Сенсорные системы человека

Анализ сенсорных систем, функционирование и адаптация. Основные характеристики ощущений. Механизмы переработки информации в сенсорной системе. Адаптация и взаимодействие. Характеристика анализаторов человека. Чувствительность обонятельного анализатора.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 21.09.2010
Размер файла 47,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

РАЗДЕЛ 1. ОБЩАЯ ФИЗИОЛОГИЯ СЕНСОРНЫХ СИСТЕМ

1.1 ПОНЯТИЕ О СЕНСОРНОЙ СИСТЕМЕ, МЕТОДЫ ЕЕ ИССЛЕДОВАНИЕ

1.2 ОБЩИЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ СЕНСОРНЫХ СИСТЕМ

1.3 ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ОЩУЩЕНИЙ

1.4 МЕХАНИЗМЫ ПЕРЕРАБОТКИ ИНФОРМАЦИИ В СЕНСОРНОЙ СИСТЕМЕ

1.5 АДАПТАЦИЯ И ВЗАИМОДЕЙСТВИЕ СЕНСОРНОЙ СИСТЕМЫ

1.6 КЛАССИФИКАЦИИ РЕЦЕПТОРОВ

РАЗДЕЛ 2. ХАРАКТЕРИСТИКА АНАЛИЗАТОРОВ ЧЕЛОВЕКА

2.1 КОЖНЫЙ АНАЛИЗАТОР

2.2 СЛУХОВОЙ АНАЛИЗАТОР

2.3 ВКУСОВОЙ АНАЛИЗАТОР

2.4 ОЩУЩЕНИЯ РАВНОВЕСИЯ

2.5 ОБОНЯТЕЛЬНЫЙ АНАЛИЗАТОР

ВЫВОДЫ

СПИСОК ЛИТЕРАТУРЫ

Введение

Одной из физиологических функций организма является восприятие окружающей действительности. Получение и обработка информации об окружающем мире является необходимым условием поддержания гомеостатических констант организма и формирования поведения. Среди раздражителей, действующих на организм, улавливаются и воспринимаются лишь те, для восприятия которых есть специализированные образования. Такие раздражители называют сенсорными стимулами, а сложноорганизованные структуры, предназначенные для их обработки - сенсорными системами. Сенсорные сигналы различаются модальностью, т.е. той формой энергии, которая свойственна каждому из них.

При действии сенсорного стимула в рецепторных клетках возникают электрические потенциалы, которые проводятся в центральную нервную систему, где происходит их обработка, в основе которой лежит интегративная деятельность нейрона. Упорядоченная последовательность физико-химических процессов, протекающие в организме при действии сенсорного стимула, представляет объективную сторону функционирования сенсорных систем, которая может быть изучена методами физики, химии, физиологии.

Развивающиеся в ЦНС физико-химические процессы приводят к возникновению субъективного ощущения. Например, электромагнитные колебания с длиной волны 400 нм вызывают ощущение «Я вижу голубой цвет». Ощущение обычно интерпретируется на основе предшествующего опыта, что приводит к возникновению восприятия «Я вижу небо». Возникновение ощущения и восприятия отражает субъективную сторону работы сенсорных систем. Принципы и закономерности возникновения субъективных ощущений и восприятий изучаются методами психологии, психофизики, психофизиологии.

Целью данной курсовой работы является анализ сенсорных систем, их функционирование и адаптация.

Основными задачами являются:

1) анализ физиологии сенсорных систем;

2) дать характеристику анализаторов человека, их особенности и функции.

Восприятие не есть простое фотографическое отображение окружающего сенсорными системами. Хорошей иллюстрацией этого факта являются двузначные картинки - одно и тоже изображение может восприниматься по-разному. Объективная сторона восприятия принципиально сходна у разных людей. Субъективная сторона всегда индивидуальна и определяется особенностями личности субъекта, его опытом, мотивациями и т.п.

Раздел 1. Общая физиология сенсорных систем

1.1 Понятие о сенсорной системе, методы ее исследование

Сенсорной системой (анализатором, по И. П. Павлову) называют часть нервной системы, состоящую из воспринимающих элементов -- сенсорных рецепторов, получающих стимулы из внешней или внутренней среды, нервных путей, передающих информацию от рецепторов в мозг, и тех частей мозга, которые перерабатывают эту информацию. Таким образом, сенсорная система вводит информацию в мозг и анализирует ее. Работа любой сенсорной системы начинается с восприятия рецепторами внешней для мозга физической или химической энергии, трансформации ее в нервные сигналы и передачи их в мозг через цепи нейронов. Процесс передачи сенсорных сигналов сопровождается многократным их преобразованием и перекодированием и завершается высшим анализом и синтезом (опознанием образа), после чего формируется ответная реакция организма [5].

Информация, поступающая в мозг, необходима для простых и сложных рефлекторных актов вплоть до психической деятельности человека. И. М. Сеченов писал, что «психический акт не может явиться в сознании без внешнего чувственного возбуждения». Переработка сенсорной информации может сопровождаться, но может и не сопровождаться осознанием стимула. Если осознание происходит, говорят об ощущении. Понимание ощущения приводит к восприятию.

И. П. Павлов считал анализатором совокупность рецепторов {периферический отдел анализатора), путей проведения возбуждения (проводниковый отдел), а также нейронов, анализирующих раздражитель в коре мозга (центральный отдел анализатора).

Методы исследования сенсорных систем. Для изучения сенсорных систем используют электрофизиологические, нейрохимические, поведенческие и морфологические исследования на животных, психофизиологический анализ восприятия у здорового и больного человека, методы картирования его мозга. Сенсорные функции также моделируют и протезируют.

Моделирование сенсорных функций позволяет изучать на биофизических или компьютерных моделях такие функции и свойства сенсорных систем, которые пока недоступны для экспериментальных методов. Протезирование сенсорных функций практически проверяет истинность наших знаний о них. Примером могут быть электро-фосфеновые зрительные протезы, которые восстанавливают зрительное восприятие у слепых людей разными сочетаниями точечных электрических раздражений зрительной области коры большого мозга.

1.2 Общие принципы организации сенсорных систем

Основными общими принципами построения сенсорных систем высших позвоночных животных и человека являются следующие.

