Ветеринарная вирусология

Предмет и задачи общей и частной вирусологии. Вирусные нуклеиновые кислоты. Правила взятия патматериала от больных и павших животных при подозрении на вирусные болезни. Живые противовирусные вакцины, их применение и отличия от инактивированных вакцин.

Рубрика Сельское, лесное хозяйство и землепользование
Вид шпаргалка
Язык русский
Дата добавления 29.06.2016
Размер файла 92,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Ветеринарная вирусология

Содержание

1. История вирусологии. Роль вирусов в инфекционной патологии животных человека

2. Предмет и задачи общей и частной ветеринарной вирусологии. История открытия вирусов. Достижения отечественной вирусологии

3. Принципы современной классификации вирусов, основные группы вирусов

4. Химически состав и физическая структура вирусов. Понятие о вирионе, капсиде, капсомере. Тип симметрии

5. Устойчивость вирусов к физико-химическим факторам. Практическое использование этих свойств

6. Вирусные нуклеиновые кислоты. Их разновидности, структуры, основные свойства

7. Белки вирусов, их особенности (характеристика свойств нейраминидаз и антигенов миксовирусов)

8. Периоды и этапы репродукции вирусов. Типы взаимодействия

9. Особенности биосинтеза ДНК-содержащих вирусов. Понятие транскрипции и трансляции

10. Типы взаимодействия, основные исходы взаимодействия вируса с клеткой

11. Фазы взаимодействия РНК содержащего вируса с клеткой

12. Патогенез вирусных инфекций

13. Правила взятия патматериала от больных и павших животных при подозрении на вирусные болезни. Транспортировка и подготовка его для вирусологических исследований

14. Методы консервирования вирусов и их практическое значение

15. Правила работы в вирусологической лаборатории. Техника безопасности при работе с вируссодержащим материалом

16. Схема лабораторной диагностики вирусных инфекций

17. Клинико-эпизоотологическая диагностика вирусных болезней животных, сущность, значение

18. Методы обнаружения вируса в патматериале

19. Принцип ретроспективной диагностики, плюсы и минусы ее

20. Вирус болезни Ауески

21. Значение и особенности вирусных белков

22. Общие принципы серологических реакций и их использование в диагностике вирусных болезней

23. РТГА и ее использование в вирусологии. Достоинства и недостатки

24. РДП. Иммунологическая основа меода, постановка и учет результатов. Достоинства и недостатки

25. РСК. Иммунологическая основа и характеристика компонентов реакции

26. Титр вирусов и принципы его определения в единицах 50%-ого инфекционного действия

27. Биологическая характеристика вируса ящура. Принцип диагностики

28. Люминесцентная микроскопия. Основы иммунофлюоресценции

29. Вирус бешенства, его свойства. Патогенность. Принципы диагностики

30. Современная классификация иммунитета. Структура ат характеристика различных классов иммуноглобулинов и их строение

31. Особенности противовирусного иммунитета

32. Роль лимфоидных клеток в противовирусном иммунитете (характеристика Т и В лимфоцитов)

33. Роль клеточных факторов в противовирусном иммунитете

34. Роль гуморальных факторов в противовирусном иммунитете

35. Противовирусные АТ, их свойства, биологическая роль, методы обнаружения и титрования

36. Интерферон и его роль в противовирусном иммунитете

37. Принцип получения бактериофагов. Определение активности

38. Пассивная специфическая профилактика вирусных болезней. Принцип получения

39. Специфическая профилактика вирусных болезней. Виды вакцин и методы их введения

40. Инактивированные противовирусные вакцины, их получение, свойства, применение, отличие от живых вакцин

41. Факторы противовирусного иммунитета, их характеристика

42. Живые противовирусные вакцины, их свойства, применение и отличия от инактивированных вакцин

43. Бактериофаги, их значение и основные свойства

44. Лабораторные животные, цели и методы их использования в вирусологии

45. Строение развивающегося куриного эмбриона. Основные задачи, решаемые методом заражения КЭ и его преимущества перед культивированием вирусов на лабораторных животных

46. Виды культур клеток и их использование в вирусологии. Краткая характеристика каждого вида

47. Первично-трипсинизированные культуры клеток. Их достоинства и недостатки. Применение в вирусологических исследованиях

48. Питательные среды и растворы, используемые в вирусологии. Требования к посуде для культивирования кк, ее обработка

49. Принцип заражения культур клеток вируссодержащим материалом. Индикация вирусов в культуре клеток

50. Методы обнаружения вирионов вирусов и вирусных телец-включений, их практическое значение

1. История вирусологии. Роль вирусов в инфекционной патологии животных человека

В первый период - люди не знали сущности заболевания, только описывали его. В 18 столетии врач Дженер разработал против оспы вакцину, с помощью которой ее лечили. Далее заслуга Пастера, в его время существовало бешенство. Он доказал, что бешенство передается путем покуса. На питательных средах ничего не вырастало. После работ Пастера было выяснено, что заразные болезни вызываются мельчайшими организмами (микробами). Не один из методов бактериальных исследований не позволял выделить микробов, с присутствием которых связаны оспа, ящур, чума. Пастеру не приходила в голову мысль, о существовании возбудителя, отличного по своей природе от микробов. Первый открытый вирус поражал табачные растения (табачная мозаика). В то время этот вирус приносил большой экономический урон. Ученые задались вопросом выяснить причину этого заболевания. Эта работа была поручена Д.И. Ивановскому.

В результате наблюдений Д.И.Ивановский и В.В.Половцев впервые высказали предположение, что болезнь табака, описанная в 1886 году A.D.Mayer в Голландии под название мозаичной, представляет собой не одно, а два совершенно различных заболевания одного и того же растения: одно из них - рябуха, возбудителем которого является грибок, а другое неизвестного происхождения. Исследование мозаичной болезни табака Д.И.Ивановский продолжает в Никитинском ботаническом саду (под Ялтой) и ботанической лаборатории Академии наук и приходит к выводу, что мозаичная болезнь табака вызывается бактериями, проходящими через фильтры Шамберлана, которые, однако, не способны расти на искусственных субстратах. Возбудитель мозаичной болезни называется Ивановским то "фильтрующимися" бактериями, то микроорганизмами, так как сформулировать сразу существование особого мира вирусов было весьма трудно. Подчеркивая, что возбудитель мозаичной болезни табака не мог быть обнаружен в тканях больных растений с помощью микроскопа и не культивировался на искусственных питательных средах.

