Проблема множественности разумных миров и изучение НЛО
Проблема поиска разумной жизни в окружающей нас Вселенной, в нашей Галактике, вблизи Солнца. Типы контактов со внеземными цивилизациями. Оценка возможной распространенности внеземных (космических) цивилизаций в нашей Галактике по формуле Дрейка.
Рубрика | Астрономия и космонавтика |
Вид | реферат |
Язык | русский |
Дата добавления | 01.05.2014 |
Размер файла | 46,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
Долгое время Земля казалась человеку необъятной и безграничной. Понадобились сотни, даже тысячи лет, чтобы разглядеть собственными глазами Землю из космоса, откуда представилась прекрасная возможность увидеть нашу планету всю, целиком, и откуда она больше не кажется нам необъятной и безграничной.
Пока нам достоверно известен только один очаг жизни и разума - планета Земля. Но нет ни как их оснований считать, что среди многих миллиардов звезд, окружающих нас, условия зарождения живой материи и ее длительной эволюции могли возникнуть только водной точке Вселенной, в нашей Галактике, вблизи Солнца. Проблема поиска жизни и особенно разумной в окружающей нас Вселенной, в нашей Галактике, вблизи Солнца. Проблема поиска жизни и особенно разумной в окружающей нас Вселенной в последнее десятилетие приобретает научный характер. Вряд ли есть другая научная проблема, которая вызывала бы такой жгучий интерес и такие жаркие споры, как проблема связи с внеземными цивилизациями.
Созываются научные конференции и симпозиумы, налаживается международное сотрудничество ученых, ведутся экспериментальные исследования. По меткому выражению писателя-фантаста Станислава Лема, “проблема связи с внеземными цивилизациями подобна игрушечной матрешке - она содержит в себе проблематику всех научных дисциплин”.Поэтому подход к ней не так прост как может показаться на первый раз.
Типы контактов
Тема контактов со внеземными цивилизациями - пожалуй, одна из самых популярных в научно-фантастической литературе и кинематографии. Она вызывает, как правило, самый горячий интерес у поклонников этого жанра, всех, интересующихся проблемами Мироздания. Но художественное воображение здесь должно быть подчинено жесткой логике рационального анализа. Такой анализ показывает, что возможны следующие типы контактов: непосредственные контакты, то есть взаимные (или односторонние) посещения; контакты по каналам связи; контакты смешенного типа - посылка к внеземной цивилизации автоматических зондов, которые предают полученную информацию по каналам связи.
Конечно, наиболее привлекательны контакты первого типа, но именно они наиболее трудны в реальном осуществлении. Основная трудность связана с длительностью полета к другим цивилизациям, которая может быть больше длительности жизни самой цивилизации, ценности привезенной информации, а значит, и смысле самого полета. Например, при полетах к далеким звездам со скоростями, много меньшими скорости света (U << c), требуются тысячелетия, а значит, такие полеты возможны только к ближайшим звездам. Теоретические аспекты таких проектов учеными обсуждаются, хотя до их практического осуществления еще очень далеко.
Так называемые фотонные ракеты позволили бы перемещаться в пространстве со скоростями, близкими к скорости света. При этом путешествия в отдаленные области Галактики (и даже в другие галактики) заняли время жизни одного поколения космонавтов. Но согласно теории относительности, в условиях такого полета время сокращается только для экипажа такого космического корабля, а для жителей земли оно будет течь так в нерелятивистской системе. Это значит, что за время путешествия на Земле пройдут сотни и тысячи лет, земная цивилизация изменится настолько, что не только доставленная информация станет ненужной, но и исходный смысл такого полета будет утерян.
Правда, учитывая эти аргументы, иногда высказывают идеи космического путешествия без возвращения на Землю, то есть межзвездного перелета со сменой поколений во время полета. В будущем эта проблема, очевидно, будет в принципе технически решаемой. Но ее смысл уже иной - это расселение земной цивилизации во Вселенной. Оценка целесообразности такого расселения - дело наших далеких потомков.