Принцип многоканального проведения информации. Каждый нейрон сенсорного пути образует контакты с несколькими нейронами более высоких уровней (дивергенция). Поэтому нервные импульсы от одного рецептора проводятся к коре по нескольким цепочкам нейронов (параллельным каналам) (рис. 1). Параллельное многоканальное проведение информации обеспечивает высокую надежность работы сенсорных систем даже в условиях утраты отдельных нейронов (в результате заболевания или травмы), а также высокую скорость обработки информации в ЦНС [4].

Принцип двойственности проекций. Нервные импульсы от каждой сенсорной системы передаются в кору по двум принципиально различным путям - специфическому (мономодальному) и неспецифическому (мультимодальному).

Специфические пути проводят нервные импульсы от рецепторов только одной сенсорной системы, потому что на каждом нейроне такого проводящего пути конвергируют нейроны только одной сенсорной модальности (мономодальная конвергенция). Соответственно, каждая сенсорная система имеет свой специфический проводящий путь. Все специфические сенсорные пути проходят через ядра таламуса и образуют локальные проекции в коре больших полушарий, заканчиваясь в первичных проекционных зонах коры. Специфические сенсорные пути обеспечивают начальную обработку сенсорной информации и проведение ее в кору больших полушарий.

На нейронах неспецифического пути конвергируют нейроны разных сенсорных модальностей (мультимодальная конвергенция). Поэтому в неспецифическом сенсорном пути происходит интегрирование информации от всех сенсорных систем организма. Неспецифический путь передачи информации проходит в составе ретикулярной формации и образует обширные диффузные проекции в проекционных и ассоциативных зонах коры.

Неспецифические пути обеспечивают мультибиологическую обработку сенсорной информации и обеспечивают поддержание оптимального уровня возбуждения в коре больших полушарий [11].

Принцип соматотопической организации характеризует только специфические сенсорные пути. Согласно этому принципу, возбуждение от соседних рецепторов поступает в рядом расположенные участки подкорковых ядер и коры. Т.е. воспринимающая поверхность какого-либо чувствительного органа (сетчатка глаза, кожа) как бы проецируется на кору больших полушарий.

Принцип нисходящего контроля. Возбуждение в сенсорных путях проводится в одном направлении - от рецепторов в коре больших полушарий. Однако, нейроны, входящие в состав сенсорных путей, находятся под нисходящим контролем вышележащих отделов ЦНС. Такие связи позволяют, в частности, блокировать передачу сигналов в сенсорных системах. Предполагается, что этот механизм может лежать в основе явления избирательного внимания.

На следующих уровнях зрительной системы формируется «расширяющаяся воронка»: число нейронов в первичной проекционной области зрительной области коры в тысячи раз больше, чем ганглиозных клеток сетчатки. В слуховой и в ряде других сенсорных систем от рецепторов к коре большого мозга идет «расширяющаяся воронка». Физиологический смысл «суживающейся воронки» заключается в уменьшении избыточности информации, а«расширяющейся» -- в обеспечении дробного и сложного анализа разных признаков сигнала; дифференциация сенсорной системы по вертикали и по горизонтали. Дифференциация по вертикали заключается в образовании отделов, каждый из которых состоит из нескольких нейронных слоев. Таким образом, отдел представляет собой более крупное морфофункциональное образование, чем слой нейронов. Каждый отдел (например, обонятельные луковицы, кохлеарные ядра слуховой системы или коленчатые тела) осуществляет определенную функцию. Дифференциация по горизонтали заключается в различных свойствах рецепторов, нейронов и связей между ними в пределах каждого из слоев. Так, в зрении работают два параллельных нейронных канала, идущих от фоторецепторов к коре большого мозга и по-разному перерабатывающих информацию, поступающую от центра и от периферии сетчатки глаза.

1.3Основные характеристики ощущений

Субъективное ощущение, возникающее в результате действия сенсорного стимула, обладает рядом характеристик, т.е. позволяет определить ряд параметров действующего раздражителя:

* качество (модальность),

* интенсивность,

* временные характеристики (момент начала и окончания действия раздражителя, динамику силы раздражителя),

* пространственная локализация.

Кодирование качества раздражителя в ЦНС основано на принципе специфичности сенсорных систем и принципе соматотопической проекции. Любая последовательность нервных импульсов, возникших в проводящих путях и корковых проекционных зонах зрительной сенсорной системы, будет вызывать зрительные ощущения [14].

Кодирование временных характеристик невозможно отделить от кодирования интенсивности. При изменении во времени силы действующего стимула, будет изменяться и частота потенциалов действия, образующихся в рецепторе. При длительном действии раздражителя постоянной силы частота потенциалов действия постепенно снижается, поэтому генерация нервных импульсов может прекращаться еще до прекращения действия раздражителя.

Кодирование пространственной локализации Организм может достаточно точно определять локализацию многих раздражителей в пространстве. Механизм определения пространственной локализации раздражителей основывается на принципе соматотопической организации сенсорных путей.

Обнаружение сигналов. Оно начинается в рецепторе -- специализированной клетке, эволюционно приспособленной к восприятию раздражителя определенной модальности из внешней или внутренней среды и преобразованию его из физической или химической формы в форму нервного возбуждения.

Классификация рецепторов. В практическом отношении наиболее важное значение имеет психофизиологическая классификация рецепторов по характеру ощущений, возникающих при их раздражении. Согласно этой классификации, у человека различают зрительные, слуховые, обонятельные, вкусовые, осязательные рецепторы, термо-, проприо- и вестибулорецепторы (рецепторы положения тела и его частей в пространстве) и рецепторы боли.

Существуют рецепторы внешние (экстерорецепторы) и внутренние (интерорецепторы). К экстерорецепторам относятся слуховые, зрительные, обонятельные, вкусовые, осязательные. К интерорецепторам относятся вестибуло- и проприорецепторы (рецепторы опорно-двигательного аппарата), а также висцерорецепторы (сигнализирующие о состоянии внутренних органов).

По характеру контакта со средой рецепторы делятся на дистантные, получающие информацию на расстоянии от источника раздражения (зрительные, слуховые и обонятельные), и контактные -- возбуждающиеся при непосредственном соприкосновении с раздражителем (вкусовые, тактильные).

В зависимости от природы раздражителя, на который они оптимально настроены, рецепторы могут быть разделены на фоторецепторы, механорецепторы, к которым относятся слуховые, вестибулярные рецепторы, и тактильные рецепторы кожи, рецепторы опорно-двигательного аппарата, барорецепторы сердечно-сосудистой системы; хеморецепторы, включающие рецепторы вкуса и обоняния, сосудистые и тканевые рецепторы; терморецепторы (кожи и внутренних органов, а также центральные термочувствительные нейроны); болевые (ноцицептивные) рецепторы [2].