Он основал вирусологию. Повышенный интерес к вирусологии был вызван тем, что вирусные болезни имеют ведущее значение. 75% болезней вызывается вирусами. Они наносят огромный экономический урон. После открытия Ивановского датский ученый Бейеринг повторил опыты Ивановского и подтвердил, что возбудитель мозаики проходит через фарфоровые фильтры и доказал, что это жидкий живой контагий. Дал ему название вирус. В 1903 году были открыты возбудители чумы свиней, инфекционной анемии. В 1915-1917 годах вирусы бактерий - бактериофаги, к концу 40-х годов было открыто более 40 вирусов, а за последние 40 лет стало известно более 500 вирусных болезней. Ученые задались целью получить вирусные агенты.

В 1931 году предложили метод культивирования куриных эмбрионов. Этот метод отличается высокой чувствительностью, исключается заражение спонтанными вирусами. Наиболее быстрое развитие вирусологии началось после 1948 года. Эндерс предложил метод однослойных культур клеток и тканей. Этот метод позволил изучить многие вирусы, получить вакцины. Учение о вирусах формировалось в самостоятельную науку вирусологию, которая изучает вирусы, заболевания вызываемые ими. Общая вирусология изучает природу и происхождение вирусов, строение и химический состав, устойчивость к физико-химическим факторам, ее предметом является также взаимодействие вируса и клетки, генетику вирусов, особенности формирования иммунитета против вирусов, общих принципов диагностики и профилактики. Она изучает те же вопросы, что и общая вирусология. Вирусы как объекты имеют единицы измерения.

2. Предмет и задачи общей и частной ветеринарной вирусологии. История открытия вирусов. Достижения отечественной вирусологии

Вирусология - наука изучающая природу и происхождение вирусов, заболевания ими вызываемые. Общая вирусология изучает природу и происхождение вирусов, строение и химический состав, устойчивость к физико-химическим факторам, ее предметом является также взаимодействие вируса и клетки, генетику вирусов, особенности формирования иммунитета против вирусов, общих принципов диагностики и профилактики. Она изучает те же вопросы, что и общая вирусология. Вирусы как объекты имеют единицы измерения. Период - люди не знали сущности заболевания, только описывали его. В 18 столетии врач Дженер разработал против оспы вакцину, с помощью которой ее лечили. Далее заслуга Пастера, в его время существовало бешенство. Он доказал, что бешенство передается путем покуса. На питательных средах ничего не вырастало. После работ Пастера было выяснено, что заразные болезни вызываются мельчайшими организмами (микробами). Не один из методов бактериальных исследований не позволял выделить микробов, с присутствием которых связаны оспа, ящур, чума.

Пастеру не приходила в голову мысль, о существовании возбудителя, отличного по своей природе от микробов. Первый открытый вирус поражал табачные растения (табачная мозаика). В то время этот вирус приносил большой экономический урон. Ученые задались вопросом выяснить причину этого заболевания. Эта работа была поручена Д.И. Ивановскому.

В результате наблюдений Д.И.Ивановский и В.В.Половцев впервые высказали предположение, что болезнь табака, описанная в 1886 году A.D.Mayer в Голландии под название мозаичной, представляет собой не одно, а два совершенно различных заболевания одного и того же растения: одно из них - рябуха, возбудителем которого является грибок, а другое неизвестного происхождения. Исследование мозаичной болезни табака Д.И.Ивановский продолжает в Никитинском ботаническом саду (под Ялтой) и ботанической лаборатории Академии наук и приходит к выводу, что мозаичная болезнь табака вызывается бактериями, проходящими через фильтры Шамберлана, которые, однако, не способны расти на искусственных субстратах. Возбудитель мозаичной болезни называется Ивановским то "фильтрующимися" бактериями, то микроорганизмами, так как сформулировать сразу существование особого мира вирусов было весьма трудно. Подчеркивая, что возбудитель мозаичной болезни табака не мог быть обнаружен в тканях больных растений с помощью микроскопа и не культивировался на искусственных питательных средах.

Он основал вирусологию. Повышенный интерес к вирусологии был вызван тем, что вирусные болезни имеют ведущее значение. 75% болезней вызывается вирусами. Они наносят огромный экономический урон. После открытия Ивановского датский ученый Бейеринг повторил опыты Ивановского и подтвердил, что возбудитель мозаики проходит через фарфоровые фильтры и доказал, что это жидкий живой контагий. Дал ему название вирус. В 1903 году были открыты возбудители чумы свиней, инфекционной анемии. В 1915-1917 годах вирусы бактерий - бактериофаги, к концу 40-х годов было открыто более 40 вирусов, а за последние 40 лет стало известно более 500 вирусных болезней. Ученые задались целью получить вирусные агенты.

В 1931 году предложили метод культивирования куриных эмбрионов. Этот метод отличается высокой чувствительностью, исключается заражение спонтанными вирусами. Наиболее быстрое развитие вирусологии началось после 1948 года. Эндерс предложил метод однослойных культур клеток и тканей.

3. Принципы современной классификации вирусов, основные группы вирусов

Современная классификация вирусов универсальна для вирусов позвоночных, беспозвоночных, растений и простейших. Она основана на фундаментальных свойствах вирионов, из которых ведущими являются признаки характеризующие нуклеиновую кислоту, морфологию, стратегию генома, АГ свойства. Фундаментальные свойства поставлены на 1 место, поскольку вирусы со сходными АГ свойствами обладают и сходным типом нуклеиновой кислоты, сходными морфологическими и биофизическими свойствами. Важным признаком для классификации, который учитывается нарду со структурными признаками, является стратегия вирусного генома, под которой понимают используемый вирусом способ репродукции, обусловленный особенностями его генетического материала. АГ и другие биологические свойства являются признаками, лежащими в основе формирования вида и имеющими значение в пределах рода. В основу современной классификации положены следующие основные критерии: 1) тип нуклеиновой кислоты (РНК или ДНК), ее структура (количество нитей); 2) наличие липопротеидной оболочки; 3) стратегия вирусного генома; 4) размер и морфология вириона, тип симметрии, число капсомеров; 5)феномены генетических взаимодействий; 6) круг восприимчивых хозяев; 7) патогенность, в том числе патологические изменения в клетках и образование внутриклеточных включений; 8) географическое распространение; 9) способ передачи; 10) АГ свойства. На основании перечисленных признаков вирусы делятся на семейства, подсемейства, роды и типы. Для упорядочения наименований вирусов выработан ряд правил. Название семейств оканчивается на "viridae" "virinae" "virus". В названии допускаются привычные латинизированные обозначения, цифры и обозначения типов, сокращения, буквы и их сочетания.