В настоящее время реально возможными контактами с внеземными цивилизациями являются контакты по каналам связи. Если время распространения сигнала в обе стороны t больше времени жизни цивилизации (t > L ), то речь может идти об одностороннем контакте. Если же t << L, то возможен двухсторонний обмен информацией. Современный уровень естественно-научных знаний позволяет серьезно говорить лишь о канале связи с помощью электромагнитных волн, а сегодняшняя радиотехника может реально обеспечить установление такой связи.
Развитие естествознания во второй половине XX века, выдающиеся открытия в области астрономии, кибернетики, биологии, радиофизики позволили перевести проблему внеземных цивилизаций чисто умозрительной и абстрактно-теоретической в практическую плоскость. Впервые в истории человечества появилась возможность вести глубокие и подробные экспериментальные исследования по этой важной фундаментальной проблеме.
Необходимость такого рода исследований определяется тем, что открытие внеземных цивилизаций и установление контакта с ними могут иметь огромное влияние на научный и технологический потенциал общества, оказать положительное воздействие на будущее человечества. Возможно такая ситуация, что в будущем человечеству под влияния обстоятельств, будет вынуждено покинуть Землю, в этой связи развитие космических технологий является крайне важным для всего человечества.
Поиск внеземных цивилизаций во Вселенной
Все сведения о космических объектах приносят на Землю различные излучения - электромагнитные волны и потоки частиц. В ХХ в. родилась радиоволновая астрономия, которую дополняет нейтринная астрономия.
Первым вестником далеких миров был световой луч - электромагнитные волны в видимой части спектра излучения. Это не случайно: световое излучение человек воспринимает непосредственно - при помощи глаз для обнаружения светового излучения небесных тел применяются специальные приборы - телескопы. Иногда не совсем правильно говорят, что телескоп увеличивает звезды или приближает их. В действительности же телескоп - устройство для собирания света с помощью объектива - двояковыпуклой линзы или вогнутого зеркала. Простейшая труба Галилея собирала в 144 раза больше света, чем глаз человека. А сооруженный в 1974 году в нашей стране на Северном Кавказе, вблизи станицы Зеленчукской, один из крупнейших в мире телескоп с поперечником зеркала в 6 метров собирает света в миллион с лишним раз больше, чем глаз. Это очень сложное уникальное устройство. Состоит оно из деталей более 25 тысяч наименований. Телескоп оснащен разнообразной высокочувствительной аппаратурой и комплексом электронных вычислительных систем для наблюдений в соответствии с заданной программой и для обработки полученных результатов. В последнее время вступили в строй телескопы с диаметрами зеркал 8, 10 и 11 метров. Современные телескопы снабжены спектрографами, с помощью которых изучается спектр излучения, а по нему определяется химический состав и температура источника излучения.
Как уже отмечалось, свет - не единственный вестник космических миров. С появлением высокочувствительной радиоаппаратуры открылась возможность исследовать космическое излучение. Радионаблюдения. Вселенной не зависят от времени суток и погодных условий. Источниками космического радиоизлучения являются объекты Вселенной, в которых протекают бурные физические процессы. Принцип действия радиотелескопа похож на принцип действия обычного телескопа. Но роль объектива, собирающего космическое излучение играют в радиотелескопе огромные антенны специальной формы. Один из крупнейших отечественных радиотелескопов (РАТАН) построен в 40 километрах от 6-метрового оптического телескопа и вступил в строй в 1977 году. Его кольцевая антенна диаметром 600 метров состоит из 895 алюминиевых щитовзеркал, каждый из которых может поворачиваться вокруг горизонтальной и вертикальной осей, что позволяет наводить радиотелескоп на разные участки звездного неба.