Все рецепторы делятся на первично-чувствующие и вторично-чувствующие. К первым относятся рецепторы обоняния, тактильные и проприорецепторы. Они различаются тем, что преобразование энергии раздражения в энергию нервного импульса происходит у них в первом нейроне сенсорной системы. К вторично-чувствующим относятся рецепторы вкуса, зрения, слуха, вестибулярного аппарата. У них между раздражителем и первым нейроном находится специализированная рецепторная клетка, не генерирующая импульсы. Таким образом, первый нейрон возбуждается не непосредственно, а через рецепторную (не нервную) клетку.

Общие механизмы возбуждения рецепторов. При действии стимула на рецепторную клетку происходит преобразование энергии внешнего раздражения в рецепторный сигнал, или трансдукция сенсорного сигнала. Этот процесс включает в себя три основных этапа: 1) взаимодействие стимула, т. е. молекулы пахучего или вкусового вещества (обоняние, вкус), кванта света (зрение) или механической силы (слух, осязание) с рецепторной белковой молекулой, которая находится в составе клеточной мембраны рецепторной клетки; 2) внутриклеточные процессы усиления и передачи сенсорного стимула в пределах рецепторной клетки; и 3) открывание находящихся в мембране рецептора ионных каналов, через которые начинает течь ионный ток, что, как правило, приводит к деполяризации клеточной мембраны рецепторной клетки (возникновению так называемого рецепторного потенциала). В первично-чувствующих рецепторах этот потенциал действует на наиболее чувствительные участки мембраны, способные генерировать потенциалы действия -- электрические нервные импульсы. Во вторично-чувствующих рецепторах рецепторный потенциал вызывает выделение квантов медиатора из пресинаптического окончания рецепторной клетки. Медиатор (например, ацетилхолин), воздействуя на постсинаптическую мембрану первого нейрона, изменяет ее поляризацию (генерируется постсинаптический потенциал). Постсинаптический потенциал первого нейрона сенсорной системы называют генераторным потенциалом, так как он вызывает генерацию импульсного ответа. В первично-чувствующих рецепторах рецепторный и генераторный потенциалы -- одно и то же.

Абсолютную чувствительность сенсорной системы измеряют порогом реакции. Чувствительность и порог -- обратные понятия: чем выше порог, тем ниже чувствительность, и наоборот. Обычно принимают за пороговую такую силу стимула, вероятность восприятия которого равна 0,5 или 0,75 (правильный ответ о наличии стимула в половине или в 3/4 случаев его действия). Более низкие значения интенсивности считаются подпороговыми, а более высокие -- надпороговыми. Оказалось, что и в подпороговом диапазоне реакция на сверхслабые раздражители возможна, но она неосознаваема (не доходит до порога ощущения). Так, если снизить интенсивность вспышки света настолько, что человек уже не может сказать, видел он ее или нет, от его руки можно зарегистрировать неощущаемую кожно-гальваническую реакцию на данный сигнал [10].

Чувствительность рецепторных элементов к адекватным раздражителям, к восприятию которых они эволюционно приспособлены, предельно высока. Так, обонятельный рецептор может возбудиться при действии одиночной молекулы пахучего вещества, фоторецептор -- одиночным квантом света. Чувствительность слуховых рецепторов также предельна: если бы она была выше, мы слышали бы постоянный шум из-за теплового движения молекул.

Различение сигналов. Важная характеристика сенсорной системы -- способность замечать различия в свойствах одновременно или последовательно действующих раздражителей. Различение начинается в рецепторах, но в этом процессе участвуют нейроны всей сенсорной системы. Оно характеризует то минимальное различие между стимулами, которое сенсорная система может заметить (дифференциальный, или разностный, порог).

Порог различения интенсивности раздражителя практически всегда выше ранее действовавшего раздражения на определенную долю (закон Вебера).

Пространственное различение основано на распределении возбуждения в слое рецепторов и в нейронных слоях. Так, если два раздражителя возбудили два соседних рецептора, то различение этих раздражителей невозможно и они будут восприняты как единое целое. Необходимо, чтобы между двумя возбужденными рецепторами находился хотя бы один невозбужденный. Для временного различения двух раздражений необходимо, чтобы вызванные ими нервные процессы не сливались во времени и чтобы сигнал, вызванный вторым стимулом, не попадал в рефрактерный период от предыдущего раздражения.

Передача и преобразование сигналов. Процессы преобразования и передачи сигналов в сенсорной системе доносят до высших центров мозга наиболее важную (существенную) информацию о раздражителе в форме, удобной для его надежного и быстрого анализа [8].

Преобразования сигналов могут быть условно разделены на пространственные и временные. Среди пространственных преобразований выделяют изменения соотношения разных частей сигнала. Так, в зрительной и соматосенсорной системах на корковом уровне значительно искажаются геометрические пропорции представительства отдельных частей тела или частей поля зрения. В зрительной области коры резко расширено представительство информационно наиболее важной центральной ямки сетчатки при относительном сжатии проекции периферии поля зрения («циклопический глаз»). В соматосенсорной области коры также преимущественно представлены наиболее важные для тонкого различения и организации поведения зоны -- кожа пальцев рук и лица («сенсорный гомункулюс»).

Для временных преобразований информации во всех сенсорных системах типично сжатие, временная компрессия сигналов: переход от длительной (тонической) импульсации нейронов на нижних уровнях к коротким (фазическим) разрядам нейронов высоких уровней.

Ограничение избыточности информации и выделение существенных признаков сигналов. Зрительная информация, идущая от фоторецепторов, могла бы очень быстро насытить все информационные резервы мозга. Избыточность сенсорных сообщений ограничивается путем подавления информации о менее существенных сигналах. Менее важно во внешней среде то, что неизменно либо изменяется медленно во времени и в пространстве. Например, на сетчатку глаза длительно действует большое световое пятно. Чтобы не передавать все время в мозг информацию от всех возбужденных рецепторов, сенсорная система пропускает в мозг сигналы только о начале, а затем о конце раздражения, причем до коры доходят сообщения только от рецепторов, которые лежат по контуру возбужденной области.

