойчивой формой кислорода при 25°С и нормальном атмосферном давлении. Аналогично в качестве элемента углерода указан графит, а не алмаз, поскольку первый из них является наиболее устойчивой формой (обладает минимальной энергией) при 25°С и нормальном атмосферном давлении. Превращение графита в алмаз требует затраты энергии:

С (графит) С (алмаз); Н = 1,88КДж.

По стандартным теплотам образования можно вычислять стандартные изменения энтальпии любых реакций. С этой целью следует просуммировать теплоты образования всех продуктов реакции, умножив каждую молярную теплоту образования на коэффициент, который стоит перед данным веществом в полном уравнении реакции, а затем вычесть из полученной суммы аналогичную сумму теплот образования всех реагентов. Например, стандартное изменение энтальпии Н° для реакции горения глюкозы определяется уравнением:

С2Н1206(тв)+602(г)6CO2(г)+6Н2О(ж)

Н°реакции=[6Н°обр.(СО2)+6Н°обр. (Н2О)]-[Н°обр (С2Н1206 )+6Н°обр. (О2)].

Пользуясь данными о теплотах образования, получим для рассматриваемого процесса Н°реакции=-2816КДж.

Однако возможность самопроизвольного течения химической реакции зависит как от ее теплового эффекта (стандартного изменения энтальпии реакции), так и от изменения энтропии и соответствующего изменения концентрации реагирующих веществ.

Реакционная способность веществ

Чтобы убедиться в этом рассмотрим какую-нибудь химическую систему, например, смесь СО и H2 в определенных соотношениях. В этой системе могут протекать различные химические реакции. Встает ряд вопросов: в каком направлении преимущественно будет идти химический процесс при заданных температуре и давлении? Какие условия надо создать, чтобы в результате процесса получить, например, метиловый спирт? Какие свойства системы определяют ее реакционную способность? Говоря о реакционной способности системы, будем понимать под этим реакционную способность в направлении определенной реакции. Для характеристики способности данных веществ к химическому взаимодействию между собой или для характеристики степени устойчивости получающегося при этом соединения в отношении разложения на исходные вещества применяли термин "химическое сродство". В разное время химическое сродство пытались оценивать по разным параметрам реакций. В середине 19 в. в качестве меры химического сродства начали использовать количество тепла, выделяющегося при реакции (принцип Бертло-Томсена). Однако существование самопроизвольно протекающих эндотермических реакций показало ограниченную применимость этого положения.

Вант-Гофф, применив второй закон термодинамики, доказал (1883г.), что направление самопроизвольного течения реакции определяется не тепловым эффектом реакции, а максимальной работой ее. При этом он вывел уравнение, количественно выражающее зависимость этой величины от концентрации веществ, участвующих в реакции (уравнение изотермы реакции), и зависимость направления самопроизвольного течения реакции от соотношения между этими концентрациями. В настоящее время вместо максимальной работы в качестве меры химического сродства реакции принимается значение нормального (стандартного) сродства гG° (298). Нормальное сродство может быть меньше и больше нуля. Термодинамически наиболее вероятны реакции, у которых значения нормального сродства наиболее отрицательны. По значению гG° можно судить о вероятности той или иной реакции. Однако, не следует делать вывод, что реакция вообще неосуществима, если гG° (Т)>0. Изменив парциальные давления начальных или конечных продуктов, можно создать условия, когда гG° (Т) будет меньше нуля, и реакция пойдет слева направо. Однако химическое сродство определяет только возможную глубину процесса, но не характеризует полностью реакционную способность системы. Примером этого является смесь H2 и O2, для которой

гG (298) гG°(298) =-228, 61КДж,

следовательно, реакция должна идти практически до конца. Опыт же показывает, что смесь H2 и O2 при нормальных условиях может существовать практически неограниченно долгое время без заметного образования воды.