4. Химически состав и физическая структура вирусов. Понятие о вирионе, капсиде, капсомере. Тип симметрии

Вирусы состоят из фрагмента генетического материала, либо ДНК, либо РНК, составляющей сердцевинувируса, и окружающей эту сердцевину защитной белковой оболочкой, которую называюткапсидом. Полностью сформированная инфекционная частица называетсявирионом. У некоторых вирусов, таких, как вирусы герпеса или гриппа, есть еще и дополнительная липопротеиднаяоболочка, которая возникает из плазматической мембраны клетки-хозяина. В отличие от всех остальных организмов вирусы не имеют клеточного строения. Оболочка вирусов часто бывает построена из идентичных повторяющихся субъединиц - капсомеров. Из капсомеров образуются структуры с высокой степенью симметрии, способные кристаллизироваться. Это позволяет получить информацию об их строении как с помощью кристаллографических методов, основанных на применении рентгеновских лучей, так и с помощью электронной микроскопии. Как только в клетке-хозяине появляются субъединицы вируса, они сразу же проявляют способность к самосборке в целый вирус. Самосборка характерна и для многих других биологических структур, она имеет фундаментальное значение в биологических явлениях. Непременным компонентом вирусной частицы является какая-либо одна из двух нуклеиновых кислот, белок и зольные элементы. Эти три компонента являются общими для всех без исключения вирусов, тогда как остальные липиды и углеводы - входят в состав далеко не всех вирусов. Вирусы, в состав которых наряду с белком и нуклеиновой кислотой входят также липоиды и углеводы, как правило, принадлежат к группе сложно устроенных вирусов. Кроме белков, входящих в состав нуклеопротеидного "ядра", вирионы могут содержать еще вирус - специфические белки, которые были встроены в плазматические мембраны зараженных клеток и покрывают вирусную частицу, когда она выходит из клетки или "отпочковывается" от ее поверхности. Кроме того, у некоторых вирусов с оболочкой существует субмембранный матриксный белок между оболочкой и нуклеокапсидом. Вторую большую группу вирус-специфических белков составляют некапсидные вирусные белки. Они в основном имеют отношение к синтезу нуклеиновых кислот вириона. Четверым компонентом, обнаруживаемым иногда в очищенных вирусных препаратах, являются углеводы (в количестве, превышающем содержание сахара в нуклеиновой кислоте). В составе элементарных телец вируса гриппа и классической чумы птиц находятся до 17 % углеводов.

По морфологическим признакам все вирусы подразделяются на:

1)Палочковидные

2)Шаровидные

3)Кубоидальные

4)Булавовидные

5)Нитевидные

Основными являются первые 4, нитевидные промежуточной формой.

Понятие о типе симметрии.

В зависимости т расположения капсомеров в белковой оболочке все вирусы подрываются на 3 группы:

1)Спиральный тип

2)Кубический тип

3)Комбинированный

1 - имеют вирусы, наделенный крупными размерами и обладающие высоким полиморфизмом. Капсомеры у них уложены в виде спирали с разным диаметром и таким образом чаще всего шарообразную оболочку, иногда они покрыты второй оболочкой (пеплосом). Нуклеиновая кислота скручена в виде пружины и располагается витками в виде белковых молекул.

2 - у таких вирусов капсомеры располагаются в виде правильного многогранника (икосаэдра). Она скручена в виде клубка и находится в центре.

У большинства вирусов капсомеры имеют форму 5-6 гранных призм.

3 - этот тип симметрии характерен для бактериофагов. Все разновидности бактериофагов имеют головку по типу кубической симметрии, а хвостовой отросток со спиральным строением. Головка с поверхности покрыта белковой оболочкой, которая состоит из однородных белковых субъединиц. В полости головки располагается 1 из нуклеиновых кислот. Хвостовой конец состоит из полого стержня. Заканчивается шестиугольной пластинкой на конце. Хвостовой конец окружен воротничком, к которому прикреплен чехол покрывающей весь стержень.

Химический состав вирусов.

Методы очистки и концентрации вирусов путем высаливания, адсорбции, ультрафильтрации, осаждения позволили изучить химический состав. В составе вирусов имеются белки и одна из нуклеиновых кислот. Вирусы крупных и средних размеров содержат еще и липиды, углеводы и некоторые другие, органические и неорганические соединения.

Большая часть белка и связанных с ним липидов и углеводов - оболочка. Вещества, входящие в состав вирусов имеют особенности, как в химическом, так и биологическом отношении.

Белки - основная часть (20 АК).

Значение вирусных белков - защитная функция (формирование капсиды).

В состав вируса входят ферменты, имеющие белковую природу (адсорбция, адресная функция), наделены иммунными свойствами (обуславливают антигенные свойства).

Особенности вирусных белков:

1.Обладают свойством самосборки (по мере их накопления вирусные белки агрегируются).

2.Обладают избирательной чувствительностью по отношению физических и химических факторов.

3.Не подвергаются гидролизу под действием протеолитических ферментов.

Белки от 50-75% массы вирионов составляют.

Зараженные вирусным геном клетки кодируют синтез 2 групп белка:

===структурные===, ===несруктурные===

1.Струкурные - количество в составе вириона, в зависимости от сложности организации вириона. Структурные белки 2 группы делятся: а. капсидные б. суперкапсидные (пепломеры).

Сложноорганизованные вирусы содержат оба типа белков. У ряда таких вирусов в составе капсида имеются ферменты осуществляют транскрипцию, репликацию.

Суперкапсидные белки формируют шипы (до7-10 нм). Основная функция гликопротеидов - взаимодействие со специфическими рецепторами клетки. Другая функция - участие в синтезе клеточной и вирусной мембран.

"Адресная функция" - вырабатывают в процессе эволюция, это поиск чувствительной клетки.

Реализуется путем наличия специальных белков, которые узнают специальные рецепторы на клетке.

Неструктурные (временные) вирусные белки - предшественники вирусных белков, ферменты синтеза ДНК/РНК полимеразы, обеспечивают транскрипцию и репликацию вирусного генома, белки регуляторы, полимеразы.

Липиды - в сложных вирусах находятся в составе суперкапсида (от 15 до 35 процентов). Липидный компонент стабилизирует структуру вирусной частицы.

Углеводы - до 10-13%. Входят в состав гликопротеидов. Играют существенную роль в структуре и функции белка.

Нуклеиновые кислоты - постоянная составная часть. Сложные полимерные соединения. Выделены Мишером в 1869 году из лейкоцитов. В отличие от бактерий содержат только 1 аминокислоту. В структурном плане нуклеиновые кислоты бывают различными.

Типы ДНК

1.Линейная двуспиральная с открытыми концами.

2.Линейная двуспиральная с замкнутыми концами.

3.Линейная односпиральная.

4.Кольцевая односпиральная.

Типы РНК

1.Линейная односпиральная.

2.Линейная фрагментированная.

3.Кольцевая односпиральная.

5.Линейная двуспиральная фрагментированная.

