Влияние оздоровительной физической культуры на организм

Влияние физических упражнений на мышцы, скелет и опорно-двигательный аппарат. Изменение мышц под влиянием физической нагрузки. Анатомно-физиологические особенности опорно-двигательного аппарата. Работа опорно-двигательного аппарата в покое и при нагрузке.

Рубрика Спорт и туризм
Вид реферат
Язык русский
Дата добавления 24.08.2010
Размер файла 33,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Министерство общего и профессионального образования Свердловской области

Уральский экономический колледж

Факультет коммерческой деятельности и управления

Реферат

на тему:

«Влияние оздоровительной физической культуры на организм»

Исполнитель:

студентка 3 курса

Балякина Алена

Екатеринбург, 2007 год

Оздоровительный и профилактический эффект массовой физической культуры неразрывно связан с повышенной физической активностью, усилением функций опорно-двигательного аппарата, активизацией обмена веществ. Учение Р. Могендовича о моторно-висцеральных рефлексах показало взаимосвязь деятельности двигательного аппарата, скелетных мышц и вегетативных органов. В результате недостаточной двигательной активности в организме человека нарушаются нервно-рефлекторные связи, заложенные природой и закрепленные в процессе тяжелого физического труда, что приводит к расстройству регуляции деятельности сердечнососудистой и других систем, нарушению обмена веществ и развитию дегенеративных заболеваний (атеросклероз и др.). Для нормального функционирования человеческого организма и сохранения здоровья необходима определенная «доза» двигательной активности. В этой связи возникает вопрос о так называемой привычной двигательной активности, т. е. деятельности, выполняемой в процессе повседневного профессионального труда и в быту. Наиболее адекватным выражением количества произведенной мышечной работы является величина энергозатрат. Минимальная величина суточных энергозатрат, необходимых для нормальной жизнедеятельности организма, составляет 12-16 МДж (в. зависимости от возраста, пола и массы тела), что соответствует 2880-3840 ккал. Из них на мышечную деятельность должно расходоваться не менее 5,0-9,0 МДж (1200-1900 ккал); остальные энергозатраты обеспечивают поддержание жизнедеятельности онанизма в состоянии покоя, нормальную деятельность систем дыхания и кровообращения, обменные процессы и т. д. (энергия основного обмена).

В экономически развитых странах за последние 100 лет удельный вес мышечной работы как генератора энергии, используемой человеком, сократился почти в 200 раз, что привело к снижению энергозатрат на мышечную деятельность (рабочий обмен) в среднем до 3,5 МДж. Дефицит энергозатрат, необходимых для нормальной жизнедеятельности организма, составил, таким образом, около 2,0-3,0 МДж (500- 750 ккал) в сутки. Интенсивность труда в условиях современного производства не превышает 2-3 ккал/мир, что в 3 раза ниже пороговой величины (7,5 ккал/мин) обеспечивающей оздоровительный и профилактический эффект. В связи с этим для компенсации недостатка энергозатрат в процессе трудовой деятельности современному человеку необходимо выполнять физические упражнения с расходом энергии не менее 350-500 ккал в сутки (или 2000-3000 ккал в неделю). По данным Беккера, в настоящее время только 20 % населения экономически развитых стран занимаются достаточно интенсивной физической тренировкой, обеспечивающей необходимый минимум энергозатрат, у остальных 80 % суточный расход энергии значительно ниже уровня, необходимого для поддержания стабильного здоровья. Резкое ограничение двигательной активности в последние десятилетия привело к снижению функциональных возможностей людей среднего возраста. Так, например, величина МПК у здоровых мужчин снизилась примерно с 45,0 до 36,0 мл/кг.

Таким образом, у большей части современного населения экономически развитых стран возникла реальная опасность развития гипокинезии. Синдром, или гипокинетическая болезнь, представляет собой комплекс функциональных и органических изменений и болезненных симптомов, развивающихся в результате рассогласования деятельности отдельных систем и организма в целом с внешней средой. В основе патогенеза этого состояния лежат нарушения энергетического и пластического обмена (прежде всего в мышечной системе).

Механизм защитного действия интенсивных физических упражнений заложен в генетическом коде человеческого организма. Скелетные мышцы, в среднем составляющие 40 % массы тела (у мужчин), генетически запрограммированы природой на тяжелую физическую работу. «Двигательная активность принадлежит к числу основных факторов, определяющих уровень обменных процессов организма и состояние его костной, мышечной и сердечно-сосудистой систем», - писал академик В. В. Парин (1969). Мышцы человека являются мощным генератором энергии. Они посылают сильный поток нервных импульсов для полдержания оптимального тонуса ЦНС, облегчают движение венозной крови по сосудам к сердцу («мышечный насос»), создают необходимое напряжение для нормального функционирования двигательного аппарата. Согласно «энергетическому правилу скелетных мышц» И. А. Аршавского, энергетический потенциал организма и функциональное состояние всех органов и систем зависит от характера деятельности скелетных мышц. Чем интенсивнее двигательная деятельность в границах оптимальной зоны, тем полнее реализуется генетическая программа, и увеличиваются энергетический потенциал, функциональные ресурсы организма и продолжительность жизни. Различают общий и специальный эффект физических упражнений, а также их опосредованное влияние на факторы риска. Наиболее общий эффект тренировки заключается в расходе энергии, прямо пропорциональном длительности и интенсивности мышечной деятельности, что позволяет компенсировать дефицит энергозатрат.

Важное значение имеет также повышение устойчивости организма к действию неблагоприятных факторов внешней среды: стрессовых ситуаций, высоких и низких температур, радиации, травм, гипоксии. В результате повышения неспецифического иммунитета повышается и устойчивость к простудным заболеваниям. Однако использование предельных тренировочных нагрузок, необходимых в большом спорте для достижения «пика» спортивной формы, нередко приводит к противоположному эффекту- угнетению иммунитета и повышению восприимчивости к инфекционным заболеваниям. Аналогичный отрицательный эффект может быть получен и при занятиях массовой физической культурой с чрезмерным увеличением нагрузки. Специальный эффект оздоровительной тренировки связан с повышением функциональных возможностей сердечно-сосудистой системы. Он заключается в экономизации работы сердца в состоянии покоя и повышении резервных возможностей аппарата кровообращения при мышечной деятельности.

Один из важнейших эффектов физической тренировки - урежение частоты сердечных сокращений в покое (брадикардия) как проявление экономизации сердечной деятельности и более низкой потребности миокарда в кислороде. Увеличение продолжительности фазы диастолы (расслабления) обеспечивает больший кроваток и лучшее снабжение сердечной мышцы кислородом. У лиц с брадикардией случаи заболевания ИБС выявлены значительно реже, чем у людей с частым пульсом. Считается, что увеличение ЧСС в покое на 15 уд/мин повышает риск внезапной смерти от инфаркта на 70 % - такая же закономерность наблюдается и при мышечной деятельности. При выполнении стандартной нагрузки на велоэргометре у тренированных мужчин объем коронарного кровотока почти в 2 раза меньше, чем у нетренированных (140 против 260 мл/мин на 100 г ткани миокарда), соответственно в 2 раза меньше и потребность миокарда в кислороде (20 против 40 мл/мин на 100 г ткани). Таким образом, с ростом уровня тренированности потребность миокарда в кислороде снижается как в состоянии покоя, так и при субмаксимальных нагрузках, что свидетельствует об экономизации сердечной деятельности. Это обстоятельство является физиологическим обоснованием необходимости адекватной физической тренировки для больных ИКС, так как по мере роста тренированности и снижения потребности миокарда в кислороде повышается уровень пороговой нагрузки, которую испытуемый может выполнить без угрозы ишемии миокарда и приступа стенокардии. Наиболее выражено повышение резервных возможностей аппарата кровообращения при напряженной мышечной деятельности: увеличение максимальной частоты сердечных сокращений, систолического и минутного объема крови, артерио-венозной разницы по кислороду, снижение общего периферического сосудистого сопротивления (ОППС), что облегчает механическую работу сердца и увеличивает его производительность. Оценка функциональных резервов системы кровообращения при предельных физических нагрузках у лиц с различным уровнем физического состояния показывает: люди со средним УФС (и ниже среднего) обладают минимальными функциональными возможностями, граничащими с патологией, их физическая работоспособность ниже 75% ДМПК. Напротив, хорошо тренированные физкультурники с высоким УФС по всем параметрам соответствуют критериям физиологического здоровья, их физическая работоспособность достигает оптимальных величин или же превышает их (100 % ДМПК и более, или 3 Вт/кг и более). Адаптация периферического звена кровообращения сводится к увеличению мышечного кровотока при предельных нагрузках (максимально в 100 раз), артериовенозной разницы по кислороду, плотности капиллярного русла в работающих мышцах, росту концентрации миоглобина и повышению активности окислительных ферментов. Защитную роль в профилактике сердечно-сосудистых заболеваний играет также повышение фибринолитической активности крови при оздоровительной тренировке (максимум в 6 раз) и снижение тонуса симпатической нервной системы. В результате снижается реакция на нейрогормоны в условиях эмоционального напряжения, т.е. повышается устойчивость организма к стрессорным воздействиям. Помимо выраженного увеличения резервных возможностей организма под влиянием оздоровительной тренировки чрезвычайно важен также ее профилактический эффект, связанный с опосредованным влиянием на факторы риска сердечно-сосудистых заболеваний. С ростом тренированности (по мере повышения уровня физической работоспособности) наблюдается отчетливое снижение всех основных факторов риска НЕС - содержания холестерина в крови, артериального давления и массы тела. Б. А. Пирогова (1985) в своих наблюдениях показала: по мере роста УФС содержание холестерина в крови снизилось с 280 до 210 мг, а триглицеридов со 168 до 150 мг %. Следует особо сказать о влиянии занятий оздоровительной физической культурой на стареющий организм. Физическая культура является основным средством, задерживающим возрастное ухудшение физических качеств и снижение адаптационных способностей организма в целом и сердечно-сосудистой системы в частности, неизбежных в процессе инволюции. Возрастные изменения отражаются как на деятельности сердца, так и на состоянии периферических сосудов. С возрастом существенно снижается способность сердца к максимальным напряжениям, что проявляется в возрастном уменьшении максимальной частоты сердечных сокращений (хотя ЧСС в покое изменяется незначительно). С возрастом функциональные возможности сердца снижаются даже при отсутствии клинических признаков ИБС. Так, ударный объем сердца в покое в возрасте 25 лет к 85 годам уменьшается на 30 %, развивается гипертрофия миокарда. Минутный объем крови в покое за указанный период уменьшается в среднем на 55-60 %. Возрастное ограничение способности организма к увеличению ударного объема и ЧСС при максимальных усилиях приводит к тому, что минутный объем крови при предельных нагрузках в возрасте 65 лет на 25-30 % меньше, чем в возрасте 25 лет (Роапег, 1986, и др.).

С возрастом также происходят изменения в сосудистой системе: снижается эластичность крупных артерий, повышается общее периферическое сосудистое сопротивление, в результате к 60-70 годам систолическое давление повышается на 10-40 мм рт. ст. Все эти изменения в системе кровообращения, снижение производительности сердца влекут за собой выраженное уменьшение максимальных аэробных возможностей организма, снижение уровня физической работоспособности и выносливости. Скорость возрастного снижения МПК в период от 20 до 65 лет у нетренированных мужчин составляет в среднем 0,5 мл/мин/кг, у женщин - 0,3 мл/мин/кг за год. Из табл. В период от 20 до 70 лет максимальная аэробная производительность снижается почти в 2 раза - с 45 до 25 мл/кг (или на 10 % за десятилетие). С возрастом ухудшаются и функциональные возможности дыхательной системы. Жизненная емкость легких (ЖЕЛ) начиная, с 35-летнего возраста за год снижается в среднем на 7,5 мл на 1м2 поверхности тела. Отмечено также снижение вентиляционной функции легких - уменьшение максимальной вентиляции легких (МЕЛ). Хотя эти изменения не лимитируют аэробные возможности организма, однако они приводят к уменьшению жизненного индекса (отношение ЖЕЛ к массе тела, выраженное в мл/кг), который может прогнозировать продолжительность жизни. Существенно изменяются и обменные процессы: уменьшается толерантность к глюкозе, повышается содержание общего холестерина, ЛИП и триглицеридов в крови, что характерно для развития атеросклероза.

Ухудшается состояние опорно-двигательного аппарата: происходит разрежение костной ткани (остеопороз) вследствие потери солей кальция. Недостаточная двигательная активность и недостаток кальция в пище усугубляют эти изменения. Адекватная физическая тренировка, занятия оздоровительной физической культурой способны в значительной степени приостановить возрастные изменения различных функций. В любом возрасте с помощью тренировки можно повысить аэробные возможности и уровень выносливости - показатели биологического возраста организма и его жизнеспособности. Например, у хорошо тренированных бегунов среднего возраста максимально возможная ЧСС примерно на 10 уд/мин больше, чем у неподготовленных. Такие физические упражнения, как ходьба, бег (по З ч. в неделю), уже через 10-12 недель приводят к увеличению МПК на 10-15%.

Таким образом, оздоровительный эффект занятий массовой физической культурой связан прежде всего с повышением аэробных возможностей организма, уровня общей выносливости и физической работоспособности. Повышение физической работоспособности сопровождается профилактическим эффектом в отношении факторов риска сердечно-сосудистых заболеваний: снижением веса тела и жировой массы, содержания холестерина и триглицеридов в крови, уменьшением ЛИП и увеличением ЛВП, снижением артериального давления и частоты сердечных сокращений. Кроме того, регулярная физическая тренировка позволяет в значительной степени затормозить развитие возрастных инволюционных изменений физиологических функций, а также дегенеративных изменений различных органов и систем (включая задержку и обратное развитие атеросклероза). В этом отношении не является исключением и костно-мышечная система. Выполнение физических упражнений положительно влияет на все звенья двигательного аппарата, препятствуя развитию дегенеративных изменений, связанных с возрастом и гиподинамией. Повышается минерализация костной ткани и содержание кальция в организме, что препятствует развитию остеопороза. Увеличивается приток лимфы к суставным хрящам и межпозвонковым дискам, что является лучшим средством профилактики артроза и остеохондроза. Все эти данные свидетельствуют о неоценимом положительном влиянии занятий оздоровительной физической культурой на организм человека.

МЫШЕЧНАЯ ТКАНЬ

Мышечная ткань принимает участие во всех движениях, совершаемых человеком. Она способствуют продвижению крови по сосудам, пищи - по пищеварительному тракту, продуктов обмена - по мочевыводящим путям, секрета желез - по протокам и т.д.

В мышечной ткани имеются сократительные элементы клетки (миофибриллы), трофические (ядро и цитоплазма со всеми органоидами) и опорные (оболочка)Различают два вида мышечной ткани: гладкую и поперечно-полосатую, в последней, в свою очередь, выделяют скелетную и сердечную мышечную ткань.

Гладкая мышечная ткань - участвует в образовании стенки сосудов, внутренних органов радужной оболочки глаза.

Поперечнополосатая сердечная мышечная ткань - может быть двух видов: одна обеспечивает сокращение сердца, вторая -- проведение нервных импульсов внутри сердца.

Поперечнополосатая скелетная мышечная ткань - характерна для всех мышц скелета, диафрагмы, языка, глотки, начального отдела пищевода, мышц приводящих в движение глазное яблоко, и др. Основной структурной функциональной единицей поперечнополосатой мышечной ткани является мышечное волокно. Длина мышечных волокон колеблется от нескольких миллиметров до 10 и более сантиметров. С поверхности мышечное волокно покрыто оболочкой (сарколеммой).

Сокращение поперечнополосатых мышц происходит быстро, вместе с тем они быстро, рано утомляются. При динамическом характере работы, когда периоды сокращения чередуются с периодами расслабления, длительность сокращения невелика, капилляры не сдавливаются, питание волокна не нарушается, поэтому и утомление мышц наступает медленнее. При статистической работе -- утомление наступает быстро.

Под влиянием нагрузки (двигательной деятельности) мышечные волокна утолщаются, увеличивается количество ядер. Имеются наблюдения, указывающие на то, что при этом может увеличиваться и число волокон.

ИЗМЕНЕНИЕ МЫШЦ ПОД ВЛИЯНИЕМ ФИЗИЧЕСКОЙ НАГРУЗКИ

Физические нагрузки при трудовых процессах, естественных движениях человека, занятиях спортом оказывают влияние на все системы организма, в том числе и на мышцы.

Мышцы -- активная часть двигательного аппарата

В теле человека насчитывается около 600 мышц. Большинство из них парные и расположены симметрично по обеим сторонам тела человека. Мышцы составляют: у мужчин -- 42% веса тела, у женщин -- 35%, у спортсменов -- 45-52%.

По происхождению, строению и даже функции мышечная ткань неоднородна. Основным свойством мышечной ткани является способность к сокращению - напряжению составляющих ее элементов. Для обеспечения движения элементы мышечной ткани должны иметь вытянутую форму и фиксироваться на опорных образованиях (костях, хрящах, коже, волокнистой соединительной ткани и т.п.).

В различных видах спорта нагрузка на мышцы различна как по интенсивности, так и по объему, в ней могут преобладать статистические или динамические элементы. Она может быть связана с медленными или быстрыми движениями. В связи с этим и изменения, происходящие в мышцах, будут неодинаковы.

Как известно, спортивная тренировка увеличивает силу мышц, эластичность, характер проявления силы и другие их функциональные качества. Вместе с тем иногда, несмотря на регулярные тренировочные занятия, сила мышц начинает снижаться и спортсмен не может даже повторить свой прежний результат. Поэтому очень важно знать, какие изменения происходят в мышцах под влиянием физической нагрузки, какой двигательный режим спортсмену рекомендовать; должен ли спортсмен иметь полный покой (адинамию), перерыв в тренировочном процессе, или минимальный объем движений (гиподинамию), или наконец, проводить тренировки с постепенным уменьшением нагрузки.

Изменения в строении мышц у спортсменов можно определить методом биопсии (взятия особым способом кусочков мышц) в процессе тренировки. Эксперименты показали, что нагрузки преимущественно статистического характера ведут к значительному увеличению объема и веса мышц. Увеличивается поверхность их прикрепления на костях, укорачивается мышечная часть и удлиняется сухожильная. Происходит перестройка в расположении мышечных волокон в сторону более перистого строения. Количество плотной соединительной ткани в мышцах между мышечными пунктами увеличивается, что создает дополнительную опору. Кроме того, соединительная ткань по своим физическим качествам значительно противостоит растягиванию, уменьшая мышечное напряжение. Усиливается трофический аппарат мышечного волокна: ядра, саркоплазма, митохондрии. Миофибриллы (сократительный аппарат) в мышечном волокне располагаются рыхло, длительное сокращение мышечных пучков затрудняет внутриорганное кровообращение, усиленно развивается капиллярная сеть, она становится узкопетлистой, с неодинаковым просветом.

При нагрузках преимущественно динамического характера вес и объем мышц также увеличиваются, но в меньшей степени. Происходит удлинение мышечной части и укорочение сухожильной. Мышечные волокна располагаются более параллельно, по типу веретенообразных. Количество миофибрилл увеличивается, а саркоплазмы становится меньше.

Чередование сокращений и расслаблений мышцы не нарушает кровообращения в ней, количество капилляров увеличивается, ход их остается более прямолинейным.

Количество нервных волокон в мышцах, выполняющих преимущественно динамическую функцию, в 4--5 раз больше, чем в мышцах выполняющих преимущественно статистическую функцию. Двигательные бляшки вытягиваются вдоль волокна, контакт их с мышцей увеличивается, что обеспечивает лучшее поступление нервных импульсов в мышцу.

При пониженной нагрузке мышцы дряблыми, уменьшаются в объеме, капилляры их суживаются, в результате чего мышечные волокна истощаются, двигательные бляшки становятся меньших размеров. Длительная гиподинамия приводит к значительному снижению силы мышц.

При умеренных нагрузках мышцы увеличиваются в объеме, в них улучшается кровоснабжение, открываются резервные капилляры. По наблюдениям П.З. Гудзя, под влиянием систематической тренировки происходит рабочая гипертрофия мышц, которая является результатом утолщения мышечных волокон (гипертрофии), а также увеличения их количества (гиперплазии). Утолщение мышечных волокон сопровождается увеличением в них ядер, миофибрилл. Увеличение числа мышечных волокон происходит тремя путями: посредством расщепления гипертрофированных волокон на два--три и более тонких, вырастания новых мышечных волокон из мышечных почек, а также формирования мышечных волокон из клеток сателлитов, которые превращаются в миобласты, а затем в мышечные трубочки. Расщеплению мышечных волокон предшествует перестройка их моторной иннервации, в результате чего на гипертрофированных волокнах формируются одно--два дополнительных моторных нервных окончания. Благодаря этому после расщепления каждое новое мышечное волокно имеет собственную мышечную иннервацию. Кровоснабжение новых волокон осуществляется новообразующимися капиллярами, которые проникают в щели продольного деления. При явлениях хронического переутомления одновременно с возникновением новых мышечных волокон происходит распад и гибель уже имеющихся.

Важное практическое значение при перетренированности имеет двигательный режим. Установлено, что гиподинамия действует отрицательно на мышцы. При постепенном же уменьшении нагрузок нежелательных явлений в мышцах не возникает. Широкое применение метода динамометрии позволило установить силу отдельных групп мышц у спортсменов и составить как бы топографическую карту.

Так, в показателях силы мышц верхних конечностей (мышц--сгибателей и разгибателей предплечья, разгибателей плеча) явное преимущество имеют спортсмены, специализирующиеся в хоккее и ручном мяче, по сравнению с лыжниками--гонщиками, и велосипедистами. В силе мышц--сгибателей плеча заметно превосходство лыжников над гандболистами, хоккеистами и велосипедистами. Больших различий в силе мышц верхних конечностей между хоккеистами и гандболистами не наблюдается. Довольно четкие различия отмечаются в силе мышц--разгибателей, причем лучший показатель у хоккеистов (73 кг), несколько хуже у гандболистов (69 кг), лыжников (60 кг) и велосипедистов (57 кг). У не занимающихся спортом этот показатель составляет всего 48кг.

Показатели силы мышц нижних конечностей также различны у занимающихся различными видами спорта. Величина силы разгибателей голени больше у гандболистов (77 кг) и хоккеистов (71 кг), меньше у лыжников--гонщиков (64 кг), еще меньше у велосипедистов (63 кг). В силе мышц--разгибателей бедра большое преимущество у хоккеистов (177 кг), тогда как у гандболистов, лыжников и велосипедистов существенных различий в силе этой группы мышц нет (139 -- 142 кг).

Особенно интересны различия в силе мышц--сгибателей стопы и разгибателей туловища, способствующих в первом случае отталкиванию, а во втором -- удержанию позы. У хоккеистов показатели силы мышц--сгибателей стопы составляют 187 кг, у велосипедистов -- 176 кг, у гандболистов -- 146 кг. Сила мышц --разгибателей туловища у гандболистов равна 184 кг, у хоккеистов -- 177 кг, а у велосипедистов -- 149 кг.

В момент нанесения удара в боксе особая нагрузка падает на мышцы сгибатели кисти и пальцев, активное напряжение которых обеспечивает жесткость звена. Во время боя большую нагрузку в области туловища несут мышцы разгибатели позвоночного столба, при активном участии осуществляется нанесение различных видов ударов. В области нижних конечностей наиболее сильного развития у боксеров достигают сгибатели и разгибатели бедра, разгибатели голени и сгибатели стопы. В значительно меньшей степени развиты мышцы разгибатели предплечья и сгибатели плеч, сгибатели голени и разгибатели стопы. При этом при переходе от первой весовой группы к шестой увеличение силы наиболее сильных групп мышц происходит в большей степени, чем увеличение относительно «слабых», менее участвующих в движениях боксера, мышц.

Все эти особенности связаны с неодинаковым биохимическими условиями в работе двигательного аппарата и требованиями, предъявляемыми к нему в различных видах спорта. При тренировке начинающих спортсменов необходимо обращать особое внимание на развитие силы «ведущих» групп мышц.

ВЛИЯНИЕ ЗАНЯТИЙ СПОРТОМ НА СКЕЛЕТ

Под влиянием усиленной мышечной деятельности в скелете спортсмена происходят существенные изменения. На состояние скелета оказывают влияние и другие факторы, связанные с занятием спортом: характерное положение тела спортсмена (у велосипедистов, конькобежцев, боксеров, гребцов и т.д.), сила давления на скелет (у тяжелоатлетов), сила растяжения при висах, при скручивании тела (у акробатов, гимнастов, фигуристов и др.) при правильном дозированных нагрузках эти изменения обычно бывают благоприятными. В противном случае возможны патологические изменения скелета.

Наиболее простой механизм возникновения у спортсменов изменения скелета можно представить следующим образом. Под влиянием усиленной мышечной деятельности происходит рефлекторное расширение кровеносных сосудов, улучшается питание работающего органа, прежде всего мышц, а затем и близлежащих органов, в частности кости со всеми ее компонентами (надкостница, компактный слой, губчатое вещество, костномозговая полость, хрящи, покрывающие суставные поверхности костей и др.).

Все изменения в скелете появляются постепенно. Через год занятий спортом можно наблюдать отчетливо выраженные морфологические изменения костей. В дальнейшем эти изменения стабилизируются, но перестройка скелета происходит на протяжении всего тренировочного процесса. При прекращении активной спортивной деятельности приспособительные изменения костей остаются довольно продолжительное время.

Изменения, происходящие в скелете под влиянием занятий спортом, касаются и химического состава костей, и внутреннего их строения, и процессов роста и окостенения.

Кости, несущие большую нагрузку, богаче солями кальция, чем кости, несущие меньшую нагрузку. На рентгенограммах кости спортсменов имеют более четкий рисунок, чем кости не спортсменов, что объясняется большей оссификацией костной ткани, лучшим насыщением ее минеральными солями.

Под влиянием занятий спортом изменяется внешняя форма костей. Они становятся массивнее и толще за счет увеличения костной массы. Все выступы, гребни, шероховатости выражены резче. Эти изменения зависят от вида спорта. Так, у тяжелоатлетов кости массивнее, чем у пловцов, особенно в верхнем отделе скелета и верхних конечностях.

Изменение внутреннего состава кости под влиянием занятий спортом выражаются, в частности, в утолщении ее компактного вещества. Причем утолщение обычно больше в тех костях, на которые падает нагрузка. Но изменения компактного вещества также может происходить и без его утолщения, без изменения диаметра кости. В связи с утолщение компактного вещества костномозговая полость уменьшается. При больших статистических нагрузках она уменьшается почти до полного зарастания

Губчатое вещество кости также претерпевает определенные изменения. Под влиянием усиленной нагрузки на кость перекладины губчатого вещества становятся толще, крупнее, ячейки между ними больше (в старшем возрасте ячейки тоже становятся больше, но перекладины тоньше).

Переломы у спортсменов срастаются быстрее. Суставной хрящ, покрывающий суставные поверхности костей, может утолщаться, что усиливает его амортизационные свойства и уменьшает давление на кость.

Занятия физическими упражнениями необходимы в любом возрасте. С юношеских лет и до глубокой старости человек в состоянии выполнять упражнения, укрепляющие его организм, оказывающие самое разнообразное воздействие на все его системы. Они рождают чувство бодрости и особой радости, знакомое каждому, кто систематически занимается каким-либо видом спорта.

ВЛИЯНИЕ ФИЗКУЛЬТУРЫ НА ОПОРНО-ДВИГАТЕЛЬНЫЙ АППАРАТ

Анатомно-физиологические особенности опорно-двигательного аппарата.

Опорно-двигательный аппарат состоит из костного скелета и мышц. Мышцы человека делятся на три вида: гладкая мускулатура внутренних органов и сосудов, характеризующаяся медленными сокращениями и большой выносливостью; поперечнополосатая мускулатура сердца, работа которой не зависит от воли человека, и, наконец, основная мышечная масса - поперечнополосатая скелетная мускулатура, находящаяся под волевым контролем и обеспечивающая нам функцию передвижения. Мышцы нашего тела - добрые волшебники. Выполняя свою работу, они одновременно совершенствуют и функции практически всех внутренних органов, в первую очередь это касается сердечно-сосудистой и дыхательной систем. Мышечное волокно характеризуется следующими основными физиологическими свойствам: возбудимостью, сократимостью и растяжимостью. Эти свойства в различном сочетании обеспечивают нервно-мышечные особенности организма и наделяют человека физическими качествами, которые в повседневной жизни и спорте называют силой, быстротой, выносливостью и т. д. Они отлично развиваются под воздействием физических упражнений. Мышечная система функционирует не изолированно. Все мышечные группы прикрепляются к костному аппарату скелета посредством сухожилий и связок. Установлена взаимосвязь мышц и внутренних органов, которая получила название моторно-висцеральных рефлексов. Работающие мышцы посылают по нервным волокнам информацию о собственных потребностях, состоянии и деятельности внутренним органам через вегетативные нервные центры и таким образом влияют на их работу, регулируя и активизируя ее. Мышцы являются мощной биохимической лабораторией. Они содержат особое дыхательное вещество - миоглобин (сходный с гемоглобином крови), соединение которого с кислородом (оксимиоглобин) обеспечивает тканевое дыхание при экстраординарной работе организма, например при внезапной нагрузке, когда сердечно-сосудистая система еще не перестроилась и не обеспечивает доставку необходимого кислорода. Большое значение миоглобина заключается в том, что, являясь первейшим кислородным резервом, он способствует нормальному протеканию окислительных процессов при кратковременных нарушениях кровообращения и статической работе.

Количество миоглобина достаточно велико и достигает 25% от общего содержания гемоглобина. Происходящие в мышцах разнообразные биохимические процессы в конечном итоге отражаются на функции всех органов и систем. Так, в мышцах происходит активное накопление аденозинтрифосфорной кислоты (АТФ), которая служит аккумулятором энергии в организме, причем процесс накопления ее находится в прямой зависимости от деятельности мышц и поддается тренировке. Мышцы играют роль вспомогательного фактора кровообращения. Широко известно, что для стимуляции венозного кровотока у больных варикозным расширением вен полезна дозированная ходьба. Она уменьшает отеки, так как сокращающиеся мышцы ног как бы подгоняют, выжимают и подкачивают венозную кровь к сердцу. Наконец, без мышц невозможен был бы процесс познания, так как, согласно исследованиям И. М. Сеченова, все органы чувств так или иначе связаны с деятельностью различных мышц.

Работа опорно-двигательного аппарата в покое и при физической нагрузке

Оригинальными работами, проводившимися в Белоруссии, установлено, что каждое мышечное волокно постоянно вибрирует даже в состоянии видимого покоя. Эта вибрация, обычно не ощущаемая, не прекращается ни на минуту и способствует лучшему кровотоку. Таким образом, каждая скелетная мышца, а их в организме около 600, является как бы своеобразным микронасосом, нагнетающим кровь. Конечно, дополнительное участие такого количества периферических "сердец", как их образно называют, значительно стимулирует кровообращение. Самое замечательное при этом состоит в том, что эта система вспомогательного кровообращения великолепно поддается тренировке с помощью физических упражнений и, будучи активно включенной, в работу, многократно усиливает физическую и спортивную работоспособность. Не исключено, что мышечные микронасосы наряду с другими факторами играют не последнюю роль в лечебном эффекте, который дают физические упражнения при некоторых формах сердечной недостаточности. Кроме того, известна и прямая функциональная связь работающих скелетных мышц и сердца посредством гуморальной (т. е. через кровь) регуляции. Установлено, что на каждые 100 мл повышения потребления кислорода мышцами при нагрузке, отмечается рост минутного объема сердца на 800 мл. Не исключено, что ритмические сокращения мышц (при равномерной ходьбе и беге) предают свою информацию по моторно-висцеральным путям сердечной мышце и как бы диктуют ей физиологически правильный ритм.

Влияние физической тренировки на опорно-двигательный аппарат

Скелетная мускулатура - главный аппарат, при помощи которого совершаются физические упражнения. Хорошо развитая мускулатура является надежной опорой для скелета. Например, при патологических искривлениях позвоночника, деформациях грудной клетки (а причиной тому бывает слабость мышц спины и плечевого пояса) затрудняется работа легких и сердца, ухудшается кровоснабжение мозга и т. д. Тренированные мышцы спины укрепляют позвоночный стол, разгружают его, беря часть нагрузки на себя, предотвращают "выпадение" межпозвоночных дисков, соскальзывание позвонков. Физические упражнения действуют на организм всесторонне. Так, под влиянием физических упражнений происходят значительные изменения в мышцах. Если мышцы обречены на длительный покой, они начинают слабеть, становятся дряблыми, уменьшаются в объеме. Систематические же занятия физическими упражнениями способствуют их укреплению. При этом рост мышц происходит не за счет увеличения их длины, а за счет утолщения мышечных волокон. Сила мышц зависит не только от их объема, но и от силы нервных импульсов, поступающих в мышцы из центральной нервной системы. У тренированного, постоянно занимающегося физическими упражнениями человека эти импульсы заставляют сокращаться мышцы с большей силой, чем у нетренированного. Под влиянием физической нагрузки мышцы не только лучше растягиваются, но и становятся более твердыми. Твердость мышц объясняется, с одной стороны, разрастанием протоплазмы мышечных клеток и межклеточной соединительной ткани, а с другой стороны - состоянием тонуса мышц. Занятия физическими упражнениями способствуют лучшему питанию кровоснабжению мышц. Известно, что при физическом напряжении не только расширяется просвет бесчисленных мельчайших сосудов (капилляров), пронизывающих мышцы, но и увеличивается их количество. Так, в мышцах людей, занимающихся физической культурой и спортом, количество капилляров значительно больше, чем у нетренированных, а следовательно, у них кровообращение в тканях и головном мозге лучше. Еще И. М. Сеченов - известный русский физиолог - указывал на значение мышечных движений для развития деятельности мозга. Как говорилось выше, под воздействием физических нагрузок развиваются такие качества как сила, быстрота, выносливость. Лучше и быстрее других качеств растет сила. При этом мышечные волокна увеличиваются в поперечнике, в них в большом количестве накапливаются энергетические вещества и белки, мышечная масса растет. Регулярные физические упражнения с отягощением (занятия с гантелями, штангой, физический труд, связанный с подъемом тяжестей) достаточно быстро увеличивает динамическую силу. Причем сила хорошо развивается не только в молодом возрасте, и пожилые люди имеют большую способность к ее развитию. Физические тренировки также способствуют развитию и укреплению костей, сухожилий и связок. Кости становятся более прочными и массивными, сухожилия и связки крепкими и эластичными. Толщина трубчатых костей возрастает за счет новых наслоений костной ткани, вырабатываемой надкостницей, продукция которой увеличивается с ростом физической нагрузки. В костях накапливается больше солей кальция, фосфора, питательных веществ. А ведь чем более прочность скелета, тем надежнее защищены внутренние органы от внешних повреждений. Увеличивающаяся способность мышц к растяжению и возросшая эластичность связок совершенствуют движения, увеличивают их амплитуду, расширяют возможности адаптации человека к различной физической работе.

Методы оценки опорно-двигательного аппарата и самоконтроль за ним

Физические упражнения укрепляют здоровье и заметно улучшают физическое развитие человека лишь в том случае, если занятия проходят с необходимой нагрузкой. Установить необходимый уровень нагрузки помогает самоконтроль в процессе занятий, который основан на наблюдениях человека за общим состоянием здоровья и т. д., а в нашем случае мы обратим особое внимание на опорно-двигательный аппарат. Есть несколько показателей, по которым можно определить состояние опорно-двигательной системы: тонус мышц, устойчивость тела, гибкость, мышечная сила, быстрота, ловкость и др. Для того, что бы оценить состояние системы на момент начала тренировок можно использовать несколько методов. Во-первых, стоит определить состояние тонуса мышц, что определяется путем простого ощупывания. Так, у людей, не занимающихся спортом, мышцы мягкие и дряблые, тонус резко понижен. Также следует провести исследование статической устойчивости. Проба на устойчивость тела производится так: физкультурник становится в основную стойку - стопы сдвинуты, глаза закрыты, руки вытянуты вперёд, пальцы разведены (усложнённый вариант - стопы находятся на одной линии, носок к пятке). Определяют время устойчивости и наличие дрожания кистей. У тренированных людей время устойчивости возрастает по мере улучшения функционального состояния нервно-мышечной системы. Необходимо также систематически определять гибкость позвоночника. Физические упражнения, особенно с нагрузкой на позвоночник, улучшают кровообращение, питание межпозвоночных дисков, что приводит к подвижности позвоночника и профилактике остеохандрозов. Гибкость зависит от состояния суставов, растяжимости связок и мышц, возраста, температуры окружающей среды и времени дня. Для измерения гибкости позвоночника используют простое устройство с перемещающейся планкой. О силовой выносливости можно судить при выполнении подтягиваний, отжиманий в упоре и т. п. О скоростной силе мышц ног дает представление прыжок в длину с места, а также прыжок вверх с места. Быстроту двигательной реакции в определенной мере можно оценить с помощью простых тестов. Например, можно взять в левую руку монету и, разжав пальцы, уронить, стараясь поймать ее другой рукой, расположенной ниже первой на 30-40 см. Для определения ловкости можно использовать, например, метание мяча в корзину или другие упражнения.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Анатомия человека: Учебник для техникумов физической культуры / Под ред. А.А. Гладышевой. -- М.: Физкультура и спорт, 1977 г.

2. