История и современные концепции геронтологии

Периодизация истории геронтологии. Период качественных, количественных, аналитических и кибернетических моделей. Генетика старения и долгожительства. Молекулярные и физиологические механизмы старения. Развитие геронтологии в современной России.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 07.06.2010
Размер файла 359,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство общего профессионального образования РФ

ШРМ №7

Реферат

По дисциплине: Биология

По теме: «Геронтология»

Выполнила:

Ученица 11-а класса

Щеглова Светлана Александровна

Руководитель:

Учитель биологии

Архильева Ирина Александровна

Серов - 2008

Содержание

Введение

1. Обзор истории геронтологии

1.1 Периодизация истории геронтологии

1.2 Период качественных моделей

1.3 Период количественных моделей

1.4 Период аналитических моделей

1.5 Период кибернетических моделей

2. Современные концепции в геронтологии

2.1 Генетика старения и долгожительства

2.2 Молекулярные механизмы старения

2.3 Физиологические механизмы старения

3. Развитие геронтологии в современной России

Заключение

Список использованной литературы

Приложения

Введение

Геронтология (греч. geron, geront[os] - cтарец + logos учение) - наука, изучающая феномен старения живых существ, в том числе человека. Впервые термин был предложен И.И.Мечниковым в 1903 г. Современная геронтология - междисциплинарная наука, в состав которой входят биология старения, клиническая геронтология (гериатрия), геронтопсихология и социальная геронтология (геронтогигиена).

Задача биологии старения - выяснение первичных механизмов старения организмов и популяций и факторов, определяющих продолжительность жизни. Изучение биологии старения включает как экспериментальные исследования на животных различных видов, так и клинические исследования людей в различные периоды жизни. Задачей клинической геронтологии (гериатрии), являющейся динамически развивающейся областью современной медицины, является изучение физиологических и патофизиологических особенностей старого человека, особенностей течения патологических процессов и заболеваний у него. Задачей геронтопсихологии является изучение особенностей психики и поведения лиц пожилого и преклонного возраста. Важным разделом геронтопсихологии является поведенческая геронтология, изучающая возрастные изменения поведения живых существ разных видов. Задача социальной гигиены (герогигиены) - выяснение влияния условий жизни и окружающей среды на старение и продолжительность жизни человека.

Фундаментальное значение геронтологии определяется ее направленностью на изучение наиболее существенных вопросов жизни, а именно ее продолжительности и смерти.

Однако в целом в геронтологии доминируют ее прикладные аспекты, поскольку возникновение и развитие геронтологии, происходившее в тесной связи с прогрессом биологии и медицины, было обусловлено прежде всего социально-биологической потребностью увеличить продолжительность жизни людей. В наибольшей степени эта потребность проявилась в последние годы из-за существенного постарения населения экономически развитых и развивающихся стран, т. е. увеличением в его структуре доли пожилых.

Актуальность выборной мною темы выражена тем, что в настоящее время геронтология подошла к такому этапу своего развития, когда она способна дать адекватный ответ на социальные запросы - задача продления жизни является основной во многих исследовательских проектах, ряд методов продления жизни уже используется в клинической практике, а анализ перспектив развития геронтологии показывает, что ее достижения в относительно недалеком будущем могут привести к значительному увеличению видовой продолжительности жизни людей. Во многом это связано с тем, что в течение последних десятилетий наблюдается беспрецедентное внедрение методов молекулярной биологии и генной инженерии в изучение живой природы, определившее кардинальные изменения в представлениях о природе старения, ставящие на повестку дня вмешательство в генетическую программу развития и старения человека.

Целью данной работы является изучение сущности геронтологии как науки. Для достижения поставленной цели потребовалось решить следующие задачи: обобщить научную литературу по данной тематике, раскрыть сущность геронтологии, осветить концепции геронтологии в прошлом, современные концепции, а также проанализировать развитие геронтологии в современной России.

1. Обзор истории геронтологии

1.1 Периодизация истории геронтологии

В качестве одного из ведущих критериев для периодизации истории геронтологии может быть рассмотрен факт появления нового типа моделей, применяемых для представления и получения геронтологического знания.

Для построения и исследования моделей, представляющих геронтологическое знание, необходимы:

1) соответствующие эмпирические данные (таблицы продолжительности жизни, статистические данные о возрастной динамике причин смерти и т. п.);

2) общие законы биологии, имеющие отношение к геронтологии (т. е. законы, описывающие эволюцию, наследственность, обмен веществ и т. п.);

3) частные законы предметной области - т. е. собственно геронтологические законы (уравнение Гомперца-Мейкема и т. п.);

4) методология моделирования (используемый тип моделей, математические методы, применяемые для их исследования, алгоритмы анализа исходных данных и верификации получаемых результатов и т. п.).

Именно эти четыре аспекта, существенные для рассмотрения геронтологии с точки зрения теории моделей, а также методы продления жизни, разработанные в рамках данного набора данных и теорий и при использовании существующей методологии, будут определяющими при рассмотрении исторического развития геронтологии.

Периодизация истории геронтологии с позиции теории моделей

Обзор представлений о природе, существовавших во времена античности и средневековья, показывает, что геронтология, биология в целом, а также и многие другие области науки находились тогда в стадии формирования. Наблюдения за природными явлениями либо существовали как слабо упорядоченные наборы эмпирических закономерностей, либо обобщались в теории, в основе которых лежали религиозные и философские представления, далекие от реальности. Во многом это может быть объяснено, что стимулом развития науки был не поиск истины, а аксиологические, прагматические мотивы. Только в отдельных, очень редких случаях, система представлений как о природе вообще, так и о живой природе в частности, более или менее правдоподобно отражала реальность, примером чего могут служить работы Аристотеля, которого принято считать основателем биологии как науки и автором первой попытки создания концептуальной модели организма как целостной системы. Таким образом, в этот период количество знаний о природе, уровень культурного развития общества, а также его интеллектуальный потенциал (количество образованных людей, пытающихся постичь законы природы) были недостаточными для получения истинного знания о природе, для формулировки правильных законов развития материи. Поскольку количественные данные о явлениях, имеющих отношение к геронтологии, были весьма незначительны, неточны и могли фиксироваться лишь как результаты единичных измерений из-за отсутствия статистических методов (в частности данные о продолжительности жизни человека и животных фиксировались как отдельные максимальные значения, относительно используемых моделей этот период может быть назван периодом качественных моделей.