Еще одним вестником Вселенной являются - инфракрасные лучи, расположенные в промежутке между радиоволнами и волнами видимого света. Они обладают важным качеством: проходят сквозь космическую пыль и межзвездный газ. Человеческий глаз не воспринимает инфракрасное излучение, нечувствительны к нему и обычные фотопластинки. Поэтому при фотографировании космических объектов в инфракрасных лучах применяют специальные фотоматериалы и электронно-оптические преобразователи.
Из глубин Вселенной поступают еще три вида сигналов: ультрафиолетовое, рентгеновское и гамма-лучи. Для данных видов коротковолнового излучения земная атмосфера является препятствием. Такое излучение стало доступным лишь при появлении ракетной и космической техники. С помощью прибора, установленного на борту высотных ракет удалось получить, например, ультрафиолетовый снимок Солнца.
С помощью рентгеновских телескопов, установленных на борту космических аппаратов, зарегистрировано рентгеновское излучение большого числа различных космических объектов, обнаружены межгалактический газ внутри скоплений галактик и рентгеновское свечение всего неба - своеобразный рентгеновский фон.
К многообещающим источникам космической информации можно отнесли гамма-излучение. Энергия гамма-квантов значительно превосходит энергию фотонов видимого света. Для них Вселенная почти прозрачна. Они приходят к нам от весьма удаленных объектов и несут информацию о физических процессах в глубине Вселенной. С развитием ядерной физики и физики элементарных частиц наметился еще один путь, ведущий к сокровенным тайнам Вселенной. Он связан с регистрацией космических нейтрино и лежит в основе нейтринной астрономии.
Отличительная особенность нейтрино состоит в том, что обладает чрезвычайно высокой проникающей способностью. Регистрируя нейтронный поток с помощью детекторов, можно получить информацию о термоядерных процессах, которые протекают в звездах и являются мощным источником энергии.
Именно с развитием этих областей науки стал широк развиваться еще один одним способ поиска внеземных цивилизаций - поиск следов их астроинженерной деятельности. Это направление базируется на предположении, что технически развитые цивилизации рано или поздно должны перейти к преобразованию окружающего космического пространства (создание искусственных спутников, искусственной биосферы и др.), в частности для перехвата значительной части энергии звезды. Как показывают расчеты, излучение основной части таких астроинженерных сооружений должно быть сосредоточено в инфракрасной области спектра. Следовательно, задача обнаружения подобных внеземных цивилизаций должна начинаться с поиска локальных источников инфракрасного излучения или звезд с аномальным избытком инфракрасного излучения. Для этого в наше время широко применяют радиотелескопы, которые сейчас переживают второе рождение.
У всех наземных радиотелескопов, как и у оптических приборов, есть один существенный недостаток: разглядеть отдаленные объекты им мешает земная атмосфера - она искажает и поглощает и без того слабое излучение.
С появлением космической техники открылась новая возможность исследования Вселенной. Созданный уникальный телескоп-спутник “Хаббл” позволил получить не только четкие изображения планет Солнечной системы, но и новые сведения о происходящих там процессах. На снимках, сделанных в 1996 году с расстояния примерно в 100 млн. километров можно различить детали поверхности Марса размером не менее 25 километров такова разрешающая способность телескопа “Хаббл”. Для сравнения следует отметить, что один из лучших наземных телескопов в мире, расположенный в обсерватории Маунт-Паломар (США) позволяет рассмотреть детали на Марсе размером не менее 300-400 км. С помощью спутникового телескопа “Хаббл” удалось лучше рассмотреть кольца Сатурна и обнаружить кольцевые системы, украшающие Юпитер, Уран и Нептун. С поверхности Земли такие системы не видны - мешает замутненность атмосферы нашей планеты.
В настоящее время создается новый внеземной телескоп, который заменит “Хаббл” в 2006 году. Новый телескоп гораздо чувствительнее “Хаббла”. Он сможет обнаружить в десятки раз более слабые объекты. Диаметр зеркала нового прибора равен 8 метрам. Для сравнения: зеркало телескопа “Хаббла” имеет диаметр 2,4 метров и весит 826 килограмм. Предложенная новая конструкция зеркала весит всего 7 килограмм. В ней зеркальную поверхность образует слой золота, нанесенный на силиконовую пленку.