Кодирование информации. Кодированием называют совершаемое по определенным правилам преобразование информации в условную форму -- код. В сенсорной системе сигналы кодируются двоичным кодом, т. е. наличием или отсутствием электрического импульса в тот или иной момент времени. Такой способ кодирования крайне прост и устойчив к помехам. Информация о раздражении и его параметрах передается в виде отдельных импульсов, а также групп или «пачек» импульсов («залпов» импульсов). Амплитуда, длительность и форма каждого импульса одинаковы, но число импульсов в пачке, частота их следования, длительность пачек и интервалов между ними, а также временной «рисунок» пачки различны и зависят от характеристик стимула. Сенсорная информация кодируется также числом одновременно возбужденных нейронов, а также местом возбуждения в нейронном слое.

Особенности кодирования в сенсорных системах. В отличие от телефонных или телевизионных кодов, которые декодируются восстановлением первоначального сообщения в исходном виде, в сенсорной системе такого декодирования не происходит. Еще одна важная особенность нервного кодирования -- множественность и перекрытие кодов. Так, для одного и того же свойства сигнала (например, его интенсивности) сенсорная система использует несколько кодов: частотой и числом импульсов в пачке, числом возбужденных нейронов и их локализацией в слое. В коре большого мозга сигналы кодируются последовательностью включения параллельно работающих нейронных каналов, синхронностью ритмических импульсных разрядов, изменением их числа. В коре используется также позиционное кодирование. Оно заключается в том, что какой-то признак раздражителя вызывает возбуждение определенного нейрона или небольшой группы нейронов, расположенных в определенном месте нейронного слоя. Например, возбуждение небольшой локальной группы нейронов зрительной области коры означает, что в определенной части поля зрения появилась световая полоска определенного размера и ориентации.

Для периферических отделов сенсорной системы типично временное кодирование признаков раздражителя, а на высших уровнях происходит переход к преимущественно пространственному (в основном позиционному) коду.

Детектирование сигналов. Это избирательное выделение сенсорным нейроном того или иного признака раздражителя, имеющего поведенческое значение. Такой анализ осуществляют нейроны-детекторы, избирательно реагирующие лишь на определенные параметры стимула. Так, типичный нейрон зрительной области коры отвечает разрядом лишь на одну определенную ориентацию темной или светлой полоски, расположенной в определенной части поля зрения. При других наклонах той же полоски ответят другие нейроны. В высших отделах сенсорной системы сконцентрированы детекторы сложных признаков и целых образов. Примером могут служить детекторы лица, найденные недавно в нижневисочной области коры обезьян (предсказанные много лет назад, они были названы «детекторы моей бабушки»). Многие детекторы формируются в онтогенезе под влиянием окружающей среды, а у части из них детекторные свойства заданы генетически [6].

Опознание образов. Это конечная и наиболее сложная операция сенсорной системы. Она заключается в отнесении образа к тому или иному классу объектов, с которыми ранее встречался организм, т. е. в классификации образов. Синтезируя сигналы от нейронов-детекторов, высший отдел сенсорной системы формирует «образ» раздражителя и сравнивает его с множеством образов, хранящихся в памяти. Опознание завершается принятием решения о том, с каким объектом или ситуацией встретился организм. В результате этого происходит восприятие, т. е. мы осознаем, чье лицо видим перед собой, кого слышим, какой запах чувствуем.

Опознание часто происходит независимо от изменчивости сигнала. Мы надежно опознаем, например, предметы при различной их освещенности, окраске, размере, ракурсе, ориентации и положении в поле зрения. Это означает, что сенсорная система формирует независимый от изменений ряда признаков сигнала (инвариантный) сенсорный образ.

1.4 Механизмы переработки информации в сенсорной системе

Переработку информации в сенсорной системе осуществляют процессы возбудительного и тормозного межнейронного взаимодействия. Возбудительное взаимодействие заключается в том, что аксон каждого нейрона, приходя в вышележащий слой сенсорной системы, контактирует с несколькими нейронами, каждый из которых получает сигналы от нескольких клеток предыдущего слоя.

Совокупность рецепторов, сигналы которых поступают на данный нейрон, называют его рецептивным полем. Рецептивные поля соседних нейронов частично перекрываются. В результате такой организации связей в сенсорной системе образуется так называемая нервная сеть. Благодаря ей повышается чувствительность системы к слабым сигналам, а также обеспечивается высокая приспособляемость к меняющимся условиям среды.

Тормозная переработка сенсорной информации основана на том, что обычно каждый возбужденный сенсорный нейрон активирует тормозный интернейрон. Интернейрон в свою очередь подавляет импульсацию как самого возбудившего его элемента (последовательное, или возвратное, торможение), так и его соседей по слою (боковое, или латеральное, торможение). Сила этого торможения тем больше, чем сильнее возбужден первый элемент и чем ближе к нему соседняя клетка. Значительная часть операций по снижению избыточности и выделению наиболее существенных сведений о раздражителе производится латеральным торможением.

1.5 Адаптация и взаимодействие сенсорной системы

Сенсорная система обладает способностью приспосабливать свои свойства к условиям среды и потребностям организма. Сенсорная адаптация -- общее свойство сенсорных систем, заключающееся в приспособлении к длительно действующему (фоновому) раздражителю. Адаптация проявляется в снижении абсолютной и повышении дифференциальной чувствительности сенсорной системы. Субъективно адаптация проявляется в привыкании к действию постоянного раздражителя (например, мы не замечаем непрерывного давления на кожу привычной одежды).

Адаптационные процессы начинаются на уровне рецепторов, охватывая и все нейронные уровни сенсорной системы. Адаптация слаба только в вестибуло- и проприорецепторах. По скорости данного процесса все рецепторы делятся на быстро- и медленно адаптирующиеся. Первые после развития адаптации практически не посылают в мозг информации о длящемся раздражении. Вторые эту информацию передают в значительно ослабленном виде. Когда действие постоянного раздражителя прекращается, абсолютная чувствительность сенсорной системы восстанавливается. Так, в темноте абсолютная чувствительность зрения резко повышается [15].

В сенсорной адаптации важную роль играет эфферентная регуляция свойств сенсорной системы. Она осуществляется за счет нисходящих влияний более высоких на более низкие ее отделы. Происходит как бы перенастройка свойств нейронов на оптимальное восприятие внешних сигналов в изменившихся условиях. Состояние разных уровней сенсорной системы контролируется также ретикулярной формацией, включающей их в единую систему, интегрированную с другими отделами мозга и организма в целом. Эфферентные влияния в сенсорных системах чаще всего имеют тормозной характер, т. е. приводят к уменьшению их чувствительности и ограничивают поток афферентных сигналов.