Большинство историков считает, что геронтология возникла лишь в эпоху Возрождения. Тогда сумма знаний, культурный потенциал и потребности технологического развития позволили реализоваться рациональным механизмам познания. Это привело к появлению рациональной, критической философии, экспериментальной парадигмы и средств математического анализа - сущностным чертам современной науки. Однако, как видно из биологических воззрений того времени, сложность биологических феноменов, все еще недостаточный уровень биологического знания не позволили открыть специфические общебиологические законы, а значит, в тот период биология (а значит и геронтология) еще не была выделена из естествознания. В основном тогда использовались эмпирические закономерности (т. е. частные законы, не носившие общебиологического характера). Все это безусловно препятствовало прогрессу в понимании живой природы, хотя, по сравнению с предыдущим периодом, объем как биологических данных (в том числе количественных параметров, используемых при описании биологических феноменов), так и найденных эмпирических закономерностей колоссально увеличилось. Причем при описании геронтологических данных стали использоваться точные количественные закономерности. Например, при описании возрастной динамики (для составления таблиц продолжительности жизни и т. п.) начали применяться статистические методы, без которых исследование подобное описание не может быть точным из-за значительной разницы в продолжительности жизни отдельных особей. Поэтому относительно используемых моделей данный период может быть назван периодом количественных моделей. Интересно отметить связь между использованием методов статистики для описания природных явлений и статичной картиной мира согласно метафизическим представлениям того времени, а также тот факт, что термин "статистика" был введен английским ученым и политическим деятелем Дж. Синклером (1754 - 1835), который своими публикациями внес значительный вклад в развитие геронтологии.

Все возрастающий поток биологической информации и многочисленные попытки обобщения биологического знания на рациональной основе в конечном счете привели к тому, что в XIX в. (начиная примерно со второй его четверти) и начале XX в. были открыты основные специфически биологические законы: клеточное строение организмов, теория эволюции и законы наследственности, что создало предпосылки для окончательного формирования биологии как самостоятельной дисциплины. Применение этих законов привело к огромному прогрессу биологического знания, к существенному приближению к истинному пониманию живой природы. В течение этого периода окончательно сформировались практически все основные биологические дисциплины, важные для геронтологии: физиология обмена веществ, эндокринология, иммунология, физиология высшей нервной деятельности, эволюционная зоология, генетика. Тогда же в геронтологии стали использоваться аналитические модели, такие как уравнение Гомперца-Мейкема или аналитическая модель старения Н. А. Белова. Все это свидетельствует, что относительно используемых моделей данный период можно считать периодом аналитических моделей.

Однако, ключом к пониманию феномена жизни и старения являются процессы на молекулярном уровне организации живой материи. Поэтому возникновение истинно научной геронтологии не могло произойти ранее формирования молекулярной биологии в 50-х гг. XX в., обозначившей достижение последнего уровня редукции в познании биологических законов, относящихся к геронтологии. Это создало предпосылки для отказа от спекулятивных, умозрительных теорий, в то время все еще игравших значительную роль в геронтологии. Существенное значение имело также произошедшее в это время осознание важности процессов переработки информации для обеспечения функционирования живых систем (это было связано с работами как по молекулярной биологии, так и по нейробиологии) и создание математических основ кибернетики и информатики (теории систем, управления, автоматов и т. п.). Прогресс в молекулярной биологии и информатике обеспечил основные необходимые условия для перехода от качественной, аналитической и экспериментальной геронтологии к количественной, синтетической и вычислительной. Окончательная реализация этой парадигмы приведет к тому, что основной объем знаний будет получаться из вычислительных, а не из натурных экспериментов (это произойдет когда будут досконально поняты, вплоть до создания точных кибернетических моделей, все законы функционирования живой материи и будет достигнута необходимая вычислительная мощность компьютеров). Поскольку в этот период в геронтологии начали применяться кибернетические модели (для описания регуляции, регенерации, надежности, эпидемиологических процессов, старения на уровне популяции и т.д.) этот период может быть назван периодом кибернетических моделей.

Другие варианты периодизации геронтологии

Предложенная выше периодизация в известной мере следует исторической традиции (обобщая ее). Подобное деление на периоды как явно, так и неявно присутствует во многих исторических исследованиях в области геронтологии.

В неявном виде периодизация истории геронтологии присутствует в различных датировках момента возникновения геронтологии. Его относят на разные исторические периоды: к периоду античности, к Возрождению, к концу XIX в. - началу XX в., к середине XX в. В упомянутые выше периоды происходили наиболее существенные изменения в развитии геронтологического знания.

В явном виде периодизация развития геронтологического знания (в основном применительно к социальной и психологической геронтологии) была предложена М. Д. Александровой, которая выделила следующие периоды: 1) донаучный, 2) конца XIX - начала XX в., 3) с 30-хх гг. и до начала Второй мировой войны, 4) послевоенный период. Однако, поскольку геронтология является преимущественно биологической наукой, то подход, предложенный в настоящей работе и основанный на сопоставлении развития биологии и геронтологии, представляется более адекватным. С этой точки зрения геронтология в качественный и количественный периоды (в донаучный у Александровой) существенно различалась как методологически, так и интенсивностью исследований. В то время как развитие геронтологии в аналитический период (во второй и третий периоды у Александровой) происходило скорее постепенно, в 30-е гг. XX в. не происходило особенно значимых событий, позволяющих разделить этот период.