Ежедневная картина восхода Солнца вряд ли вызывает удивление. А можно ли наблюдать восход Земли? Оказывается, можно. Потому-то, говорят ученые, надо размещать интерферометры в космосе. Сейчас руководители Европейского космического агентства (ЕКА) работают над проектом, который будет осуществлен еще до 2010 года. По сравнению с новым интерферометром - имя ему “Дарвин” - нынешний орбитальный телескоп “Хаббл” будет выглядеть подслеповатым старцем.
Итак, в космос взмоет целая эскадрилья телескопов - 6-метровых зеркал. Они расположатся на небольшом расстоянии - до 70 м - от центральной приемной станции. Эти приборы высмотрят самые крохотные объекты - в 1000 раз меньшие, чем способен увидеть телескоп Хаббла. “Отсюда, из космоса, мы впервые, может быть, разглядим планеты, обращающиеся вокруг отдаленных звезд. Возможно даже, обнаружим следы жизни на них”, - говорит Робин Лоранс из исследовательского центра ЕКА в Нордвике, Нидерланды.
Только оттуда, из космоса, можно зафиксировать слабое инфракрасное излучение, исходящее от далеких планет. В видимой части спектра обнаружить их не удастся - слишком ярко пылает звезда, затмевая все окрестные объекты, - но вот в инфракрасном диапазоне можно заметить тепловые волны, истекающие от планеты. “Космический интерферометр сумеет даже выполнить спектральный анализ ее света, - продолжает Лоранс. - Тогда мы можем судить о том, какие химические элементы преобладают на этой планете”. Если, допустим, в этом спектре будет обнаружен озон, мы совершим очень важное открытие. Ведь наличие прослойки озона - одной из модификаций кислорода - говорит о том, что в атмосфере непременно присутствует и обычный кислород.
Впрочем, космическое “радиошоу” принесет ученым не только сенсационные открытия, но и целый ряд новых проблем. Так, по финансовым соображениям, выводить на околоземную орбиту лучше телескоп с небольшим диаметром зеркала. Далее, телескопы постоянно сносит в сторону солнечным ветром. Поэтому, чтобы “Дарвин” нормально работал, надо постоянно юстировать, т. е. регулировать, детекторы зеркала и приемную станцию. Речь идет буквально о считанных долях миллиметра. Однако технологию юстировки еще только предстоит разработать.
Параллельно ЕКА занимается и другим проектом. Этот космический интерферометр предназначен для измерения расстояний, разделяющих звезды. Благодаря скрупулезной статистике мы заново и более точно определим плотность и протяженность Вселенной. Быть может, проанализировав эти цифры, мы поймем, будет ли Вселенная расширяться бесконечно, или однажды она начнет сжиматься. А это, в свою очередь, один из важнейших вопросов космологии о судьбе Вселенной.
Такие исследования в настоящее время ведутся. В результате было обнаружено несколько десятков инфракрасных источников, однако пока нет оснований связать какой-либо из них с внеземной цивилизацией.
Еще одним видом поиска внеземных цивилизаций является поиск их сигналов и в свою очередь послание своих сигналов. Данная проблема в настоящее время формулируется прежде всего как проблема поиска искусственных сигналов в радио- и оптическом (например, остронаправленном лучом лазера) диапазонах. Наиболее вероятной является радиосвязь. Поэтому важнейшей задачей оказывается выбор оптимального диапазона волн для такой связи. Анализ показывает, что наиболее вероятны искусственные сигналы на волнах л ? 21 см (радио линия водорода), л ? 18 см (радиолиния OH), л ? 1,35 см (радиолиния водяного пара) или же на волнах, скомбинированных из основной частоты с какой-либо математической константы.
