Эволюция зрительной системы
Зрительная система - оптикобиологическая бинокулярная система, эволюционно возникшая у животных и способная воспринимать электромагнитное излучение видимого спектра, создавая изображение, в виде ощущения положения предметов в пространстве: ее эволюция.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 13.12.2010 |
Размер файла | 504,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Эволюция зрительного анализатора
1 -- Левая половина зрительного поля, 2 -- Правая половина зрительного поля, 3 -- Глаз, 4 -- Сетчатка, 5 -- Зрительные нервы, 6 -- Глазодвигательный нерв, 7 -- Хиазма, 8 -- Зрительный тракт, 9 -- Латеральное коленчатое тело, 10 -- Верхние бугры четверохолмия, 11 -- Неспецифический зрительный путь, 12 -- Зрительная кора головного мозга.
зрительный спектр изображение эволюция
Зримтельная системма -- оптикобиологическая бинокулярная система, эволюционно возникшая у животных и способная воспринимать электромагнитное излучение видимого спектра (света), создавая изображение, в виде ощущения (сенсомрного чувства) положения предметов в пространстве. Зрительная система обеспечивает функцию зрения.
Зрительная система у млекопитающих включает следующие анатомические образования: глаз, в частности хрусталик, сетчатка (вспомогательные структуры: мышцы глаза, век и слёзный аппарат), зрительные нервы, хиазма, зрительный тракт, латеральное коленчатое тело промежуточного мозга, передние бугры четверохолмия среднего мозга, зрительная радиация, зрительная кора.
У человека и многих других животных существует бинокулярное зрение, обеспечивающее объёмное изображение. У многих дневных животных существует цветовое зрение.
У животных и человека органами зрения являются глаза. Высокоорганизованными (способными создавать изображения предметов и обеспечивать предметное зрение) глазами обладают, помимо позвоночных, головоногие моллюски и многие членистоногие, а также отдельные представители других типов животных -- книдарий, кольчатых червей, плоских червей.[1] Фасеточные глаза насекомых имеют принципиально отличное строение по сравнению с камерными глазами позвоночных и головоногих, однако связаны с ними постепенными переходами сравнительно-морфологического ряда
Существуют сходные по функции со зрением другие системы ориентации в пространстве, например, ультразвуковая эхолокация летучих мышей и китообразных, позволяющая им обнаруживать мельчайшие объекты, электролокация некоторых рыб и утконоса, тепловая локация гремучих змей.
Эволюция зрительной системы
Беспозвоночные
Как установлено с помощью методов генетической трансформации, гены eyeless дрозофилы и Small eye мыши, имеющие высокую степень гомологии, контролируют развитие глаза: при создании генноинженерной конструкции, с помощью которой вызывалась экспрессия гена мыши в различных имагинальных дисках мухи, у мухи появлялись эктопические фасеточные глаза на ногах, крыльях и других участках тела.[2] В целом в развитие глаза вовлечено несколько тысяч генов, однако один-единственный «пусковой ген» («мастер-ген») осуществляет запуск всей этой генной сети. То, что этот ген сохранил свою функцию у столь далеких групп, как насекомые и позвоночные, может свидетельствовать об общем происхождении глаз всех двустороннесимметричных животных.
Позвоночные
Глазные бокалы позвоночных формируются как выросты промежуточного мозга, а первичный центр обработки зрительной информации находится в среднем мозге.
Млекопитающие
Предполагается, что в течение мезозойского периода ранние млекопитающие занимали подчинённое по отношению к «царствующим рептилиям» (особенно динозаврам, преимущественно занимавшим экологические ниши крупных хищников и травоядных) положение, имели мелкие размеры и сумеречный образ жизни. В таких условиях зрение для ориентации в пространстве становится второстепенным по отношению к обонянию и слуху. Химические чувства, которые и сейчас остаются для нас эмоционально окрашенными, обслуживаются передним мозгом и лимбической системой. Предполагается, что передний мозг в этих условиях приобретает большее значение. Когда «царствующие» рептилии исчезли в конце мезозоя, более широкие эволюционные возможности открылись для «угнетённых» млекопитающих. Они заселили все возможные экологические ниши освободившегося мира, зрение для некоторых отрядов снова стало наиболее важным из всех чувств. Однако формирующиеся заново зрительные пути направились к наиболее важной части мозга -- переднему мозгу, расширяющемуся и формирующему характерные для млекопитающих крупные полушария. Ретино-тектальный путь остается пережитком старого зрительного пути, а ретино-геникуло-стриарный путь быстро становится наиболее важным путём передачи зрительной информации в мозг.