1.2 Период качественных моделей

По всей вероятности, в древнейшие времена желание понять феномен старения было неотделимо от желания замедлить или устранить его. Существование возможности увеличения продолжительности жизни путем борьбы со старением первоначально могло основываться на фактах разной индивидуальной продолжительности жизни людей и разной средней продолжительности жизни у разных видов животных, длительного существования некоторых видов деревьев и неживых объектов, а также на возможности лечения заболеваний. Как возникновение понимания того, что могут быть найдены способы продлить жизнь, нашедшее свое отражение в мифах, так и начало применения средств, действительно продлявших жизнь (в первобытных обществах и в ранних цивилизациях уже существовало врачевание, что конечно же продляло жизнь), теряются во времени. Одним из наиболее древних письменных свидетельств считается фрагмент из эпоса о шумерском царе Гильгамеше (включенный в эпос, вероятно, в первой половине второго тысячелетия до н. э.), в котором рассказывается, что Гильгамеш в поисках бессмертия нашел растение, омолаживающее тело, но не сумел им воспользоваться. Что касается практических рецептов, то описания старческих изменений и рекомендации по продлению жизни можно найти уже в произведениях древнеегипетских и древнеиндийских авторов. Однако, первые целенаправленные, систематические попытки достичь цели продления жизни, к тому же основанные на использовании в какой-то степени адекватных методов, достоверно зарегистрированы в древнем Китае у даосов.

Даосизм представляет собой религиозно-философскую систему, одна из главных целей которой - продление жизни ее адептов. Это учение начало формироваться в IV - III вв. до н. э. в Китае на основе синтеза наблюдений на природными явлениями и их разнообразных интерпретаций, существовавших в традиционной китайской культуре того периода. Согласно даосизму видимый мир есть проявление единой сущности (или силы) - дао (наиболее близкий аналог в западной философии - пантеизм, т. е. отождествление Бога и природы). Такое видение мира подразумевало единство всего сущего, отсутствие четкого разделения на дух и материю, на Бога и человека. Следствием этого было понимание, что человек может посредством собственных усилий трансформироваться в совершенное, богоподобное, бессмертное существо, и, что для осуществления такой трансформации необходимы комплексные меры, в том числе включающие и материальные воздействия на тело человека.

Примерно в то же время, что и даосизм в Китае, в Древней Греции зародилась герокомия (или герокомика) - направление, связанное с возможностью достижения здоровой старости с помощью умеренности во всем. Как правило, в рамках этого подхода подразумевается, что смерть неизбежна (так называемая апология смерти) и продлить жизнь дальше некого предела нельзя - можно только помочь каждому прожить его естественную продолжительность жизни без тяжелых болезней.

В античный период герокомия не была системой взглядов и не представляла выделенного направления. Наблюдения над процессом старения, описания возрастных заболеваний и советы по продлению жизни были разбросаны по многочисленным трактатам античных авторов: Гиппократа, Аристотеля, Цельса, Галена, Орибазия, Асклепиада и других. Для сохранения тепла и влаги рекомендовалась диета, умеренные физические упражнения, массаж, водные процедуры. Важное место в герокомии отводилось и заботе о пожилых людях (т. е. герогигиене). Традиции герокомии получили значительное развитие в византийской и арабской медицине, откуда они были заимствованы врачами средневековой Европы. Однако методы, предлагавшиеся средневековыми сторонниками герокомии, практически совпадали с рекомендациями античных авторов.

В отличие от сторонников герокомии алхимики предполагали, что победа над смертью возможна. Они считали смертность следствием несовершенства человеческой природы и, следовательно, ликвидация этого несовершенства могла бы привести к достижению практического бессмертия. Устранить несовершенство предполагалось путем некой трансформации человека в бессмертное существо. Под этим либо понималась гармонизация соотношения составляющих его элементов, либо поиск и "выращивание" (путем химических превращений) некой бессмертной составляющей человека. В любом случае средством для этого должна была служить особая субстанция - эликсир, или философский камень, или пятый элемент (считалось, что тело человека и других земных существ состоит из четырех типов элементов, а пятый элемент является божественным). Поиск этой субстанции и являлся основной целью алхимиков.

Стоит заметить, что если рассматривать общую постановку проблемы, то исходные посылки алхимиков были в сущности правильными. Однако, вследствие зачаточного уровня развития науки в то время предлагаемые ими методы вряд ли могли привести их к успеху. Хотя, в принципе, методом проб и ошибок, они могли бы найти вещество или снадобье, применение которого продлевало бы жизнь. Так, добавление в пищу селена может продлить жизнь в районах, где его содержание в природных источниках недостаточно. Тем не менее эксперименты алхимиков оказали влияние не только на развитие методов продление жизни, но и на формирование экспериментальной биологии и химии.

1.3 Период количественных моделей

В XV - XVI вв. в Европе началась эпоха технико-экономического прогресса, который сопровождался бурным развитием физики, химии, математики, формированием рационального научного мировоззрения и революционными преобразованиями в области общественных отношений. Происходил и рост биологического знания, в том числе таких разделов, как анатомия и физиология, играющих важное значение для понимания феномена старения.

Эти процессы явились причиной того, что в области знания о старении происходил отказ от упрощенных представлений прошлого и формировалось понимание того, что для познания феномена старения и решения проблемы продления жизни еще мало научных данных, но в конечном счете прогресс естественных наук приведет к познанию и замедлению процесса старения, к значительному увеличению продолжительности жизни. Можно сказать, что тогда создавался методологический базис или философия геронтологии, совершался переход от полуфантастических, религиозно-мистических представлений к реалистическим, происходило накопление наблюдений и экспериментальных фактов, значительно увеличился объем количественных данных, для их обработки стали применяться статистические методы.

О возможности увеличения продолжительности жизни (до возраста ветхозаветных патриархов и более) в результате прогресса науки упоминали в своих работах французский философ и ученый Р. Декарт (1596 - 1650) и американский ученый и политик Б. Франклин (1706 - 1790). Более подробно этот вопрос рассмотрел английский философ Ф. Бэкон (1561 - 1626). Бэкон критиковал методы прошлого как неполные и ошибочные и в своей утопии "Новая Атлантида" наряду с другими проектами преобразования общества и науки описал методологию поиска путей продления жизни с помощью научных экспериментов.

Далее в конце XVIII в. английский философ (один из первых теоретиков анархизма) и писатель У. Годвин (1756 - 1836) и французский философ, ученый и политик Ж. Кондорсе (1743 - 1794) связали возможность продления жизни с социальным прогрессом. Годвин в своих работах указал на то, что желание продлить жизнь есть часть естественного стремления человека к совершенству. Кондорсе в свою очередь во главу угла он ставил не личность, а общество, что отразилось и на его воззрениях на проблему продления жизни. Он связывал возможность продления жизни с общественным прогрессом. В совершенном обществе наука познает законы материи, следствием которых является старение, сможет управлять ими, тем самым поддерживая человека в состоянии вечной молодости.