Таким образом, реакционную способность химической системы нельзя характеризовать только значением гG(Т). Термодинамическое условие протекания реакции гG<0 при постоянных Р и Т можно принять как термодинамический критерий реакционной способности химической системы. Это условие является обязательным, но не достаточным. Если в смесь H2 и 02 ввести катализатор в виде платиновой черни, то реакция заканчивается в течение долей секунды. Это указывает на то, что есть еще какие-то факторы, которые ускоряют химический процесс и тем самым дают возможность за короткий отрезок времени проявиться химическому сродству, или наоборот, затрудняют реакцию, и термодинамические возможности не реализуются.

Что же можно выбрать в качестве характеристики кинетического критерия реакционной способности химической системы? Наиболее общим кинетическим критерием реакционной способности химической системы является скорость реакции. Пусть в системе протекает реакция

1, А1 = j В j.

1 j

где A1 - реагирующие вещества,

В j - продукты, 1 и j -их стехиометрические коэффициенты. Обозначим скорость химической реакции через V. Номенклатурными правилами IUPAC (ИЮПАК) рекомендуется определять скорость V как скорость возрастания степени завершенности реакции :

V = d / dt (1)

где d/dt определяется скоростью образования или превращения 1-го реагента в системе, равной dn1/dt,

d/dt = 1-1 dn1/dt , (2)

где n1 - количество 1-го вещества.

Соотношение (2) получают так: обозначим количество (моль) 1-го реагента в системе в момент t=0 через no1 и в момент t>0 через n1 . Из условий стехиометрии вытекают следующие соотношения:

1-1 (n1 - no1 ) = 2-2 (n2 - no2) =. .. = 1-1 (n1 - no1 ) = . (3)

Степень завершенности реакции в закрытой системе равна величине изменения 1-го реагента (моль) в системе, деленной на стехиометрический коэффициент реагента. Продифференцировав (3) по t получим:

d/dt =1-1 dn1 /dt , (4)

что совпадает с (2). Из (1) и (4) найдем

V = d/dt = =1-1 dn1 /dt . (5)

Выразив n1 через концентрацию c1 и объем системы V, уравнение (5) можно записать в форме:

V = 1-1 d(c1V)/dt = 1-1 c1dV/dt + 1-1 Vdc1)/dt (6)

При постоянном объеме (6) принимает вид:

V =1-1 dc1/dt.

Химическое сродство (А) определяется как взятая с обратным знаком частная производная энергии Гиббса (G) по величине , т.е. А = -(dG/d), откуда dG = -Ad.

В термодинамике величина А/Т рассматривается как обобщенная сила, вызывающая химическую реакцию. Скорость реакции V = d/dt связана с химическим сродством соотношением:

V = LхимА/T

Коэффициент Lхим. иногда называют химической проводимостью: он определяется экспериментально.

Специфика организации живого

Поразительное многообразие жизни создает большие трудности для ее однозначного и исчерпывающего определения как особого явления природы. Во многих определениях жизни, предлагавшихся выдающимися мыслителями и учеными, указываются ведущие свойства, качественно отличающие (по мнению того или иного автора) живое от неживого. К примеру, жизнь определяли как «питание, рост и одряхление» (Аристотель); «стойкое единообразие процессов при различии внешних влияний» (Г. Тревиранус); «совокупность функций, сопротивляющихся смерти» (М. Биша); «химическую функцию» (А. Лавуазье); «сложный химический процесс» (И. П. Павлов). Неудовлетворенность ученых этими определениями понятна. Наблюдения показывают, что свойства живого не носят исключительного характера и по отдельности обнаруживаются среди объектов неживой природы.

Определение жизни как «особой, очень сложной формы движения материи» (А. И. Опарин) отражает ее качественное своеобразие, несводимость биологических законов к химическим и физическим. Однако оно носит общий характер, не раскрывая конкретного содержания этого своеобразия.