Серьезный подход к поиску сигналов от внеземных цивилизаций требует создания постоянно действующей службы, охватывающей всю небесную сферу. Причем такая служба должна быть достаточно универсальной - рассчитанной на прием сигналов различного вида (импульсных, узкополосных и широкополосных).
Первые работы по поиску сигналов внеземных цивилизаций были выполнены в США в 1960 году. Исследовалось радиоизлучение ближайших звезд (ф Кита и е Эридана) на волне 21 см. В последующем (70-80 года) такие исследования проводились в СССР. В ходе исследований были получены обнадеживающие результаты. Так, в 1977 году в США (обсерватория Огайского университета) в процессе обзора неба на волне 21 см был зарегистрирован узкополосный сигнал, характеристики которого указывали на его внеземное и, вероятно, искусственное происхождение. Однако повторно этот сигнал зарегистрировать не удалось, и вопрос о его природе остался открытым. С 1972 года поиски в оптическом диапазоне проводились на орбитальных станциях. Обсуждались проекты строительства многозеркальных телескопов на Земле и на Луне, гигантских космических радиотелескопов и др.
Поиск сигналов от внеземных цивилизаций - это одна сторона контакта с ними. Но существует и другая - сообщение таким цивилизациям о нашей, земной цивилизации. Поэтому на ряду с поисками сигналов от космических цивилизаций предпринимались попытки направить послание внеземным цивилизациям.
В 1974 году с радиоастрономической обсерватории Аресибо в Пуэрто-Рико в сторону шарового скопления М-13, находящегося от Земли на расстоянии 24 тысячи световых лет, было направлено радиопослание, содержащее закодированный текст о жизни и цивилизации на Земле. Причем “телеграмма” передана с таким расчетом, чтобы ее при желании смогли прочесть в окрестностях сразу 300 тысяч звезд.
Само послание состоит из 1679 знаков. Это число является произведением двух простых чисел 23 и 73. Если принимающая сторона сведет знаки в картину размерами в 23 строки на 73 столбца, то получит изображение, позволяющее установить положение в окрестностях Солнца, а также понять принципиальные основы нашей биологии. Получат инопланетяне и представление о формах и размерах человеческого тела.
“А не опасно ли посылать подобные послания? - такой вопрос задают ученым некоторые осторожные пессимисты. - А ну как более высокоразвитая цивилизация захочет нас покорить?..” Опасения эти, мягко говоря, несколько запоздали. И не только потому, что послание было отправлено 20 с лишним лет тому назад. Еще раньше, с началом радиовещания и радиосвязи на нашей планете, она стала работать в режиме этакого радиомаяка. Вот уже более полувека во все концы Вселенной расходятся от Земли радиосигналы. Распространяются они, как известно, со скоростью света, так что ныне эта “предательская сфера” достигла уже размеров как минимум 60 световых лет; в ее пределах находятся уже сотни звезд. Так что нам остается положиться лишь на здравый смысл и миролюбие обитателей как нашей Галактики, так и других. Будем надеяться, что они, как и многие люди на нашей планете, полагают, что война не лучшее время препровождение и способ налаживания контактов.
Впрочем, пока ни из скопления М13, ни из других мест Вселенной ответных радиопосланий не поступало. До обитателей М13, если таковые действительно существуют, наша “телеграмма” попросту еще не дошла. Она прибудет лишь через 24 тыс. лет. А если они сумеют ее расшифровать и захотят нам ответить, то послание оттуда придет опять-таки через такой же срок. Так что человечеству придется либо набираться терпения, либо придумывать новые средства межгалактической связи иную стратегию их использования.
Так, например, согласно одному из проектов, для оповещения других жителей Вселенной о своем существовании земляне должны построить всенаправленный космический маяк. Он будет представлять собой шар, сплошь состоящий из антенн. Радиус его не менее 5 тысяч километров, а масса всего лишь в 500 раз меньше веса Земли. Для работы такого маяка понадобится мощность, превышающая все суммарное излучение, падающее от Солнца на поверхность нашей планеты.