В этот период начали выходить трактаты врачей и философов (Г. Церби, Д. Кардано, Ф. Бэкона, А. Галлера, Б. Раша и др.), в которых подробно описывались физиологические и психологические симптомы старости и возрастные заболевания (для обозначения науки о старении и практики продления жизни использовались такие термины как герокомика, геронтокомия, гереология, макробиотика). В. Гарвеем, Ж. Б. Морганьи, И. Б. Фишером, Б. В. Зейлером и другими учеными изучалась морфология старческих изменений на основе вскрытия трупов, были выявлены такие изменения как расширение сердца и аорты, обызвествление артерий, хрупкость костей и т. п. Учитывая его вклад в геронтологические исследования, И. Б. Фишера (1865 - 1772 можно назвать "первым последовательным российским геронтологом". Дж. Граунтом, Э. Галлеем, Л. Эйлером, Ж. Бюффоном составлялись демографические таблицы продолжительности жизни, сравнивалась продолжительность жизни разных видов, делались попытки установить связь между такими параметрами как продолжительность жизни и длительность периода роста. Во всех этих операциях широко применялись статистические методы.

1.4 Период аналитических моделей

Революционные преобразования, происходившие в биологии в XIX в. и начале XX в. и в основном заключавшиеся в открытии специфически биологических законов, не могли не повлиять и на развитие биологии старения. Накопление данных о старении живых организмов и их обобщение на основе открытых биологических законов позволили сформулировать научно проверяемые теории старения, ставшие основой для экспериментальных исследований, разработки и практического применения методов продления жизни. Однако, ключом к пониманию первичных причин старения являются процессы на молекулярном уровне организации живой материи. Отсутствие соответствующего знания препятствовало появлению как достоверных теорий старения, так и эффективной терапии болезней старения.

На основе эволюционных представлений возникло несколько теорий старения. Широкую известность получила теория А. Вейсмана о бессмертии простейших и половых клеток многоклеточных и о приспособительном характере старения и смерти - старые индивидуумы конкурируют с молодыми, что приводит к уменьшению репродуктивного потенциала популяции. Не менее значимыми были и представления И. И. Мечникова о том, что в процессе эволюции признак, сначала имевший адаптивное значение, впоследствии может стать источником вредных воздействий на организм, что ведет к болезням и старению (подробнее его взгляды рассмотрены ниже). Исследования по биохимии и биофизике привели к возникновению представления, что старение является результатом расходования какого-то жизненного фермента (О. Бючли), утрате определенных химических веществ (Дж. Лёб), дегидратации тканевых коллоидов (М. Рубнер, В. Ружичка), накопления вредных продуктов обмена (А. Каррель), изнашивания организма (Р. Гертвиг). Эмбриологи считали, что старение обусловлено замедлением роста и ослаблением способностью к обновлению клеток из-за их дифференциации (Ч. Минот, Р. Рёссле, Е. А. Шульц).

Нейрофизиологи рассматривали старость как результат функциональных нарушений высшей нервной деятельности (И. П. Павлов). Применение ранних вариантов теории систем для исследования проблемы старения привело к выводу о неизбежности возникновения старения вследствие крайне высокой вероятности появления сбоев в процессе функционирования сложной системы (А. А. Богданов, Н. А. Белов). Обобщение демографических данных дало начало широкому применению математических методов для описания процесса старения, к созданию научного базиса для исследований по биологии продолжительности жизни (Б. Гомперц, У. Мейкем, К. Пирсон, Р. Пирл). На основе теоретических представлений о механизмах старения стали предприниматься попытки разработки и применения методов для увеличения продолжительности жизни. Началось организационное оформление геронтологии - возникли геронтологические и гериатрические научные школы и общества, стали проводиться специализированные конференции, выходить периодические издания, всецело посвященные проблеме старения и продления жизни. Появились современные термины как для науки и знании о старении и продлении жизни - геронтология, так и для применения этого знания в медицинской практике - гериатрия. Первый из них был введен И. И. Мечниковым в книге "Этюды о природе человека", впервые опубликованной на французском языке в 1903 г.

Тогда же в геронтологии стали использоваться аналитические модели. В 1825 г. Б. Гомперцем была предложена функциональная зависимость для описания вымирания популяции, которая в 1860 г. была модифицирована У. Мейкемом. С тех пор эта зависимость (уравнение Гомперца-Мейкема) является краеугольным камнем биологии продолжительности жизни. Позднее (в 1910 - 1920 гг.) Н. А. Беловым была предложена аналитическая модель для описания старения в сложной системе. Аналитическое описание популяций, сделанное в 20-х гг. XX в. В. Вольтеррой и А. Лоткой, заложило основы для современных аналитических исследований эволюционного аспекта феномена старения на популяционном уровне.

Одним из пионеров поиска методов продления жизни на основе эволюционных представлений о природе старения был великий русский биолог, И. И. Мечников (1845 - 1916). Согласно его представлениям в процессе эволюции признак, сначала имевший адаптивное значение, впоследствии в результате возникающих в процессе его функционирования побочных эффектов или из-за изменений условий существования может стать источником вредных воздействий на организм. Это в конечном счете приводит к дисгармонии в функционировании организма, к болезням и старению (он различал преждевременное и нормальное старение).

Другим направлением продления жизни в конце XIX в. и в начале XX в. было использование экстрактов половых желез. Оно основывалось на очевидной связи между здоровьем и половой активностью, т. е. считалось, что стимуляция половой функции может привести к удлинению жизни. Возникновение интереса к этому методу связано с именем французского физиолога Ш. Броун-Секара (1818 - 1894), вводившего себе (правда, после опытов на животных) инъекции вытяжки из семенников собак и кроликов и утверждавшего, что он помолодел на 30 лет. Метод стал ограниченно применяться. В дальнейшем австрийский хирург О. Штейнах (1861 - 1944) пытался стимулировать функции семенников хирургическим путем, включая пересадку семенников животных. В широкую практику пересадку семенников человекообразныобезьян ввел русский хирург (работал в основном во Франции) С. Воронов (1866 - 1951). Еще более известен метод "клеточной терапии" швейцарского врача П. Ниханса (1882 - 1971), использовавшего тканевые экстракты (в том числе эмбриональные) для омоложения десятков тысяч людей, включая достаточно известных (папа Пий 12, У. Черчилль, Ш. де Голль, К. Аденауэр, С. Моэм, Т. Манн).