В практическом отношении полезны определения, основанные на выделении комплекса свойств, который обязателен для живых форм. Одно из них характеризует жизнь как макромолекулярную открытую систему, которой свойственны иерархическая организация, способность к самовоспроизведению, обмен веществ, тонко регулируемый поток энергии. Жизнь, согласно этому определению, представляет собой ядро упорядоченности, распространяющееся в менее упорядоченной Вселенной.

Живые системы отличаются от неживых важными свойствами, как по материальной организации, так и по функциональным проявлениям. К числу отличительных черт, определяющих понятие «жизнь» обычно относятся следующие:

1. Метаболизм. Живым существам присущ особый способ взаимодействия с окружающей средой - обмен веществ. Его содержание составляют взаимосвязанные и сбалансированные процессы ассимиляции (анаболизм) и диссимиляции (катаболизм). Результатом ассимиляции является образование и обновление структур организма (синтез сложных веществ из простых), диссимиляции -- расщепление органических соединений с целью обеспечения различных сторон жизнедеятельности необходимыми веществами и энергией. Для осуществления обмена веществ необходим постоянный приток определенных веществ извне; некоторые продукты диссимиляции выделяются во внешнюю среду. Таким образом, организм является по отношению к окружающей среде открытой системой.


Подобные документы

  • Рассмотрение стадий исторического развития естествознания. Отказ от созерцательности и наивной реалистичности установок классического естествознания. Усиление математизации современного естествознания, сращивание фундаментальных и прикладных исследований.

    реферат [30,2 K], добавлен 11.02.2011

  • Значение науки в современной культуре и структура научного знания. Основные этапы эволюции европейского естествознания. Типы физических взаимодействий. Механистическая, электромагнитная и квантово-релятивистская картина мира. Модели строения атома.

    учебное пособие [49,9 K], добавлен 27.01.2010

  • Требования образовательных стандартов по дисциплине "Концепции современного естествознания". Изучение и понимание сущности фундаментальных законов природы, составляющих каркас современных физики, химии и биологии. Методология современного естествознания.

    лекция [26,7 K], добавлен 24.11.2017

  • История и этапы развития естествознания и общества, их взаимодействие. Новейшая революция в естествознании. Дифференцированные знания о сферах деятельности людей. Становление теоретического естествознания, основанного на экспериментах и наблюдениях.

    реферат [22,1 K], добавлен 29.07.2010

  • История естествознания: древнегреческий период. Черты научного знания на эллинистическом этапе. Древнеримский период античной натурфилософии. Вклад арабского мира в ее формирование. Развитие знаний в средневековой Европе. Сущность научной революции.

    презентация [1,4 M], добавлен 10.11.2014

  • Предмет и структура естествознания. Понятие естествознания как совокупности наук о природе. История естествознания и интеграция наук от времен древнегреческой натурфилософии, в средневековой культуре, новое время, эпоху глобальной научной революции.

    реферат [54,1 K], добавлен 29.12.2009

  • Предмет и цели естествознания, этапы его развития и историческая форма философского знания. Понятие научной деятельности. Мифология как высший уровень первобытного сознания. Значение письменности в становлении человечества. Образование Солнечной системы.

    шпаргалка [520,4 K], добавлен 01.04.2011

  • Общий ход развития науки естествознания. Анализ природы, расчленение ее на части, выделение и изучение отдельных вещей и явлений. Воссоздание целостной картины на основе уже познанных частностей. Развитие идеи эволюционного развития явлений природы.

    реферат [26,2 K], добавлен 21.07.2011

  • Естественнонаучная и гуманитарная культуры. Предмет и метод естествознания. Динамика естествознания и тенденции его развития. История естествознания. Структурные уровни организации материи. Макромир. Открытые системы и неклассическая термодинамика.

    книга [353,5 K], добавлен 21.03.2009

  • Причины, от которых зависит развитие науки. Роль практики в развитии естествознания. Проявление относительной самостоятельности развития естествознания. Преемственность в развитии идей и принципов естествознания, теорий, методов и приемов исследования.

    реферат [21,3 K], добавлен 29.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.