5. Устойчивость вирусов к физико-химическим факторам. Практическое использование этих свойств

Разные группы вирусов обладают неодинаковой устойчивостью во внешней среде. Наименее устойчивы вирусы, имеющие липопротеидные оболочки, наиболее устойчивы изометрические вирусы. Так ортомиксовирусы и парамиксовирусы инактивируются на поверхностях за несколько часов, тогда как вирусы полиомиелита, адено-, реовирусы сохраняют инфекционную активность несколько дней. Однако из этого правила имеются и исключения. Так, вирус оспы устойчив к высыханию и сохраняется в экскретах многие недели и месяцы. Вирус гепатита В устойчив к действию неблагоприятных внешних факторов и сохраняет свою активность в сыворотке даже при кратковременном кипячении. Чувствительность вирусов к ультрафиолетовому и рентгеновскому облучению зависит преимущественно от размеров их генома. Чувствительность вирусов к формальдегиду и другим химическим веществам, инактивирующим генетический материал, зависит от многих условий, среди которых следует назвать плотность упаковки нуклеиновой кислоты в белковый футляр, размеры генома, наличие или отсутствие внешних оболочек. Вирусы, имеющие липопротеидные оболочки, чувствительны к эфиру, хлороформу и детергентам, в то время как просто устроенные изометрические и палочковидные вирусы устойчивы к их действию. Важной особенность вирусов является чувствительность к РН. Есть вирусы, устойчивые к кислым значениям РН (2,2-3,0), например вирусы, вызывающие кишечные инфекции и проникающие в организм алиментарным путем. Однако большинство вирусов инактивируется при кислых и щелочных значениях РН.

6. Вирусные нуклеиновые кислоты. Их разновидности, структуры, основные свойства

Молекулы вирусных ДНК могут быть линейными или кольцевыми, двухцепочечными или одноцепочечными по всей своей длине или же одно цепочечными только на концах. Большинство нуклеотидных последовательностей в вирусном геноме встречается лишь по одному разу, однако на концах могут находиться повторяющиеся, или избыточные участки. Структуре концевых участков вирусных ДНК существуют также большие различия в величине генома. Вирусов животных ДНК почти не подвергается модификациям. Например, хотя ДНК клеток-хозяев и содержит много метилированных оснований, у вирусов имеется в лучшем случае лишь несколько метильных групп на геном. Размеры вирионов РНК - вирусов сильно варьируют - от 7.106 дальтон у пикорнавирусов до >2.108 дальтон у ретровирусов; однако размеры РНК и, следовательно, объем содержащейся в ней информации различаются в значительно меньшей степени. РНК пикорнавирусов - вероятно, наименьшая из известных - содержит около 7500 нуклеотидов, а РНК парамиксовирусов - едва ли не самая крупная - почти 15000 нуклеотидов. По-видимому, всем независимо реплицирующимся. Нуклеиновые кислоты - постоянная составная часть. Сложные полимерные соединения. Выделены Мишером в 1869 году из лейкоцитов. В отличие от бактерий содержат только 1 аминокислоту. В структурном плане нуклеиновые кислоты бывают различными.

Типы РНК

1.Линейная односпиральная.

2.Линейная фрагментированная.

3.Кольцевая односпиральная.

5.Линейная двуспиральная фрагментированная.

7. Белки вирусов, их особенности (характеристика свойств нейраминидаз и антигенов миксовирусов)

Представляют собой чрезвычайно разнородный класс биологических макромолекул. Обязательными компонентами белков являются АК. Альфа-АК - это сравнительно простые органические молекулы. Молекулярная масса АК лежит в пределах 90-250Д. В состав полипептида может входить от 15 до 2000 АК. Наиболее часто встречаются полипептиды с массой от 20 до 700 кД, состоящие из 100-400 АК. Вирусные белки - белки, кодируемые геномом вируса, - синтезируются в зараженной клетке. Исходя из функции локализации, структуры и регуляции синтеза, вирусные белки делят на структурные и неструктурыные; ферменты, предшественники, гистоноподобные капсидные белки,; мембранные, трансмембранные.

Структурные белки- все белки, входящие в состав зрелых внеклеточных вирионов. Они в вирионе выполняют ряд функций: 1) защита НК от внешних повреждающих воздействий; 2) взаимодействие с мембраной чувствительных клеток в ходе первого этапа их заражения; 3) взаимодействие с вирусной НК в ходе и после ее упаковки в капсид; 4) взаимодействие между собой в ходе самосборки капсида; 5) организация проникновения вируса в чувствительную клетку. Эти 5 функции присущи структурными белкам всех без исключения вирусов. Все функции могут реализоваться одним белком. 6) способность к разрушению в ходе освобождения НК; 7) организация выхода из зараженной клетки в ходе формирования вириона. 8) организация "плавления" и слияния клеточных мембран.

Также белки могут обладать свойствами катализировать те или иные биохимические реакции: 9) РНК-зависимая РНК-полимеразная активность. Эту функцию выполняют структурные белки всех вирусов, в вирионах которых содержится РНК, не играющая роль мРНК; 10) РНК-зависимая ДНК-полимеразная активность - эту функцию выполняют специальные белки ретровирусов, именуемые ревертазами; 11) защита и стабилизация вирусной НК после ее выхода из капсида в зараженной клетке.

В зависимости от расположения того или иного белка в вирионе выделяют группы белков: А) Капсидные белки - в вирионах сложно организованных вирусов эти белки могут выполнить только 2-3 функции - защита НК, способность к самосборке и разрушению в ходе освобождения НК. В вирионах простых вирусов их функции обычно более многообразны. Б) Белки вирусной суперкапсидной оболочки - их роль сводится в основном к организации почкования вирионов, способности к самосборке, взаимодействию с мембраной чувствительных клеток, организации проникновения в чувствительную клетку. В) Матриксные белки - белки промежуточного слоя вирионов, расположенного сразу под суперкапсидной оболочкой некоторых вирусов. Их основные функции: организация почкования, стабилизация структуры вириона за счет гидрофобных взаимодействий, посредничество в осуществлении связи суперкапсидных белков с капсидными. Г) Белки вирусных сердцевин - представлены в основном ферментами. Вирусы, имеющие многослойные капсиды, могут иметь и защитную роль. Д) Белки, ассоциированные с НК самого внутреннего слоя вирионов.