B нашей стране интерес к применению экстрактов половых желез вылился в серьезные исследования, связанные с возможностью регуляции процессов старения, продолжение которых в наше время привело к разработке достаточно эффективных методов продления жизни.

Начало этих исследований можно отнести к работам професора А. Пеля. В созданном им в С.-Петербурге Институте опотерапии больным для восстановления сил и продления их жизни вводился препарат спермин, выделяемый из семенной жидкости животных. Позднее в начале XX в. под руководством и при участии С. И. Метальникова исследовались процессы старения в культурах клеток простейших, а также обсуждались возможности регуляции старения на клеточном уровне. А. В. Догель по результатам своих исследований симпатической нервной системы сделал вывод, что ее перерождение в старости ведет к ослаблению трофических влияний нервной системы на ткани и в них наступает расстройство обмена веществ. Э. Бауэр считал, что старение является следствием ограничения роста, что в свою очередь следует из свойств молекул белка. Следствием же его представлений об организме как неравновесной системе являлось важность процессов регуляции для поддержания его устойчивости. И.И. Шмальгаузен в своих ранних работах также обосновывал старение процессами, регулирующими рост. Он считал, что жизнь можно продлить гормональными воздействиями.

В это же время началось складываться представление о важной роли центральной нервной системы в развитии практических всех патологий. В тесной связи (благодаря методологическим установкам С.П. Боткина) с экспериментально-физиологическим направлением исследований связи нервной деятельности и патологических процессов (в том числе связанных со старением) развивались клинические исследования. Основным сторонником этого направления был выдающийся отечественный клиницист Г.Ф. Ланг.

Еще одним вариантом активации функций организма и, соответственно продления жизни, еще со времен средневековья считалось употребление человеческой крови (она считалась переносчиком жизненного тепла). Делались тогда и попытки переливания крови, но безуспешные. С другой стороны, в начале XX в. была популярна теория о том, что бессмертие одноклеточных организмов может быть объяснено их возможностью конъюгировать друг с другом (в современном понимании - осуществлять обмен генов).

1.5 Период кибернетических моделей

Формирование современной, научной геронтологии, включающей в себя исследование процессов старения и поиск методов продления жизни на основе экспериментальных фактов и всесторонне обоснованных научных теориях, произошло в 50-е гг. XX в. Это стало результатом создания современной биологии, что, в свою очередь, стало следствием возникновения молекулярной биологии - открытия ДНК, механизма биосинтеза белков и т. д. Необходимо отметить, что эти открытия произошли во многом благодаря развитию экспериментальной техники, играющей ведущую роль и в геронтологических исследованиях. Открытие молекулярных законов жизни и обобщение множества экспериментальных данных привели к тому, что постепенно разнообразные теоретические представления о механизмах старения стали "фокусироваться" вокруг теорий, согласно которым старение является следствием процессов, происходящих на молекулярных уровнях организации живой материи. При этом характерно, что наиболее развитые современные теории старения, признавая ведущую роль молекулярных процессов, в то же время большое внимание уделяют его системным и эволюционным аспектам, а также использованию аналитических и кибернетических моделей.

На протяжении всего данного периода постепенное развитие знания о механизмах старения на основе обобщения (включая широкое использование математических методов) все возрастающего объема экспериментальных данных и результатов клинического применения методов продления жизни неуклонно приближало ученых к разгадке феномена старения и разработке эффективной терапии старения. Однако, очень большая сложность биологических систем, многообразие взаимосвязанных факторов, влияющих на старение, препятствовало и все еще препятствует быстрому прогрессу в этом направлении, совершению качественного скачка в разрешении проблемы старения. Тем не менее рост геронтологического знания привел к тому, что в этот период геронтология оформилась как вполне самостоятельная наука со своей проблематикой и институализированным научным сообществом со специализированными исследовательскими центрами, периодическими изданиями, научными конференциями и т. п.

2. Современные концепции в геронтологии

2.1 Генетика старения и долгожительства

Один из ключевых вопросов геронтологии заключается в выяснении pоли генетических факторов в старении. Другими словами, определяется ли генами продолжительность жизни животных и человека? Казалось бы, существенные различия в видовой продолжительности животных различных видов однозначно положительно решают этот вопрос. Однако существенная вариабельность по продолжительности жизни организмов одного вида (таблица 1) не может быть интерпретирована однозначно.

Таблица 1 - Наследуемость и вариабельность продолжительности жизни у некоторых видов животных.

Вид животных

Наследуемость, в %

Коэффициент вариабельности продолжительности жизни, %*

Средняя продолжительность жизни

Нематоды:

15 дней (25°С)

Внутри линии

0

34

Между линиями

34

19 (16-24)

Плодовые мухи (инбредные линии):

40 дней (25°С)

Внутри линий

< 1

Между линиями

06/09/02

11

Средиземноморские мухи

не определяли

45

21 день (25°С)

Мыши (инбредные линии):

27 месяцев

Внутри линии

< 1

24 (19-71)

Между линиями

29

16

Человек (близнецы)

23-35

монозиготные: 19; гетерозиготные: 25

72 года

Что касается человека, то оценить наследуемость долгожительства можно, исследуя его паpаметpы у членов одной семьи, включая пpиемных детей (для учета pоли условий сpеды), а также у близнецов. Несмотpя на большие тpудности в интеpпpетации подобного матеpиала, связанные пpежде всего с существенными pазличиями условий жизни у пpедставителей pазных поколений и смеpтями от несчастных случаев, некотоpые выводы все же можно сделать. Пpостые pасчеты коэффициентов коppеляции между пpодолжительностью жизни pодителей и детей выявили кpайне низкую, если вообще какую-либо наследуемость по этому пpизнаку. К аналогичным выводам пpиводит и анализ pезультатов подобных исследований на животных.