Общее число эфферентных нервных волокон, приходящих к рецепторам или элементам какого-либо нейронного слоя сенсорной системы, как правило, во много раз меньше числа афферентных нейронов, приходящих к тому же слою. Это определяет важную особенность эфферентного контроля в сенсорных системах: его широкий и диффузный характер. Речь идет об общем снижении чувствительности значительной части нижележащего нейронного слоя.

Взаимодействие сенсорных систем осуществляется на спинальном, ретикулярном, таламическом и корковом уровнях. Особенно широка интеграция сигналов в ретикулярной формации. В коре большого мозга происходит интеграция сигналов высшего порядка. В результате образования множественных связей с другими сенсорными и неспецифическими системами многие корковые нейроны приобретают способность отвечать на сложные комбинации сигналов разной модальности. Это особенно свойственно нервным клеткам ассоциативных областей коры больших полушарий, которые обладают высокой пластичностью, что обеспечивает перестройку их свойств в процессе непрерывного обучения опознанию новых раздражителей. Межсенсорное (кроссмодальное) взаимодействие на корковом уровне создает условия для формирования «схемы (или карты) мира» и непрерывной увязки, координации с ней собственной «схемы тела» организма.

1.6Классификации рецепторов

Рецепторы различают по специфической чувствительности к разным стимулам, по строению и местоположению. Специфическая чувствительность рецепторов к раздражителям различной природы (механическим, химическим, температурным и т. д.) обусловлена разными механизмами управления ионными каналами плазматических мембран, состояние которых определяет возникновение рецепторного потенциала и переход от физиологического покоя к возбуждению. Стимулы, к которым рецепторы наиболее чувствительны, называются адекватными (лат. adaequatus -- приравненный).

Механорецепторы возбуждаются сильнее всего вследствие деформации их клеточной мебраны при давлении или растяжении, к ним относятся тактильные рецепторы кожи, проприоцепторы мышц и сухожилий, слуховые и вестибулярные рецепторы во внутреннем ухе, барорецепторы и волюморецепторы, находящиеся во внутренних органах и кровеносных сосудах. Хеморецепторы возбуждаются вследствие присоединения к ним определенных химических молекул, они представлены обонятельными и вкусовыми рецепторами, а также хемочувствительными рецепторами внутренних органов и кровеносных сосудов.

Для расположенных в сетчатке глаза фоторецепторов адекватным раздражителем являются поглощенные ими кванты света, для терморецепторов (холодовых и тепловых) -- изменения температуры [3].

Большинство рецепторов возбуждаются в ответ на действие стимулов только одной физической природы и поэтому относятся к мономодальным. Их можно возбудить и некоторыми неадекватными раздражителями, например фоторецепторы -- сильным давлением на глазное яблоко, а вкусовые рецепторы -- прикосновением языка к контактам гальванической батареи, но получить качественно различаемые ощущения в таких случаях невозможно. Наряду с мономодальными существуют полимодальные рецепторы, адекватными стимулами которых могут служить раздражители разной природы. К такому типу рецепторов принадлежат некоторые болевые рецепторы, или ноцицепторы (лат. nocens -- вредный), которые можно возбудить механическими, термическими и химическими стимулами. Полимодальность имеется у терморецепторов, реагирующих на повышение концентрации калия во внеклеточном пространстве так же, как на повышение температуры.

В зависимости от строения рецепторов их подразделяют на первичные, или первичночувствующие, которые являются специализированными окончаниями чувствительного нейрона, и вторичные, или вторичночувствующие, представляющие собой клетки эпителиального происхождения, способные к образованию рецепторного потенциала в ответ на действие адекватного стимула. Первичночувствующие рецепторы могут сами генерировать потенциалы действия в ответ на раздражение адекватным стимулом, если величина их рецепторного потенциала достигнет пороговой величины. К ним относятся обонятельные рецепторы, большинство механорецепторов кожи, терморецепторы, болевые рецепторы или ноцицепторы, проприоцепторы и большинство интерорецепторов внутренних органов.

Вторичночувствующие рецепторы отвечают на действие раздражителя лишь возникновением рецепторного потенциала, от величины которого зависит количество выделяемого этими клетками медиатора. С его помощью вторичные рецепторы действуют на нервные окончания чувствительных нейронов, генерирующих потенциалы действия в зависимости от количества медиатора, выделившегося из вторичночувствующих рецепторов. Вторичные рецепторы представлены вкусовыми, слуховыми и вестибулярными рецепторами, а также хемочувствительными клетками синокаротидного клубочка. Фоторецепторы сетчатки, имеющие общее происхождение с нервными клетками, чаще относят к первичным рецепторам, но отсутствие у них способности генерировать потенциалы действия указывает на их сходство с вторичными рецепторами [6].

В зависимости от источника адекватных стимулов рецепторы подразделяют на наружные и внутренние, или экстерорецепторы и интерорецепторы; первые стимулируются при действии раздражителей внешней среды (электромагнитные и звуковые волны, давление, действие пахучих молекул), а вторые -- внутренней (к этому типу рецепторов относят не только висцерорецепторы внутренних органов, но также проприоцепторы и вестибулярные рецепторы). В зависимости от того, действует стимул на расстоянии или непосредственно на рецепторы, их подразделяют еще на дистантные и контактные.

Раздел 2. Характеристика анализаторов человека

2.1Кожный анализатор

У животных, даже обладающих самой примитивной нервной системой, имеются рецепторы, расположенные на поверхности тела и чувствительные к внешним раздражениям. У кишечнополостных они мало специализированы и реагируют на действия различных раздражителей. В процессе эволюционного развития происходила дифференциация структуры функции этих рецепторов. Соответственно дифференцировался и центральный отдел анализатора. В результате первичный анализатор общей чувствительности поверхности тела дал начало ряду специализированных анализаторов: вкусовому, обонятельному, боковой линии (у рыб), вестибулярному, слуховому и зрительному. Функциональное обособление этих анализаторов не только не снизило значения рецепторной функции кожного покрова, но, наоборот, способствовало ее специализации в определенных направлениях. Так, у многих млекопитающих большое значение приобрела волосковая чувствительность (волоски на летательных перепонках летучих мышей, «усы» ночных хищников). У человека кожный анализатор играет существенную роль в познании внешнего мира. Через рецепторы кожи человек получает представление о плотности и упругости тел, их поверхности (гладкость, шершавость и пр.), температуре и т. д. У ребенка первые представления о форме предметов, об их величине и пространственном соотношении развиваются на основе совместной деятельности нескольких анализаторов, к числу которых наряду со зрительным, двигательным и другими относится и кожный. Не менее велико значение кожного анализатора как источника рефлекторных реакций, особенно оборонительных [16].