Зрительная система у разных видов живых существ
Беспозвоночные
У беспозвоночных встречаются очень разнообразные по типу строения и зрительным возможностям глаза и глазки -- одноклеточные и многоклеточные, прямые и обращённые (инвертированные), паренхимные и эпителиальные, простые и сложные.
У членистоногих часто присутствует несколько простых глаз (иногда непарный простой глазок -- например, науплиальный глаз ракообразных) или пара сложных фасеточных глаз. Среди членистоногих некоторые виды имеют и простые, и сложные глаза: так, у ос два сложных глаза и три простых глаза (глазка). У скорпионов 3--6 пар глаз (1 пара -- главные, или медиальные, остальные -- боковые), у щитня -- 3. В эволюции фасеточные глаза произошли путем слияния простых глазков. Близкие по строению к простому глазу глаза мечехвостов и скорпионов, видимо, возникли из сложных глаз трилобитообразных предков путем слияния их элементов (Беклемишев, 1964)
Простейшие
Некоторые простейшие имеют слабодифференцированные органоиды светового восприятия (например, стигма у эвглены зелёной).
Насекомые
Глаза насекомых имеют фасеточное строение. Разные виды по-разному воспринимают цвета, но в целом большинство насекомых хорошо различают не только лучи спектра, видимые человеком, но и ближний ультрафиолет. Это зависит, помимо генетических факторов (строение рецепторов), и от меньшего поглощения УФ-света -- из-за меньшего его пути в оптической системе глаза. Например, пчёлы видят ультрафиолетовый рисунок на цветке.
Позвоночные
Структура рецепторов рептилий, птиц и некоторых рыб
Установлено, что рептилии, птицы и некоторые рыбы имеют более широкую область ощущаемого оптического излучения. Они воспринимают ближний ультрафиолет (300--380 нм), синюю, зелёную и красную часть спектра.
Зрительный аппарат птиц обладает особенностями, не сохранившимися в зрении человека. Так, в рецепторах птиц имеются микросферы, содержащие липиды и каротиноиды. Считается, что эти микросферы -- бесцветные, а также окрашенные в жёлтый или оранжевый цвет -- выполняют функцию специфических светофильтров, формирующих «кривую видности».
У многих птиц их бинокулярное зрение из-за специфического расположения глаз не даёт такого большого поля стереоскопического зрения, как у человека.
Зрение млекопитающих
Мутация, некогда реализованная у одного из прапредков млекопитающих и закрепившаяся во всём классе, сократила число видов цветовых рецепторов колбочек до двух. Полагают, что предки млекопитающих -- мелкие грызуны -- вели ночной образ жизни и компенсировали эту потерю значительным развитием сумеречного зрения (с помощью рецепторов -- палочек).
Позже, однако, у приматов (в т.ч. человека) другая мутация вызвала появление третьего типа колбочек -- цветовых рецепторов. Это было вызвано расширением экологической ниши млекопитающих, переходом части видов к дневному образу жизни, в том числе на деревьях. Мутация была вызвана появлением изменённой копии гена, отвечающего за восприятие средней, зелёночувствительной области спектра. Она обеспечила лучшее распознавание объектов «дневного мира» -- плодов, цветов, листьев.
Глаз человека состоит из глазного яблока и зрительного нерва с его оболочками. У человека и позвоночных имеется по два глаза, расположенных в глазных впадинах черепа.
Ниже более подробно рассмотрена структура зрения человека.