Если убедительных данных, свидетельствующих о наследственном увеличении пpодолжительности жизни у человека не описано, то наследственное сокpащение пpодолжительности жизни, несомненно, существует и пpоявляется в наследственных болезнях пpеждевpеменного стаpения (пpогеpиях). Такие заболевания встpечаются чpезвычайно pедко и их частота обчно не пpевышает 1 на 10 миллионов. Полагают, что наследование идет по аутосомно-pецессивному типу с неполной пенетpанностью. Выделяют две основные фоpмы наследственных пpогеpий: синдpом Хатчинсона-Гилфоpда (пpогеpия детей) и синдpом Веpнеpа (пpогеpия взpослых). Оба синдpома пpоявляются ускоpенным pазвитием обычных пpизнаков естественного стаpения, однако в пеpвом случае они начинают pазвиваться с pождения и больные pедко доживают до 20 лет. Во втоpом случае ускоpенное стаpение начинается с пеpиода полового созpевания и пpодолжительность жизни может достигать 30-40 лет. Отмечают, что смеpть наступает пpи хаpактеpных для глубокой стаpости явлений угасания функций, либо от типичной возpастной патологии, включая pак, сеpдечную недостаточность, мозговые наpушения и дpугие заболевания.

В настоящее время довольно распространена точка зрения, согласно которой генетическая программа развития исчерпывается достижением репродуктивного успеха, то есть, рождением потомства и выживание организма после завершения репродуктивной функции если и опосредовано геномом, то весьма косвенно. С эволюционной точки зрения длительный период репродукции дает виду преимущества, тогда как выживание особи после этого периода снижает выживаемость вида.

В последние годы существенный прогресс в исследовании генетики старения связан с работами на беспозвоночных (нематодах и плодовых мушках). Нематода (С.еlegans), маленький земляной червь, является идеальной моделью для идентификации генов смерти и долголетия. Продолжительность жизни этого червя составляет около 20 дней, что весьма удобно для изучения эффектов генов и генетических манипуляций. Черви размножаются гермафродитическим самооплодотворением, что ведет к созданию популяций однотипных червей. Существование популяций С.еlegans с разной длительностью жизни убедительно демонстрирует, что темп старения находится под генетическим контролем. C помощью химических мутагенов удалось получить червей с большей на 50% средней и в 2 раза максимальной продолжительностью жизни, чем у их предшественников. Был идентифицирован ген age-1, модификация или супрессия продукта которого приводила к увеличению продолжительности жизни. Age-1 определяет активацию спермы, он рецессивен и плотно сцеплен с геном fer-15, влияющим на репродукцию. Разделить эти два гена не удалось, поэтому предположили, что age-1 и fer-15 являются одним и тем же геном, при этом, одной из функций продукта дикого типа гена age-1 может быть усиление репродуктивных свойств, а другой - снижение продолжительности жизни, и следовательно age-1 может быть одним из регуляторов процесса старения, по крайней мере для этого вида.

Плодовая мушка Drosophila melanogaster - также хорошая модель для изучения генетических компонентов долголетия. Мутанты дрозофилы, имеющие разную продолжительность жизни, были разделены с помощью химического мутагенеза. Среди полученных различных мутантов некоторые имели мутации в гене супероксиддисмутазы (СОД). Гомозиготные мутанты по этому гену развивались нормально, но продолжительность их взрослой жизни сократилась с 60 до 10 дней. Было показано, что эти мутанты имеют повышенную чувствительность к веществам, продуцирующим свободные радикалы, и имеют недостаточно активную сперму, что может указывать на важность СОД в защите ДНК от повреждений в ходе гаметогенеза. С другой стороны, особи с увеличенным числом копий генов СОД и каталазы имели большую среднюю и максимальную продолжительность жизни.

2.2 Молекулярные механизмы старения

Среди современных теорий старения, основанных на предположении, что ДНК является основной мишенью в клетке, доминирует теория соматических мутаций, согласно которой старение является результатом взаимодействия различных эндогенных и экзогенных повреждающих агентов с генетическим материалом клетки и постепенного накопления случайных мутаций в геноме соматических клеток. Повреждения ядерной и митохондриальной ДНК соматических клеток, такие как точковые мутации, делеции и перестройки приводят к активации или инактивации специфических генов, вовлеченных в такие ключевые клеточные процессы, как регуляция клеточного цикла и контроль роста. Накопление с возрастом таких мутаций в различных органах и тканях является основным фактором, определяющим развитие возрастной патологии, включая рак.

Пpедставляется весьма существенным вывод о неоднозначности возpастной динамики накопления соматических мутаций в pазличных оpганах и тканях. Трансгенные мыши, несущие шаттл-вектор LacZ, являются уникальной моделью для изучения частоты и спектра соматических мутаций при старении. Было установлено, что увеличение частоты мутаций в печени происходит равномерно с рождения до глубокой старости, тогда как в головном мозгу она нарастает только от рождения до 4-6 месяцев жизни, а затем не изменяется. Перестройки генома постепенно накaпливаются в печени до 27-месячного возраста, после чего их число резко увеличивается. В головном мозге геномные перестройки встречаются значительно реже и с возрастом их частота не увеличивается.

Молекулярные события, определяющие транскрипцию, имеют решающий интерес для геронтологов, поскольку регуляция экспрессии генов коренным образом влияет на старение и старческие изменения. Хорошими примерами служат гиперэкспрессия амилоидного белка или экспрессия онкогенов.

При старении может изменяться не только структура генов, но и направление их функционирования. С возрастом в соматических клетках накапливаются не только мутации, но и хромосомные перестройки. Полагают, что изменения хроматина могут играть главную роль в связанных с возрастом изменениях регуляции экспрессии генов. C увеличением возраста не отмечено изменений стехиометрии большинства гистонов однако имеются сообщения об изменениях подвида гистона Н1. Ацетилирование гистонов, которое предположительно изменяет взаимодействие гистон-ДНК и делает ДНК более доступной, снижается по мере старения на 30-70%.