Понятное дело, рассчитывать на строительство подобного маяка в ближайшее время мало реально: у нас пока других забот хватает.
Тем не менее время от времени земляне все-таки находят силы и средства, чтобы продолжать поиски соседей по Вселенной. Так, скажем, в 1992 году сенат США выделил 100 млн. долларов на работы по программе СЕТИ в последующее десятилетие. Хотя все прекрасно понимают, что за это время шансы обнаружить сигналы от разумных существ по-прежнему не так уж велики.
Информационные сообщения также неоднократно помещались на космические аппараты, траектории которых обеспечивали им выход за пределы Солнечной системы. Конечно, очень мало шансов на то, что эти послания когда-либо достигнут цели, но начинать с чего-то надо. Важно, что человечество не только серьезно задумывается о контактах с разумными существами из других миров, но уже и оказывается способным наживать такие контакты, пусть в самой простейшей форме.
Ведь для контакта, кроме всего прочего, необходимо, чтобы во Вселенной выполнялись условия, приведшие к появлению существ, хоть отдаленно похожих на нас.
Вероятность иной жизни во Вселенной
Прежде всего, следует отметить, что вопрос о внеземных цивилизациях имеет свою научную постановку, которая существенно отличается от его трактовок массовым, обыденным, вненаучным сознанием. Современная наука трактует внеземные цивилизации как общества разумных существ, которые могут возникать и существовать вне Земли (на других планетах, космических телах, и иных Вселенных, средах и др.).
С позиций современной науки предположение о возможности существования внеземных цивилизаций имеет объективные основания: представление о материальном единстве мира; развитии, эволюции материи как всеобщем ее свойстве; данные естествознания о закономерном, естественном характере происхождения и эволюции жизни, а также происхождения и эволюции человека на Земле; астрономические данные о том, что Солнце - типичная, рядовая звезда Галактики и нет оснований для его выделения среди множества других подобных звезд; в то же время астрономия исходит из того, что в Космосе существует большое разнообразие физических условий, что может привести в принципе к возникновению самых разнообразных форм высокоорганизованной материи.
Оценка возможной распространенности внеземных (космических) цивилизаций в нашей Галактике осуществляется по формуле Дрейка:
N=R*f*n*k*d*q*L
Где
N - число внеземных цивилизаций в Галактике;
R - скорость образования звезд в Галактике, усредненная по всему времени ее существования (число звезд в год);
f - доля звезд, обладающих планетными системами;
n - среднее число планет, входящих в планетные системы и экологически пригодных для жизни;
k - для планет, на которых действительно возникла жизнь;
d - доля планет, на которых после возникновения жизни развились ее разумные формы;
q - доля планет, на которых разумная жизнь достигла фазы, обеспечивающей возможность связи с другими мирами, цивилизациями;
L - средняя продолжительность существования таких внеземных (космических технических) цивилизаций.
За исключением первой величины (R), которая относится к астрофизике и может быть подсчитана более или менее точно (около 10 звезд в год), все остальные величины являются весьма и весьма неопределенными, поэтому они определяются компетентными учеными на основе экспертных оценок, которые, разумеется, носят субъективный характер.
Вот так, например, оценивается вероятность возникновения жизни. Ясно, что далеко не на всякой планете может возникнуть жизнь. Для возникновения жизни (посредством естественного отбора) необходим сложный комплекс условий.
Во-первых, значительные интервалы времени; поэтому жизнь может возникнуть лишь вокруг старых звезд. Причем старых звезд не первого, а второго поколении, поскольку только рядом с ними могут быть остатки тяжелых элементов, оставшихся после взрывов сверхновых звезд первого поколения.
Во-вторых, на планете должны быть соответствующие температурные условия: слишком высокая или слишком низкая температуры исключают появления жизни. Хотя в составе Млечного Пути насчитывается порядка 100 млрд. звезд, подобных нашему Солнцу, не стоит забывать, что такое светило должно работать в стабильном режиме свыше 5 млрд. лет, прежде чем на одной из планет разовьются какие-то формы жизни.
В-третьих, масса планеты не должна быть слишком маленькой. Ведь в этом случае планета быстро теряет свою атмосферу, которая попросту испаряется (“диссипация”). Чем легче газ, тем быстрее он уходит за пределы планеты. С другой стороны, масса планеты не должна быть очень большой, чтобы не удерживать свою первоначальную атмосферу (из водорода и гелия), не препятствовать изменению ее состава и появлению вторичной атмосферы.
Планета должна находиться на строго определенном расстоянии от светила, скажем, если бы наша планета была всего на 5 процентов ближе к Солнцу, вся вода на ее поверхности испарилась бы, а если бы расстояние до светила оказалось всего на 1 процент больше, то вся влага превратилась бы в лед.
В-четвертых, наличие жидкой оболочки на ее поверхности. И наконец, в-пятых, на планете должны быть условия для возникновения сложных молекулярных соединений, на основе которых могут протекать разнообразные химические процессы.
В результате учета всех этих условий оказывается, что лишь у 1-2% всех звезд в Галактике могут быть планетные системы с явлениями жизни. Иначе говоря, при самых оптимальных оценках около 1 миллиарда звезд могут иметь планетные системы, на которых в принципе возможна жизнь. В целом остается большой и неопределенность в оценке общей величины N: от 109 цивилизаций в Галактике до одной цивилизации в нескольких соседних галактиках.
Что касается Солнечной системы, то современная астрономия пришла к выводу о невозможности существования высокоразвитой жизни на других планетах. Лишь на Марсе, по-видимому, могут быть простейшие формы жизни. Как один из аргументов в пользу того, что внеземные цивилизации - явление очень редкое, выдвигается отсутствие видимых проявлений их активности. Но это утверждение тоже недостаточно строгое. Оно определяется во многом уровнем развития нашей цивилизации, в том числе и совершенством средств астрономических наблюдений.
Нужно иметь в виду, что проблема внеземных цивилизаций для нашей цивилизации тесно связана с проблемами космонавтики и дальнейшее продвижение в глубины Вселенной -- это освоение не только объектов неживой природы, но и предполагаемых наукой более высоких форм движения материи, в том числе “социального космоса”. Однако освоение “социального космоса”, как следует из изложенного в книге, представляет собой проблему принципиально совершенно иную по сравнению с исследованием неживой природы космоса. Оно требует акцента не на технических или естественнонаучных вопросах, а на социальных аспектах, углубленной разработки последних, концентрации внимания на кардинальных проблемах социального прогресса. В этом особенность новой методологической ориентации разработки проблемы внеземных цивилизаций на современном этапе, обеспечивающая ей не только вклад в развитие проблем мировоззрения, но и определенную социальную эффективность и актуальность, подлинно гуманистическую направленность на всестороннее и обстоятельное изучение человека и общества в его земной реальности и космической перспективе.
Заключение
вселенная галактика цивилизация космический
Идея о множественности обитаемых миров зародилась еще в древнегреческой философии. Время от времени она становилась даже темой глубоких мировоззреченских дискуссий. Неудача поисков сигналов от внеземных цивилизаций тревожит; она может означать, что мы не так уж далеко ушли по дороге познания Вселенной. Современная наука установила, что для развития разумной жизни требуются очень специфические условия, накладывающие довольно жесткие ограничения на свойства Вселенной. И что интересно, наша Вселенная оказалась необычно точно удовлетворяющей всем требованиям, правда, и очень чувствительной к незначительному изменению каждой из фундаментальных констант, ответственных за ее свойства, причем любое это изменение практически делает невозможным существование разумной жизни.