Неструктурные белки- все белки, кодируемые вирусным геномом, но не входящие в вирион. Они изучены хуже, что связано с несравненно большими трудностями, которые возникают при их идентификации и выделении по сравнению со структурными белками. Неструктурные белки в зависимости от их функции делят на 5 групп: 1) Регуляторы экспрессии вирусного генома - непосредственно воздействуют на вирусную НК, препятствуя синтезу других вирусных белков, или, наоборот, запуская их синтез. 2) Предшественники вирусных белков - являются предшественниками других вирусных белков, которые образуются из них в результате сложных биохимических процессов. 3) Нефункциональные пептиды - образуются в зараженной клетке. 4) Ингибиторы клеточного биосинтеза и индукторы разрушения клеток - сюда относятся белки, которые разрушают клеточные ДНК и мРНК, модифицируют клеточные ферменты, придавая им вирусоспецифическую активность. 5) Вирусные ферменты - ферменты, кодируемые вирусным геномом, но не входящие в состав вирионов.

8. Периоды и этапы репродукции вирусов. Типы взаимодействия

Взаимодействие вирусов с клетками хозяев и репродукция вирусов.

Вирусы проходят в клетке сложный цикл развития. Морфогенез вирусов представляет собой основной этап этого развития и состоит из формообразовательных процессов приводящих к образованию вириона как заключению формы развития вируса. Онтогенез и репродукция развития вируса регулируется геномом.

В 50-х годах установлено, что размножение вируса происходит путем репродукции, т.е. воспроизведение нуклеиновых и белков с последующей сборкой вириона. Эти процессы происходят в разных частях клетки, например в ядре и цитоплазме (дизъюнктивный способ репродукции). Вирусная репродукция представляет собой уникальную форму, выражения чужеродной инфекции в клетках человека, животных, насекомых и бактерий.

Морфогенез регулируется с помощью морфогенетических генов. Существует прямопропорциональная зависимость между сложностью ультраструктуры вириона и его морфогенеза. Чем сложнее организация вириона, тем больший путь развития проходит вирус. Весь этот процесс осуществляется с помощью специальных ферментов. Т.к. вирусы не имеют собственного метаболизма то нуждается в ферментах. Однако у вирусов обнаружено свыше 10 ферментов, разных по происхождению и функциональному значению.

По происхождению: вирионные, вирус-индуцированные, клеточные, модифицированные вирусами. Первые входят в состав многих ДНК и РНК содержащих вирусов. ДНК-зависимая РНК-полимераза, протеинкиназа, АТФ-аза, рибонуклеаза, РНК-зависимая РНК-полимераза, экзонуклеаза и другие.

К вирионным формам относятся: гемоглютиннин и нейраминидаза, лизоцим.

Вирус-индуцирующие - это ферменты, структура которых закодирована в геноме, а синтез происходит на рибосоме хозяина - ранние вирионные белки.

Клеточные - включают ферменты клетки хозяина, не являются вирусоспецифическими, однако при взаимодействии с вирусами активность может модифицироваться.

По функциональному значению ферменты делятся на 2 группы:

--- Участвующие в репликации и транскрипции;

--- Нейраминидаза, лизоцим и АТФ-аза, которые способствуют проникновению вируса в клетку и выходу зрелых вирионов из клетки.

Репродукция вирионов характеризуется сменой стадий:

Транскрипция - переписывание ДНК на РНК - осуществляется с помощью фермента РНК-полимеразы, продуктами является биосинтез и-РНК. ДНК-содержащие вирусы, репродукция которых происходит в ядре, используют для транскрипции клеточную полимеразу. РНК-содержащие вирусы ф-ю и-РНК выолняет сам геном. У некоторых РНК-содержащих вирусов передача генетической информации осуществляется по формуле РНК-РНК-белок. К этой группе вирусов относятся - пикорновирусы, корновирусы.

У РНК-содержащих вирусов транскрипция осуществляется вирусоспецифическими ферментами транскриптазами, т.е. вирусами закодированными в геноме.

Синтез белка происходит в результате трансляции в РНК.

Трансляция - процесс перевода генетической информации, содержащейся в вирусе на специфическую последовательность АК. Синтез белка осуществляется на рибосомах клетки. Репликация - синтез молекул нуклеиновой кислоты, гомологичной геному. В клетке происходит репликация ДНК в результате которой образуется двунитчатая ДНК. Будучи внутриклеточными паразитами вирусы используют все энергетические ресурсы клетки для синтеза компонентов: АК, нуклеотидов, АТФ. При этом в значительной мере или полностью подавляется клеточный метаболизм. На ряду с этим вирус вызывает образование ферментов, отсутствующих в клетке и необходимых для репликации вирусных АК.

Согласно современным данным различают 3 основных периода в цикле репродукции:

1.Начальный (подготовительный)

2.Средний (латентный)

3.Конечный (заключительный)

Каждый из периодов включает ряд этапов:

Первый этап

1.Адсорбция вируса на клетке.

2.Проникновение в клетку.

3.Депротеинизация (высвобождение нуклеиновой кислоты).

Второй этап

1.Биосинтез ранних вирусных белков

2.Биосинтез вирусных компонентов

Третий этап

1.Формирование зрелых вирионов

2.Выход зрелых вирионов из клетки.

Этапы:

1.Адсорбция - физико-химический процесс, является следствием разности зарядов. Эта стадия обратима на ее исход оказывает влияние кислотность среды, температура и другие процессы.

Основную роль в адсорбции вируса играет взаимодействие вируса с комплементарными рецепторами клетки. По химической природе они относятся к мукополипротейдам. На степень скорости адсорбции влияют гормоны действующие на рецепторы. Адсорбция вируса может и не наступить, что связано с различной чувствительностью клеток к вирусам. Чувствительность, в свою очередь определяется:

- наличием в клеточной оболочке и цитоплазме ферментов, способных разрушить оболочку и освободить нуклеиновую кислоту.

- наличием ферментов, материала, обеспечивающих синтез вирусных компонентов.

2.Проникновение вируса в клетку:

Вирус проникает 3 путями - путем непосредственного впрыскивания (характерно для фагов); путем разрушения клеточной оболочки (путь сплавления - характерно для вирусов растений); путем пиноцитоза (характерен для вирусов позвоночных).

3.Репродукция ДНК-содержащих вирусов.

Под воздействием ферментов у ДНК-содержащих вирусов осуществляется синтез и-РНК, и-РНК посылается на рибосомы чувствительной клетки. На рибосомах клетки начинается синтез ранних вирионных белков (наделены свойствами - ферментами, блокируют клеточный метаболизм).

Ранние вирионные белки дают начало образованию ранних вирионных кислот.

По мере накопления ранних вирионных белков они блокируют себя и процесс перестраивается на рибосомном аппарате. Идет сборка вирионов и вновь сформировавшиеся вирионы покидают клетку-мать.

4.Выход вириона из клетки:

Пути:

1.Просачиваются через оболочку клетки и одеваются суперкапсидом, в состав в состав которого включаются компоненты клетки: липиды, полисахариды. В данном случае клетка сохраняет свою жизнедеятельность затем погибает. В некоторых случаях в процессе репродукции процессы могут происходить в течение нескольких лет, но жизнедеятельность сохраняется. При этом способе зрелые вирионы из клетки выходят постепенно и относительно длительно. Этот путь характерен для сложных вирусов, имеющих двойную оболочку.

Аномальные вирусы.

В процессе репродукции образуются различные аномальные вирусы. Усилиями академика Жданова в последние годы были открыты псевдовирусы, состоящие из РНК-вируса и белков клетки, образующих капсид. Они обладают инфекционными свойствами, но в силу особенности капсида не поддаются действию антител, образующих ответ на этот вирус.

Явление образования таких вирусов объясняется длительным вирусоносительством при наличии в организме специфических АТ.

Причинами формирования таких вирионов являются:

1.Высокая множественность, в результате чего клетка не в состоянии обеспечить все потомство энергетическим материалом.

2.Действие интерферона - он влияет на синтез ДНК и РНК вирусов.

9. Особенности биосинтеза ДНК-содержащих вирусов. Понятие транскрипции и трансляции

Транскрипция - переписывание ДНК на РНК - осуществляется с помощью фермента РНК-полимеразы, продуктами является биосинтез и-РНК. ДНК-содержащие вирусы, репродукция которых происходит в ядре, используют для транскрипции клеточную полимеразу. РНК-содержащие вирусы ф-ю и-РНК выолняет сам геном. У некоторых РНК-содержащих вирусов передача генетической информации осуществляется по формуле РНК-РНК-белок. К этой группе вирусов относятся - пикорновирусы, корновирусы.

У РНК-содержащих вирусов транскрипция осуществляется вирусоспецифическими ферментами транскриптазами, т.е. вирусами закодированными в геноме.

Синтез белка происходит в результате трансляции в РНК.

Трансляция - процесс перевода генетической информации, содержащейся в вирусе на специфическую последовательность АК. Синтез белка осуществляется на рибосомах клетки. Репликация - синтез молекул нуклеиновой кислоты, гомологичной геному. В клетке происходит репликация ДНК в результате которой образуется двунитчатая ДНК. Будучи внутриклеточными паразитами вирусы используют все энергетические ресурсы клетки для синтеза компонентов: АК, нуклеотидов, АТФ. При этом в значительной мере или полностью подавляется клеточный метаболизм. На ряду с этим вирус вызывает образование ферментов, отсутствующих в клетке и необходимых для репликации вирусных АК.

Под воздействием ферментов у ДНК-содержащих вирусов осуществляется синтез и-РНК, и-РНК посылается на рибосомы чувствительной клетки. На рибосомах клетки начинается синтез ранних вирионных белков (наделены свойствами - ферментами, блокируют клеточный метаболизм).

Ранние вирионные белки дают начало образованию ранних вирионных кислот.

По мере накопления ранних вирионных белков они блокируют себя и процесс перестраивается на рибосомном аппарате. Идет сборка вирионов и вновь сформировавшиеся вирионы покидают клетку-мать.

10. Типы взаимодействия, основные исходы взаимодействия вируса с клеткой

1)Продуктивное взаимодействие - когда вирусы размножаясь в клетке образуют новое поколение 2)Абортивное - когда циклы репродукции прерывается на какой либо стадии. 3)Литическая реакция - когда после образования вируса клетка гибнет. 4)Латентная реакция - когда зараженная клетка длительно сохраняет свою жизнеспособность. 5)Интеграция - когда происходит объединение геномов вирусов и клеток. При этом происходит репродукция в клетках геномов, подчиняется общей регуляции. Репродукция вирусов вызывает в пораженных клетках патологические изменения выражающиеся функциональными и морфологическими нарушениями клеток. Возможные исходы процессов взаимодействия различных вирусов и клеток можно / на 5 типов: 1)Дегенерация клеток - приводит к их гибели. При этом клетка приобретает неправильную округлую форму, округляются, становятся более плотные, в цитоплазме появляется зернистость, сморщивание и фрагментация ядер. 2.Образование симпластов - это многоядерные. скопления вне клеточного. вещества. 3)Трансформация клеток - т.е. образование очагов беспорядочного трехмерного роста. Клетки в этих очагах приобретают новые наследственные свойства, непрерывно /, нагромождаясь друг на друга(опухоли). 4. Обр. внеклеточных включений, которые являются продуктами реакции клеток на вирусную частицу. 5)Латентная инфекция- это своеобразное сост. равновесия между вирусом и клеткой., когда инфекция не проявляется каким-либо признаком. Наблюдается незначительная продукция вируса, без повреждения клеток.

11. Фазы взаимодействия РНК содержащего вируса с клеткой

См вопрос №8

12. Патогенез вирусных инфекций

Тропизм - склонность вируса к тому или иному вороту инфекции. При респираторных инфекциях - вирус локализуется в носоглотке, трахее и легких; при энтеровирусных - в кале; при нейротропных - в ГМ или СМ; при дермотропных - в коже.

Патогенез вирусных инфекций.

Под патогенезом понимают совокупность процессов, вызывающих заболевание, его развитие и исход.

Патогенез определяется:

1.Тропизмом вируса

2.Количеством инфекционных частиц

3.Реакцией клетки на инфекцию.

4.Реакция организма на изменение клеток и тканей.

5.Скоростью репродукции.

В основе тропизма вирусов лежит чувствительность к вирусу определенных клеток.

Патогенез обусловлен основными механизмами взаимодействия вирусов с клетками:

- атрофия или дистрофия (ЦПД)

- образование телец включений

- образование симпластов и синцитиев

- трансформация

- латентная (хроническая) инфекция.

Под инфекцией понимают состояние зараженности макроорганизма. Это комплекс процессов, происходящих при взаимодействии инфекционного агента с организмом хозяина. В связи с тем, что вирусы являются внутриклеточными паразитами в основе их взаимодействия с организмом всегда лежит инфекционный процесс на уровне клетки, который реализуется путем взаимодействия вирусного и клеточного генома, поэтому возможно классифицировать инфекцию как на клеточном, так и на организменном уровне.

Патогенез на клеточном уровне - сюда входит ЦПД (видимые морфологические изменения клеток под воздействием того или иного вирусного агента). Характер ЦПД различен и зависит от:

1.Вида клетки

2.Биохимических свойств вируса

3.Заражающей дозы

Характер ЦПД оценивается по 4-х бальной системе крестовой и учитываются изменения, когда используются культуры клеток для титрования (т.е.).

Патогенез на организменном уровне.

Состояние инфекции как всякого биологического процесса динамично, динамку взаимодействия обычно называют инфекционным процессом. С одной стороны инфекционный процесс включает: внедрение, размножение и распространение возбудителя в организме, а также патогенное действие, а с другой стороны реакцию организма на это действие.

Патогенное действие возбудителя может быть неодинаковым. Оно проявляется в форме инфекционной болезни различной тяжести, в другом без ярко выраженных клинических признаков в третьих проявляется лишь изменениями, выявленными вирусологическими, биохимическими, иммунологическими методами. Это зависит от:

- количества и качества возбудителя, проникшего в восприимчивый организм, условий внутренней и внешней среды, определяющих резистентность животного и характеризуются взаимодействием микро и макроорганизмов. По характеру взаимодействия возбудителя болезни и организма выделяют 3 формы:

1.инфекционная болезнь - это инфекционный процесс, характеризуется определенными клиническими признаками, а также нарушениями, функциональными расстройствами и морфологическими повреждениями тканей.

2.Микробоносительство - иммунологическая субинфекция. Дифференцированный подход к различным формам инфекции дает возможность правильно вести диагностику инфекции выявлять зараженных животных в неблагополучном стаде. Патогенез любой инфекционной болезни определяется специальным действием возбудителя и ответными реакциями организма, зависящими от условий, в которых происходит взаимодействие микро и макроорганизма. При этом немаловажное значение имеют пути проникновения и распределения возбудителя. Ворота возбудителя: кожа, слизистые, мочеполовая система, плацента.

Каждый вид возбудителя эволюционно приспособился к таким путям внедрения, которое обеспечивает благоприятные условия для размножения и распространения - входные ворота для каждой инфекции характеризуется специфичностью. Чтобы проводить профилактику необходимо учитывать специфичность ворот инфекции. Например, при ИНАН возбудитель проникает через кожу при укусе насекомых. При ящуре основной путь алиментарный, при бешенстве - через покус.

Классификация вирусных инфекций.

Различают автономные и интегрированные инфекции. Автономные - при этом вирусный геном реплицируется независимо от клеточного генома. Автономная инфекция характерна для большинства вирусов.

Интегрированные инфекции - вирусный геном включается в состав клеточного генома, т.е. интегрируются в клеточный геном и реплицируются вместе с ним. При этом вирусный геном реплицируется и функционирует как составная часть клеточного генома. Интегрировать может как полный геном так и часть. При интегрированных инфекциях нет ни сборки вирусных частиц ни выхода.

Автономная инфекция - клетка иногда приобретает способность к неограниченному делению в результате нарушения регулирующих механизмов, контролирующих деление. Это чаще наблюдается при онкогенных инфекциях.

Продуктивная и абортивная инфекции:

1.Продуктивная - завершается выходом инфекционного потомства.

2.Абортивная - инфекционного потомства не образуется или его мало.

Формы течения - как и продуктивная, так и абортивная могут протекать в острой и хронической форме. Острая инфекция - это инфекция, в результате которой клетка либо выздоравливает либо погибает. Острая инфекция на клеточном уровне может быть цитолитической (когда происходит гибель клетки).

Хроническая инфекция - это инфекция, при которой клетка продолжает продуцировать вирусные частицы в течение длительного времени и предает эту способность дочерним клеткам. Чаще хроническую форму приобретает абортивная инфекция т.к. вирусный материал накапливается и передается дочерней клетке.

Смешенная инфекция - клетка заражается двумя или несколькими разными вирусами, в результате чего в клетке могут совмещаться два и более инфекционных процесса. Возможно несколько вариантов взаимодействия вируса в процессе смешанной инфекции:

1.Интерференция - один вирус подавляет действие другого.

2.Комплементация (экзальтация) - один вирус усиляет действие другого.

Классификация вирусных инфекций на организменном уровне.

В основу классификации положено:

1.Генерализация вируса

2.Продолжительность инфекции

3.Проявление клинических симптомов

4.Выделение вирусов в окружающую среду

Одна из форм может переходить в другую (например, очаговая в генерализованную, острая в хроническую).

Очаговая инфекция.

Вирус действует вблизи входных ворот инфекции, в связи с локальной репродукцией. Они имеют более короткий скрытый период по сравнению с генерализованными.

Генерализованные инфекции.

После ограниченного периода репродукции в первичных очагах происходит генерализация инфекций - вирусы проникают в другие системы, например при ящуре, полиомиелите, оспе.

Острая инфекция.

Длится непродолжительный период и протекает с выделением в окружающую среду. Заканчивается гибелью или выздоровлением.

Персистентная инфекция.

При продолжительном взаимодействии вируса с организмом. Она может быть латентная, хроническая, медленная.

Латентная инфекция - не сопровождается выделением вируса в окружающую среду, при определенных условиях может переходить в острую и хроническую.

При гриппе, сепсисе, СПИДе и др.

Хроническая инфекция.

Это длительно текущий процесс. Характеризуется периодами ремиссии (аденовирус, герпес).

Медленные инфекции - своеобразное взаимодействие вируса с фагом и характеризуется длительными инкубационными периодами.

Источники инфекции.

При изучении любого инфекционного заболевания важно знать источник, место постоянного обитания и размножения, пути распространения, место и сроки сохранения, возникновения во внешней среде, способы передачи от больных к здоровым.

Естественная среда - живой организм, здесь он находит все условия существования. Длительность пребывания вирусов колеблется в значительных пределах и зависит от биологических свойств, реактивности организма. От условий патогенеза. Источники инфекции - только зараженные организмы. Они играют роль лишь в процессе передачи. Большинство животных выделяют вирусы с экскретами, секретами, кровью, истечениями, мокротой. При большинстве вирусных инфекций в основе патогенеза лежит вирусемия (ящур, чума и др). При этих заболеваниях вирус выделяется всеми возможными путями. При хроническом течении вирусовыделение менее интенсивно, но может быть длительным. При вирусных заболеваниях локализация ограничивается одним путем: пневмонии - с каплями мокроты. Самое интенсивное выделение вируса во внешнюю среду наблюдается в острый период заболевания, однако при ряде заболеваний и в инкубационный период. Бессимптомные инфекции протекают при вакцинировании живыми вакцинами.

13. Правила взятия патматериала от больных и павших животных при подозрении на вирусные болезни. Транспортировка и подготовка его для вирусологических исследований

Материал для исследований от заболевших, павших или вынужденно убитых животных следует брать как можно быстрее после появления четких признаков болезни или не позднее 2-3 часов после клинической смерти или убоя. Это связано с тем, что сразу после заболевания или в первые 1-2 дня значительно ослабевает барьерная роль кишечника, что наряду с повышенной проницаемостью кровеносных сосудов способствует диссеминации кишечной флоры. Кроме того, по мере продолжения и даже углубления инфекционного процесса количество вируса может уменьшаться в результате воздействия защитных механизмов организма. При взятии материала для выделения вируса следует исходить из патогенеза изучаемой инфекции (входные ворота, пути распространения вируса в организме, места его размножения и пути выделения). При респираторных инфекциях для выделения вирусов берут носоглоточные смывы, мазки из носа и глотки; при энтеровирусных - кал; при дермотропных - свежие поражения кожи. Материалов для выделения вируса могут служить различные экскреты и секреты, кусочки органов, кровь, лимфа. Кровь берут из яремной вены, у свиней - из кончика хвоста или уха. Смывы с конъюнктивы, со слизистой носа, с задней стенки глотки, прямой кишки и клоаки у птиц берут стерильными ватными тампонами и погружают их в пенициллиновые флаконы. При взятии материала из носоглотки можно пользоваться прибором, сконструированным Томасом и Скотом. Вытекающую изо рта слюну можно собрать прямо в пробирку. Мочу собирают при помощи катетера в стерильную посуду. Фекалии берут из прямой кишки шпателем или палочкой и помещают в стерильную пробирку. Везикулярную жидкость можно собирать шприцем или пастеровской пипеткой в стерильную пробирку. Стенки афт, корочки с поверхности кожи снимают пинцетом. После смерти животного важно как можно быстрее взять кусочки органов, т.к. при многих вирусных инфекциях наблюдается феномен посмертной аутостерилизации, в результате чего вирус м\б вообще не обнаружен или его количество окажется очень малым. Далее патматериал помещают в низкие температуры (сухой лед+спирт; снег+соль) или глицерин на ИХН. Патматериал должен быть снабжен надежной и четкой этикеткой. Нужно написать какой материал и от какого животного получен. На термос с пробами ПМ навешивают бирку из картона или фанеры на которой указывают хозяйство, вид животного, вид материала, дату. Термос должен быть опечатан и доставлен нарочным. Доставленные в лабораторию пробы рекомендуется немедленно использовать для выделения вируса. В лаборатории полученный патматериал освобождают от консерванта, оттаивают, отмывают от глицерина, взвешивают и измеряют. Часть берут на исследование, часть в холодильник. Подготовку органов и тканей проводят так: вирус высвобождают из клеток органов и тканей - материал тщательно измельчают и растирают в ступке со стерильным кварцевым песком. Из растертого материала обычно готовят 10% суспензию на Хенксе или фосфатном буфере. Суспензию центрифугируют при 1500-3000 об\мин, надосадочную жидкость отсасывают и освобождают от микрофлоры обрабатывая антибиотиками (пенициллин, нистатин). Проводят экспозицию суспензии с АБ не менее 30-60 минут при комнатной температуре, затем материал подвергают бактериологическому контролю путем посева на МПА, МПБ, МППБ, среду Сабуро. Суспензию хранят при минус 20- минус 70 С.

14. Методы консервирования вирусов и их практическое значение

Применяют следующие методы консервации вирусов:

1. при хранении вирусного материала (кусочки органов или тканей) часто используют глицерин (50%-ный раствор на ИХН), который обладает бактериостатическим действием и в то же время защищает вирусы. При этом можно хранить несколько месяцев при 4С.

2. чаще всего хранят вирусы в холодильниках, обеспечивающих температуру -20, -30, -70С. При этой температуре некоторые вирусы без добавки защитных веществ сравнительно быстро теряют инфекционность. Хорошее защитное действие при замораживании и хранении вирусов оказывает добавка: инактивированной сыворотки крови или обезжиренного молока или 0,5-1,5% желатина.


Подобные документы

  • Материалы по общей и частной ветеринарной экотоксикологии, последние достижения науки об источниках загрязнения экосистемы села и их влияние на продуктивное здоровье животных. Способы ветеринарной защиты и ведения животноводства в зонах загрязнения.

    книга [20,5 M], добавлен 10.12.2010

  • Эпизоотологическое обследование хозяйства, доля инвазионных заболеваний. Особенности заболевания животных и болезни незаразной этиологии в УОХ "Пригородное". Хирургические патологии у животных, акушерство, гинекология и искусственное осеменение.

    отчет по практике [105,9 K], добавлен 22.11.2013

  • История становления вакцинологии как науки. Преимущества и недостатки иммунопрофилактики и классификация применяемых препаратов. Типы вакцин и способы их приготовления. Правила вакцинации и методы подготовки животных. Мероприятия по борьбе с осложнениями.

    курсовая работа [73,2 K], добавлен 13.12.2014

  • Специфические факторы противовирусного иммунитета. Два варианта выдачи иммунного ответа в форме биосинтеза антител. Вирус инфекционного бронхита птиц: возбудитель, диагностика. Методы лечения вируса ящура. Культивирование вирусов в культуре клеток.

    курсовая работа [49,2 K], добавлен 17.11.2010

  • Исследование этиологии, клинической картины и признаков болезни Ньюкасла, оспы, орнитоза, вирусного гепатита и инфекционного синусита. Характеристика патологоанатомических изменений в организме, свойств возбудителя, диагностики и лечения заболеваний.

    реферат [30,7 K], добавлен 26.12.2011

  • Мероприятия по профилактике классической чумы свиней. Применение живых вакцин, используемые препараты. Эпизоотическое состояние ОГБУ "Троицкая районная ветеринарная станция по борьбе с болезнями животных", меры профилактики классической чумы свиней.

    отчет по практике [24,9 K], добавлен 24.04.2017

  • Изучение действия токсических веществ на функциональные системы организма сельскохозяйственных животных. Производные тиокарбаминовой кислоты. Ветсанэкспертиза продуктов убоя животных при микотоксикозах. Разработка схемы лечения при отравлениях зооцидами.

    контрольная работа [24,8 K], добавлен 12.03.2015

  • Распространение зооантропонозной природноочаговой инфекционной болезни сельскохозяйственных животных. Характер развития инфекционного процесса при некробактериозе. Течение и симптомы болезни. Лечение больных животных, специфическая профилактика.

    реферат [26,0 K], добавлен 26.01.2012

  • Профилактика анаэробной энтеротоксемии новорожденных поросят. Массовые желудочно-кишечные и септические заболевания новорожденных поросят. Течение и симптомы болезни. Определение титров антитоксинов и типизация выделенных из патматериала токсинов.

    дипломная работа [826,8 K], добавлен 22.03.2013

  • Лабораторная диагностика и специфическая профилактика в основе борьбы с лептоспирозом сельскохозяйственных животных. Преобладающие формы вакцин. Порядок работы с производственными штаммами. Понятие питательной среды, приготовление сухой вакцины.

    курсовая работа [43,4 K], добавлен 13.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.