В 1971 г. А.М.Оловников на основании появившихся к тому времени данных о принципах синтеза ДНК в клетках предложил гипотезу маргинотомии. Этот механизм заключался, по мнению автора гипотезы, в том, что при матричном синтезе полинуклеотидов ДНК-полимераза не в состоянии полностью воспроизвести линейную матрицу. Таким образом, при каждом делении клетки ее ДНК укорачивается, что, подобно шагреневой коже, ограничивает пролиферативный потенциал клеток и, очевидно, является тем "счетчиком" числа делений и, соответственно, продолжительности жизни клетки в культуре. В 1972 г. Ж.Медведев показал, что повторяющиеся копии функциональных генов могут управлять или запускать процесс старения.

Открытие в 1985 году теломеразы - фермента, который достраивал укороченную теломеразу в половых клетках и клетках опухолей, обеспечивая их бессмертие, вдохнуло новую жизнь в гипотезу Оловникова. Было выполнено огромное количество работ, в которых были установлены следующие основные факты:

1. Концы линейных хромосом с 3'-конца ДНК заканчиваются повторяющимися последовательностями нуклеотидов, получившими название теломер, которые синтезируются специальным рибонуклеиновым ферментом теломеразой.

2. Соматические клетки эукариотов, имеющие линейные хромосомы, лишены теломеразной активности. Их теломеры укорачиваются как в процессе онтогенеза и старения in vivo, так и при культивировании in vitro.

3. Половые клетки и клетки иммортализированных линий, а также опухолей имеют высокоактивную теломеразу, которая достраивает 3'-конец ДНК, на котором реплицируется комплементарная цепь при делении.

4. Структуры теломер сильно различаются среди простейших, однако у всех позвоночных они одинаковы (TTAGGG)n.

5. Имеются существенные межвидовые различия в длине теломер, причем у мыши общая их длина в несколько раз превышает таковую у человека (до 150 тысяч пар нуклеотидов у некоторых линий мышей и 7-15 т.п.н. у человека).

6. Репрессия теломеразы определяет клеточное старение в культуре (лимит Хейфлика).

7. Клетки больных синдромом преждевременного старения Хатчинсона-Гилфорда и синдромом Дауна имеют укороченные теломеры.

Недавно было установлено, что при введении гена теломеразы в клетки фибробластов человека, которые в норме делятся лишь 75-80 раз, они способны поделиться 280 раз и без каких либо признаков старения и патологии. Тщательное исследование показало отсутствие в этих клетках таких признаков малигнизации, как нестабильность хромосом, независимый от добавления натуральной сыворотки рост, отсутствие контактного торможения и потеря контроля клеточного цикла. Полученные данные свидетельствуют о том, что экспрессия теломеразы в культуре клеток человека совсем не обязательно вызывает развитие рака, то есть лишена свойств онкогена, которые ей приписывали. Видимо, основным свойством теломеразы является контроль клеточного деления, а для возникновения опухолевого роста необходимы дополнительные мутации и факторы.

Важные данные получены в Институте молекулярной биологии им.В.А.Энгельгардта РАН. С помощью опосредованного микроклетками переноса маркированную геном neo хромосому 20 из стареющих и молодых диплоидных фибробластов человека ввели в молодые фибробласты. Во всех новообразованных клонах наблюдалось уменьшение пролиферативного потенциала на 17-18 удвоений популяции. Авторы склонны рассматривать полученные данные как свидетельство того, что отдельные теломеры способны ограничить пролиферативный потенциал клеток.

Многое в этой области еще предстоит выяснить. Тем не менее, очевидно, что опыты с теломеразой открывают новые перспективы как в геронтологии, так и в онкологии для диагностики рака и, что особенно важно, для его лечения.

Одной из наиболее плодотвоpно pазвивающихся в последние годы фундаментальных теоpий является свободноpадикальная теоpия стаpения, практически одновременно выдвинутая D.Harman в 1956 г.и Н.М.Эмануэлем в 1958 г. Эта теория объясняет не только механизм старения, но и широкий круг связанных с ним патологических процессов (сердечно-сосудистые заболевания, возрастные иммунодепрессия и дисфункция мозга, катаракта, рак и некоторые другие). Согласно этой теоpии, пpодуциpуемые главным образом в митохондриях клеток молекулы супеpоксида (О2-), Н2О2, гидpоксильного pадикала (НО) и, возможно, синглетного кислоpода (О2) повpеждают клеточные макpомолекулы (ДНК, белки, липиды). Полагают, что активные формы кислорода вызывают повpеждения мембpан, коллагена, ДНК, хpоматина, стpуктуpных белков, а также участвуют в эпигенетической pегуляции экспрессии ядерных и митохондриальных генов, приводя к метилированию ДНК, влияют на внутpиклеточный уpовень кальция и т.д. Подсчитано, что за 70 лет жизни человека организм производит около одной тонны радикалов кислорода, хотя только 2-5% вдыхаемого с воздухом кислорода превращается в его токсические радикалы. В клетке крысы может возникать до 104 вызыванных активными формами кислорода повреждений ДНК в день и при постоянных условиях до 10% молекул белка могут иметь карбонильные модификации. Подавляющее большинство из них нейтрализуется еще до того, как успеют повредить те или иные компоненты клетки. Так, из каждого миллиона образующихся супероксидных радикалов от ферментной защиты ускользает не более четырех. К основным эндогенным факторам антиоксидантной защиты организма относятся некоторые ферменты и витамины (таблица 2).

Видовая продолжительность жизни прямо коррелирует с активностью супероксиддисмутазы (СОД), содержанием -каротина, -токоферола и мочевой кислоты в сыворотке крови.