Прилагая слабое электрическое раздражение к различным соседним точкам кожи, можно вызвать раздельные ощущения прикосновения, тепла, холода и боли (ощущение легкого укола). Тот же эффект дает раздражение кожи тонкой иглой или щетинкой. На основании этих наблюдений выделяют тактильные, тепловые, холодовые и болевые рецепторы кожи и соответственно четыре вида кожной чувствительности. Их раздельное существование подтверждается отсутствием определенных видов чувствительности в отдельных участках кожи и слизистых оболочек, а также частичной потерей чувствительности при воздействии на кожу некоторыми химическими веществами. Так, новокаин вызывает потерю чувствительности к холоду, а затем к боли и некоторое ее снижение к теплу, тогда как тактильная чувствительность не изменяется.

Каждый вид кожной чувствительности связан с определенными структурными особенностями рецепторных аппаратов (рис. 2). Тактильные рецепторы, воспринимающие прикосновение и давление, имеют различное строение. Одни из них, оплетающие волосяную луковицу, обладают большой чувствительностью к малейшим колебаниям волоса. Другие обычно расположенные под самым эпидермисом в сосочках кожи, встречаются там, где отсутствуют волосы, а также в слизистой оболочке кончика языка. Особые рецепторы, которые находятся главным образом в подкожной клет­чатке. возбуждаются не при легком прикосновении к коже, а при надавливании на нее.

Рeцeптopы тепловые и холодовые (т. е. температурной чувствительности) расположены на различной глубине в собственно коже) и в верхних слоях подкожной клетчатки. Опытами с введением в кожу термоэлектрической иглы на различную глубину установлено, что холодовые рецепторы находятся ближе к поверхности, а тепловые в более глубоких слоях кожи.

Свободные нервные окончания в эпидермисе и в собственно коже, по-видимому, осуществляют болевую рецепцию. Однако достаточно сильное раздражение других рецепторов также может вызвать болевое ощущение [14].

Тщательное исследование кожи путем точечного раздражения отдельных ее пунктов выявило неодинаковое распределение различных видов чувствительности. В среднем, не считая волосистой части головы, приходится: болевых точек около 50 на 1 кв. см, а на всей поверхности кожи около миллиона; тактильных примерно вдвое меньше; холодовых в 4 раза меньше (12 на 1 кв. см); тепловых 1--2 на 1 кв. см или всего около 25 000. В коже различных областей тела количество и соотношение точек разных видов чувствительности сильно варьирует. На 1 кв. см кожи головы или ладонной стороны ногтевых фаланг кисти приходится более 100 тактильных точек, а на таком же участке кожи голени всего лишь 9--10. В то же время кожа лица содержит тепловых точек в 2--3 раза больше, а холодовых несколько меньше, чем кожа ногтевых фаланг.

Пороги раздражения и пространственного различения.

Различное в отдельных областях кожи количество чувствительных точек, а также особенности структуры и глубины залегания соответствующих рецепторов обусловливают неодинаковые пороги адекватного раздражения разных участков кожи. Так, порог тактильного раздражения для кожи кончика носа или ладонной стороны ногтевой фаланги пальцев руки раз в 10--15 меньше, чем для кожи живота и спины. Относительно редкое расположение холодовых и особенно тепловых точек приводит к тому, что температурное раздражение очень ограниченного участка кожи может совсем не вызвать соответствующего ощущения. В области голени, бедра и живота ощущение тепла иногда отсутствует даже в том случае, если площадь раздражаемого участка кожи превышает 1 кв. см.

Порог раздражения кожного анализатора зависит также от величины раздражаемой поверхности. Интенсивность температурного ощущения тем выше, чем большая поверхность кожи (например, руки) погружена в холодную или теплую воду.

Если одновременно прикасаться к двум соседним точкам кожи, то в зависимости от расстояния между ними можно получить ощущение либо одного, либо двух раздельных прикосновений. По наименьшему расстоянию между раздражаемыми точками кожи, при котором еще ощущается двойное прикосновение, можно судить о пороге пространственного различения тактильных раздражении (дискриминационная, 1Гли различительная, чувствительность). Для определения этого порога пользуются специальным прибором -- эстезиометром. Он состоит из двух ножек с очень тонким, но. слегка притупленным концом; одна из них неподвижна, а другая передвигается вдоль разлинованной шкалы и может быть закреплена на любом расстоянии от первой. Исследования показали, что порог пространственного различения примерно равен: на кончике языка 1 мм, на ладонной стороне ногтевой фаланги пальцев руки 2 мм, на кончике носа 6--7 мм, на лбу 20--25 мм, на плече и предплечье 25--40 мм, на спине и груди 40--70 мм.

Кожные рецепторы проявляют резко выраженную адаптацию к непрерывно длящимся раздражениям. Надавливание на кожу или прикосновение к ней вызывает появление в соответствующих рецепторах и афферентных волокнах потенциалов действия, следующих друг за другом с большой частотой. Однако почти тотчас же потенциалы начинают становиться все более редкими, а через несколько секунд совсем исчезают. Соответственно 'прекращается и ощущение давления или прикосновения [10].

Относительную адаптацию к теплу и холоду легко обнаружить, 1 если одну руку опустить в воду, охлажденную до 15°, а другую -- в воду, нагретую до 45°: при последующем переносе обеих рук в воду, имеющую температуру 30°, получается ясное ощущение, что одна рука находится в теплой воде, а другая -- в холодной. Опыты показывают, что температурные ощущения зависят не только от абсолютной температуря раздражителя, но также и от состояния кожи, т. е. ее температуры и адаптации к теплу или холоду.

Проводящие пути кожного анализатора.

Афферентные волокна, связанные с различными видами кожной чувствительности, отли­чаются друг от друга толщиной миэлиновой оболочки, а следовательно, и скоростью проведения импульсов. По волокнам безмякотным и обладающим тонкой миэлиновой оболочкой поступают импульсы, связанные с температурной, болевой, а отчасти и так­тильной чувствительностью. Волокна второго нейрона проводящих путей перекрещиваются, и направляются к ядрам багров промежуточного мозга, где находятся тела третьего нейрона, проводящего импульсы к коре больших полушарий.

Через боковые ответвления (коллатерали) нервных волокон и через промежуточные (вставочные) нейроны импульсы, идущие от кожных рецепторов, могут переходить в спинном мозгу на эфферентные пути. Часть волокон направляется к бугоркам четверо­холмия, при участии которых осуществляются такие рефлекторные реакции на раздражение кожи, как поворот головы, движение глаз, настораживание и т. п.

Анализ и синтез кожных раздражении. В опыте на спинномозговом препарате животного можно обнаружить элементарный пространственный анализ, проявляющийся в различных рефлекторных двигательных реакциях в зависимости от места раздражения. Наличие четырех основных видов кожной чувствительности, связанных с различными рецепторами, создает возможность качественного периферического анализа раздражении.

В известной мере анализ, а также и синтез может продолжаться и .в проводящих путях, особенно в соответствующих ядрах бугров промежуточного мозга. Здесь взаимодействие импульсов, идущих от разных участков кожи и от разных ее рецепторов, может определять как ответную реакцию, осуществляемую через подкорковые двигательные ядра, так и судьбу тех импульсов, которые направляются в кору больших полушарий. В буграх же происходит взаимодействие импульсов, относящихся к разным анализаторам, что, по-видимому, служит источником тех неясных, смутных ощущений общего состояния организма, которые принято называть низшими эмоциями.

Высший анализ и синтез раздражении, связанный с образованием положительных и отрицательных условных рефлексов, происходит в корковом отделе анализатора. Здесь возникают связи между определенными комбинациями очагов возбуждения в кожном анализаторе и теми очагами, которые появляются в коре под влиянием раздражении, падающих на другие анализаторы. Опыты на собаках показали, что можно выработать условные рефлексы на самые различные тактильные, температурные и болевые раздражения, сочетая их с действием тех или иных безусловных раздражите­лей. Очень сходные раздражения, как правило, легко могут быть отдифференцированы. Так, удается выработать дифференцировку на тактильные раздражители, приложенные к двум соседним участкам кожи, а также на различную силу или частоту раздражении [17].

Тонкий анализ и синтез раздражении приобретает особое значение в тех случаях, когда выбывают из строя другие анализаторы. Высокого совершенства аналитико-синтетическая деятельность кожного анализатора достигает у людей, потерявших зрение и слух. Примером может служить слепоглухонемая Ольга Скороходова, опубликовавшая в 1947 году книгу под названием «Как я воспринимаю окружающий мир». Малейшие колебания температуры, еле заметное движение воздуха, ничтожные детали ощупываемого предмета -- все это становилось источником определенных условных связей, позволяющих легко и быстро ориентироваться в окружающих явлениях.

Кожный анализатор как источник рефлекторных реакций.

Рефлекторные реакции возникают при раздражении рецепторов любого анализатора. Так, вкусовые и запаховые раздражители вызывают рефлексы со стороны органов пищеварения; в ответ на звуковое или световое раздражение может появиться ориентировочный рефлекс и т. д. Не составляет исключения и кожный анализатор. Сосудистые, двигательные и другие рефлексы легко возникают в ответ на различные раздражения кожи. Особое значение приобретают рефлексы на болевое раздражение.

Сильное болевое ощущение возникает при действии на кожу любых раздражителей, если они достигают большой интенсивности и оказывают повреждающее действие. Иными словами, болевыми раздражителями могут оказаться самые разнообразные физические и химические агенты, будь то тепло или холод, механическое воздействие (например, давление или растяжение), химические вещества и т. д. Следовательно, для рецепции боли адекватна не природа раздражителя, а интенсивность его воздействия на кожу.

Если в результате образования соответствующих условных рефлексов звуковые, зрительные и другие раздражители могут быть сигналами предстоящего повреждения организма, то болевое раздражение сигнализирует уже наступившее повреждение. В ответ на такой сигнал возникает оборонительная безусловно рефлекторная реакция; она направлена на устранение раздражителя или на удаление от него.

Оборонительная реакция на повреждающее болевое раздражение кожи не ограничивается тем или иным ответным двигательным актом. Она проявляется в значительных изменениях функций различных органов. Еще в 70-х годах прошлого века Павлов обнаружил, что в условиях острого опыта болевое раздражение вызывает резкое торможение секреторной функции пищеварительных желез. В дальнейшем было установлено, что под влиянием боли наступают рефлекторные изменения кровообращения, повышается свертываемость крови и увеличивается содержание в ней адреналина и сахара, нарушается функция почек и т. д. Иногда при сильном и внезапном раздражении наблюдаются остановка сердца и другие сильные изменения жизненно важных функций, в результате чего наступает гибель организма [7].

Таким образом, рефлекс на болевое раздражение представляет собой целостную реакцию всего организма. Характер этой реакции зависит как от состояния самого организма, так и от интенсивности повреждающего действия. Чаще всего болевое раздражение повышает возбудимость нервной системы и вызывает такие координиро­ванные реакции различных органов, которые облегчают протекание защитных функций организма.

2.2 Слуховой анализатор

У большинства беспозвоночных нет специальных тонорецепторов, чувствительных только к звуковым колебаниям. Однако у насекомых описаны специфические слуховые органы; они могут быть расположены в различных местах тела и состоят из тонкой натянутой перепонки, отделяющей наружный воздух от слуховой полости. С внутренней стороны перепонки находятся слуховые рецепторные клетки. При помощи этих органов некоторые насекомые могут воспринимать звуки очень большой частоты -- до 40 и даже до 90 тысяч колебаний в секунду.

Слуховой анализатор -- совокупность соматических, рецепторных и нервных структур, деятельность которых обеспечивает восприятие человеком и животными звуковых колебаний. С. а. состоит из наружного, среднего и внутреннего уха, слухового нерва, подкорковых релейных центров и корковых отделов.

Ухо является усилителем и преобразователем звуковых колебаний. Через барабанную перепонку, представляющую собой эластичную мембрану, и систему передаточных косточек -- молоточек, наковальню и стремечко -- звуковая волна доходит до внутреннего уха, вызывает колебательные движения в заполняющей его жидкости.