В последнее десятилетие среди ученых и философов все более преобладает мнение, что Человечество одиноко если не во всей Вселенной, то во всяком случае в нашей Галактике.
Такое мнение влечет за собой важнейшие мировоззренческие выводы о значении и ценности земной цивилизации, ее достижений. Вполне возможно, что наша планета Земля является высшим “цветом” развития всей или, по крайне мере, огромной части Вселенной, в человечестве сконцентрированы все основные результаты, итоги саморазвития Мира, Природы. Это значит, что мы, люди, человечество, в огромной степени ответственны - не только за нашу планету, но и за развитие Вселенной в целом!
Размещено на Allbest.ru
Подобные документы
Встреча с неизвестным. Голоса прошлого. Случай в Казани. Поиск внеземных цивилизаций. Гуманоид – человек? Ученые расходятся только в оценке внеземных цивилизаций, называя в нашей Галактике от 100 тысяч цивилизованных миров до 4-5 миллиардов.
реферат [17,6 K], добавлен 20.11.2003Возникновение разума и жизни на Земле. Поиски жизни в солнечной системе. Условия для жизни в космосе. Зарождение жизни на планетах. Поиск внеземных цивилизаций. Связь с внеземными цивилизациями. Проекты изучения внеземных цивилизаций Озма и Серендип.
реферат [46,7 K], добавлен 12.02.2008Поиски жизни в Солнечной системе. Условия для жизни в космосе. Поиск внеземных цивилизаций. Связь с внеземными цивилизациями. ОЗМА и СЕРЕНДИП. Язык братьев по разуму. Безбрежные космические просторы. НЛО на Земле.
реферат [26,8 K], добавлен 09.10.2006Строение Солнечной Системы. Поиски жизни в Солнечной системе. Условия жизни в космосе. Поиск внеземных цивилизаций. Связь с внеземными цивилизациями. Язык братьев по разуму. Неопознанные летающие объекты. Реальные факты, примеры фотографий и описание.
реферат [335,5 K], добавлен 13.01.2009Млечный путь, общие сведения по нашей галактике. Открытие семейства карликовых галактик, жизненный путь этих звёздных систем. Положение Солнечной системы (ее наклон) в Галактике. Звёздные системы, классификация Хаббла. Большое Магелланово Облако.
реферат [20,9 K], добавлен 03.04.2011Строение Солнечной системы. Солнце. Солнечный спектр. Положение Солнца в нашей Галактике. Внутреннее строение Солнца. Термоядерные реакции на Солнце. Фотосфера Солнца. Хромосфера Солнца. Солнечная корона. Солнечные пятна.
реферат [53,6 K], добавлен 10.09.2007Понятие и своеобразие глобального эволюционизма, его сущность и содержание. Основы современной космологии, ее структура и элементы. Крупномасштабная структура Вселенной. Эволюция галактик и их классификация, типы. Место Солнечной системы в Галактике.
контрольная работа [17,9 K], добавлен 11.11.2011Изменчивость Вселенной, проблема определения ее размера и возраста. Измерения расстояний до звезд, самые яркие и самые близкие к нам звезды и галактики. Изучение двойных и переменных звезд, квазаров, пульсаров и "черных дыр". Поиск внеземных цивилизаций.
курсовая работа [38,1 K], добавлен 24.04.2011Астрономия как наука. Космология как учение о Вселенной. Теория относительности и космология. Вселенная как система объектов. Типы космических объектов: звезды, планеты, малые тела. Межзвездная среда. Солнечная система. Проблема жизни во Вселенной.
реферат [32,6 K], добавлен 23.11.2006Проблема изучения солнечной системы. Открыты не все тайны и загадки даже нашей системы. Ресурсы других планет и астероидов нашей системы. Исследование Меркурия, Венеры, Марса, Юпитера, Сатурна, Урана, Нептуна, Плутона.
реферат [539,9 K], добавлен 22.04.2003