Глаз человека Стереоскопическое зрение
У многих видов, образ жизни которых требует хорошей оценки расстояния до объекта, глаза смотрят скорее вперёд, нежели в стороны. Так, у горных баранов, леопардов, обезьян обеспечивается лучшее стереоскопическое зрение, которое помогает оценивать расстояние перед прыжком. Человек также имеет хорошее стереоскопическое зрение (см. ниже, раздел Бинокулярное и стереоскопическое зрение).
Альтернативный механизм оценки расстояния до объекта реализован у некоторых птиц, глаза которых расположены по разным сторонам головы, а поле объёмного зрения невелико. Так, куры совершают постоянные колебательные движения головой, при этом изображение на сетчатке быстро смещается, обратно пропорционально расстоянию до объекта. Мозг обрабатывает сигнал, что позволяет поймать мелкую добычу клювом с высокой точностью.
Глаза каждого человека внешне кажутся идентичными, но всё же функционально несколько различны, поэтому выделяют ведущий и ведомый глаз. Определение ведущего глаза важно для охотников, видеооператоров и лиц других профессий. Если посмотреть через отверстие в непрозрачном экране (дырочка в листе бумаги на расстоянии 20--30 см) на отдалённый предмет, а затем, не смещая голову, поочередно закрыть правый и левый глаз, то для ведущего глаза изображение не сместится.
Размещено на Allbest.ru
Подобные документы
Необходимые условия для поддержания функционирования нервных связей в зрительной системе. Бинокулярная депривация и роль конкуренции. Основные эффекты страбизма (косоглазия). Критические периоды в развитии зрительной системы и их клиническое значение.
реферат [704,3 K], добавлен 06.11.2009Системы органического мира, их характеристика. Современная классификация организмов. Паренхиматозные и репродуктивные органы животных. Эволюция систем органов животных. Эволюция висцерального скелета. Строение пищеварительной системы кишечнополостных.
контрольная работа [38,4 K], добавлен 15.03.2012Зрительная система новорожденных котят и обезьян. Формирование глазодоминантных колонок. Рецептивные поля, свойства кортикальных клеток новорожденных животных. Строение рецептивных полей нейронов сетчатки. Зависимость паттернов ветвления аксонов нейронов.
реферат [724,7 K], добавлен 06.11.2009Характеристика и особенности развития нервной системы в филогенезе и онтогенезе. Взаимное расположения структур, центрального и периферического отделов. Связь нервной системы с внешней средой, ее эволюция, усложнение нервных функций и развитие мозга.
реферат [627,5 K], добавлен 14.12.2011Сущность теорий происхождение видов Ламарка и Дарвина. Естественная эволюция как необратимое историческое развитие органического мира с постепенным его усложнением. Видовое разнообразие царства животных и значение эмбриологии в определении их родства.
реферат [29,8 K], добавлен 11.07.2009Принципы в эволюционной теории и эволюционно-стабильная стратегия. Истинная мимикрия как сходство одного животного (имитатора) с другим (моделью), ее формы. Последствия возможных комбинаций частот различных генотипов в популяциях модели и имитатора.
курсовая работа [407,8 K], добавлен 08.08.2009Глобальный эволюционизм. Антропный принцип в космологии. Естественнонаучное миропонимание - система знаний о природе, образующаяся в сознании человека в процессе изучения естественнонаучных предметов, и мыслительная деятельность по созданию этой системы.
реферат [13,9 K], добавлен 25.06.2004Описание этапов развития выделительной системы, которая впервые появилась у плоских червей, а уже у кольчатых червей представлена особыми образованиями в каждом сегменте тела. Строение и основные функции выделительной системы у моллюсков, птиц, рыб.
презентация [365,3 K], добавлен 17.03.2011Изучение строения сердца, артерий и вен у различных классов хордовых животных. Сравнение строения сердечнососудистой системы рыб, земноводных, пресмыкающихся, птиц и млекопитающих. Выявление связи между средой обитания и строением кровеносной системы.
курсовая работа [769,2 K], добавлен 28.11.2012Вселенная – весь существующий материальный мир, безграничный во времени и пространстве. Формирование Солнечной системы, возникновение Земли. Звезда как основное вещество Галактики. Особенности реликтового излучения. Зарождение жизни на Земле, ее эволюция.
контрольная работа [726,2 K], добавлен 11.03.2011