Внутреннее ухо, или улитка, представляет собой спиралеобразный ход, состоящий из двух с половиной витков. Заполняющая улитку жидкость -- пери- и эндолимфа -- практически несжимаема; поэтому при смещении стремечка вправо мембрана круглого окна прогибается влево, а возникающие колебания эндолимфы передаются волокнам расположенной вдоль улитки базилярной, или основной, мембраны и возбуждают специализированные механорецепторы -- волосковые клетки.

Волосковые клетки улитки являются основными аппаратами слуховой рецепции. Реагируя на колебания эндолимфы, они превращают улавливаемые звуковые колебания в нервные импульсы, передающие акустическую информацию по волокнам слухового нерва.

Возбуждение, возникающее в волокнах слухового нерва, направляется к центральным отделам нервной системы. Первым центром обработки акустической информации являются расположенные на уровне варолиева моста ядра слухового нерва, после чего она поступает к т.н. верхним оливам. Здесь происходит объединение сигналов, поступающих от левой и правой улитки. Затем афферентные пути слухового нерва направляются к нижним буграм четверохолмия, которые представляют собой элементарный рефлекторный центр слуховой системы. Именно здесь осуществляется передача слуховых импульсов на двигательные пути, в результате чего возникают такие, напр., реакции, как двигательное настораживание или сокращение зрачка в ответ на внезапно возникающий звук [9].

Далее мощный пучок нервных волокон идет к внутренним коленчатым телам, от которых начинается последняя часть слухового нерва. Его волокна направляются к поперечной извилине височной области коры, или извилине Гешля, представляющей собой корковый конец.

По своему строению извилина Гешля (поля 41-е и 42-е, по Бродману) очень близка к проекционной зрительной коре. Основное место в ней занимает 4-й афферентный слой, в котором и заканчиваются волокна слухового нерва. Как в зрительной проекционной области, так и в извилине Гешля были обнаружены признаки соматотопического строения. При этом волокна, передающие информацию о высоких тонах, заканчиваются в медиальных, а волокна, несущие информацию о низких тонах, -- в латеральных участках этой извилины. Существенным отличием корковых отделов слухового анализатора от зрительного является то, что здесь нет изолированного представительства каждого уха или его части в противоположном полушарии коры головного мозга. Моноуральные волокна направляются к обоим полушариям, и поэтому повреждение одной (напр., правой) извилины Гешля приводит лишь к незначительному снижению слуха, в несколько большей степени проявляющемуся в противоположном (левом) ухе.

Над первичными отделами слуховой коры, расположенными в извилине Гешля, надстроены вторичные отделы слуховой коры. Они находятся на наружной поверхности височной области, в пределах верхней височной извилины (поле 22-е, по Бродману). В их составе преобладают клетки верхних, ассоциативных слоев коры.

В отличие от первичной слуховой коры ее вторичные отделы не имеют соматотопического строения и представляют собой сложный интегрирующий аппарат, который обеспечивает сложные формы анализа и синтеза звуковой информации, делая возможным восприятие сложномузыкальных и речевых звуков, поэтому поражение вторичных отделов слуховой коры не приводит к снижению остроты слуха и выпадению восприятия простых звуков, вызывает нарушение различения мелодий в одних случаях или сложно построенных звуков речи в других.

2.3Вкусовой анализатор

Вкусовой анализатор, благодаря которому человек различает вкус разных веществ, оценивает вкусовые качества пищи, также состоит из периферического воспринимающего аппарата, проводникового и центрального отделов.


Подобные документы

  • Значение изучения анализаторов человека с точки зрения информационных технологий. Виды анализаторов человека, их характеристика. Физиология слухового анализатора как средства восприятия звуковой информации. Чувствительность слухового анализатора.

    реферат [1,0 M], добавлен 27.05.2014

  • Понятие, строение, функция сенсорной системы. Кодирование информации в ней. Строение и принцип работы вкусовой и обонятельной сенсорных систем. Опорная схема проводящих путей вкусового и обонятельного анализатора. Общий план строения сенсорных систем.

    контрольная работа [348,8 K], добавлен 09.10.2014

  • Адаптация как одно из ключевых понятий в экологии человека. Основные механизмы адаптации человека. Физиологические и биохимические основы адаптации. Адаптация организма к физическим нагрузкам. Снижение возбудимости при развитии запредельного торможения.

    реферат [22,8 K], добавлен 25.06.2011

  • Структурно-функциональная организация анализаторов, а также их периферические, проводниковые, центральные отделы. Устройство и функционирование соматовисцеральной, зрительной, слуховой и вестибулярной сенсорной системы. Обонятельный и вкусовой анализатор.

    презентация [6,0 M], добавлен 05.03.2015

  • Исследование рецепторов как сложных образований, состоящих из нервных окончаний, обеспечивающих превращение влияния раздражителей в нервный импульс. Классификация рецепторов и механизм физиологии рецепции. Адаптация рецепторов и сенсорные модальности.

    реферат [1,1 M], добавлен 19.02.2011

  • Рассмотрение функций сенсорных систем. Изучение механизмов восприятия и передачи звуковой информации. Определение частотного диапазона восприятия звуков. Описание строения вестибулярной сенсорной системы; ее значение для спортивной деятельности.

    контрольная работа [261,5 K], добавлен 28.12.2011

  • Исследование понятия биологических часов человека, способности организма чувствовать и измерять время. Ритм изменения функционального состояния человека. Адаптация организмов к смене дня и ночи. Обзор теории гормонального влияния на биоритмы человека.

    реферат [24,0 K], добавлен 08.03.2014

  • Теории образования временной связи условного рефлекса. Физиология кожной чувствительности человека. Стадии и механизм условного рефлекса. Афферентные раздражения кожно-кинестетического анализатора. Отношения между интенсивностью стимула и ответом.

    контрольная работа [1,4 M], добавлен 09.01.2015

  • Анализатор как единая система анализа информации, особенности ее структуры и взаимосвязь компонентов. Общее понятие и разновидности сенсорных систем, специфика и закономерности их функционирования, значение в жизни человека, типы и формы анализаторов.

    презентация [1,5 M], добавлен 01.01.2012

  • Понятие, строение и функции сенсорной системы, кодирование информации. Структурно-функциональная организация анализаторов. Свойства и особенности рецепторного и генераторного потенциалов. Цветовое зрение, зрительные контрасты и последовательные образы.

    контрольная работа [838,6 K], добавлен 05.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.