Таблица 2 - Факторы, защищающие макромолекулы клеток от повреждения свободными радикалами

Мишень

Агент

Функция

О2

Супероксиддисмутаза

Превращает О2 в Н2О2

Н2О2

Глютатион-пероксидаза

Превращает Н2О2 в Н2О и О2

Каталаза

Превращает Н2О2 в Н2О и О2

Свободные радикалы

-каротин (провитамин А)

Связывает жирорастворимые свободные радикалы

Витамин Е (-токоферол)

"

Витамин С (аскорбиновая кислота)

Связывает водорастворимые свободные радикалы

Мочевая кислота

"

Мелатонин

Связывает жиро- и водорастворимые свободные радикалы

Переходные металлы

Хелатные агенты

Предотвращают катализ свободнорадикальных реакций переходными металлами, железом и медью

2.3 Физиологические механизмы старения

В 1914 г. профессор Харьковского университета Е.А.Шульц, изучая регенерацию гидр и планарий (в том числе вызванную голоданием), пришел к выводу, что в ходе этого процесса клетки животных дедифференцируются и переходят в эмбриональное состояние, т.е. молодеют. Скорость же старения ткани по его мнению зависит от того, как часто она подвергается физиологическому обновлению, периодически голодающие животные достигают большей продолжительности жизни, чем неголодающие. Взгляды Шульца были достаточно известны в первой четверти XX в., однако тогда исследование голодания как фактора продления жизни не получило достаточного развития.

В 1917 г. Osborn описал замедление возрастного выключения репродуктивной функции у крыс, содержавшихся в условиях ограниченного питания. В 1930-е годы работами McCay было установлено, что диета с ограничением калорий увеличивает на 30-50% максимальную и среднюю продолжительность жизни крыс и мышей. До 1960-1970 гг. этот феномен, хотя и был воспроизведен во многих лабораториях, в том числе и в СССР, рассматривался как научный курьез. Однако в последующем эта модель, благодаря своей простоте и устойчивой воспроизводимости стала одной из ведущих в изучении фундаментальных механизмов старения и увеличении продолжительности жизни, хотя при этом наблюдалось замедление не всех возрастных биохимических, физиологических и поведенческих параметров. Ограничение калорийности питания увеличивало продолжительность жизни также у рыб, амфибий, дафний, насекомых и других беспозвоночных. Хотя до сих пор нет ответа на вопрос - замедляет или нет ограниченная диета возрастные процессы у человека и влияет ли на продолжительность его жизни, в трех больших исследованиях на приматах (главным образом, на макаках резус) получены первые свидетельства тому, что по крайней мере некоторые физиологические эффекты ограниченной по калорийности диеты, наблюдаемые у грызунов, воспроизводятся и у обезьян. Среди этих эффектов - уменьшение уровня глюкозы и инсулина в крови, снижение температуры тела, снижение энергозатрат.

Было установлено, что именно общее снижение потребления калорий, а не какого-либо ингредиента пищи определяет геропротекторный эффект голодания.

Подсчитано, что 80-90 % из примерно 300 изученных у грызунов, содержащихся на ограниченном по калорийности рационе, разнообразнейших параметров, включая поведение и обучаемость, иммунный ответ, экспрессию генов, активность ферментов и действие гормонов, толерантность к глюкозе, эффективность репарации ДНК, скорость синтеза белка, проявляли черты замедленного старения. Важно подчеркнуть, что такая диета стимулирует апоптоз, который элиминирует пренеопластические клетки в тканях организма, замедляет накопление в них мутаций замедляет развитие и возрастной патологии, включая возникновение новообразований.

Пожалуй, наиболее значимым эффектом ограниченного по калорийности питания является уменьшение интенсивности свободнорадикальных процессов. У грызунов, содержащихся на такой диете, наблюдается замедление возрастного усиления скорости генерации супероксида и Н2О2, уменьшение окислительных повреждений и замедление возрастного снижения вязкости мембран.


Подобные документы

  • Понятие геронтологии в жизнедеятельности человека и ее развитие. Особенности процесса старения человеческого организма и его причины. Основные группы процесса старения. Проблемы геронтологии. Основные подходы в изучении старения и задачи геронтологии.

    реферат [25,6 K], добавлен 12.01.2009

  • Возникновение геронтологии и ее проблемы на всем этапе развития. Особенности процесса старения человеческого организма. Способы продления физической жизни. Жизнь после смерти. Омоложение и восстановление организма. Взаимосвязь геронтологии и психологии.

    контрольная работа [86,1 K], добавлен 09.01.2008

  • Старение и смерть как биологические свойства всех живых организмов, отражающие их функционирование и эволюцию. Выявление генетических механизмов старения как фундаментальная проблема биологии развития, эволюционной генетики и молекулярной геронтологии.

    презентация [4,2 M], добавлен 25.04.2019

  • Продолжительность жизни как количественный признак. Выявление генетических механизмов формирования - фундаментальная проблема биологии развития, эволюционной генетики и молекулярной геронтологии. Теломерная теория старения. Гены долголетия человека.

    реферат [44,3 K], добавлен 13.11.2014

  • Общие понятия о старении, геронтологии. Описания биологического разрушительного процесса, приводящего к снижению адаптационных возможностей организма. Основные теории и признаки старения. Болезни в пожилом возрасте. Продление жизни и омоложение организма.

    реферат [23,2 K], добавлен 23.04.2013

  • Геронтология - наука о старости и старении. Понятие социальной геронтологии, ее основные направления, цели и задачи. Долголетие как социально-биологическое явление. Биологические факторы, способствующие увеличению продолжительности жизни человека.

    реферат [26,2 K], добавлен 17.08.2011

  • Молекулярно-генетические гипотезы старения. Феномен долгожителей горных народов культурными и средовыми факторами. Понятие геронтологии и гериатрии, возрастные изменения. Прогерия, симптомы заболевания. Критерии оценки биологического возраста человека.

    презентация [1,8 M], добавлен 21.02.2014

  • Признаки и общая характеристика процесса старения, его влияние на нейроэндокринные механизмы регуляции клетки. Возрастная периодизация функционирования организма человека. Сравнительная характеристика преждевременного и физиологического старения.

    презентация [7,6 M], добавлен 28.09.2014

  • Общие закономерности развития старения. Гипотезы и теории старения. Проявление старения на молекулярном, клеточном, субклеточном и тканевом уровнях. Лимитированный митотический потенциал соматической клетки. Содержание и анализ теории случайных мутаций.

    презентация [365,1 K], добавлен 28.04.2016

  • Классификация теорий стохастического и программированного старения. Теория расходуемой (одноразовой) сомы. Организменный уровень интеграции. Свободнорадикальная теория старения Дэнхема Хармана. Теломерная теория Оловникова. Элевационная теория старения.

    презентация [405,8 K], добавлен 12.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.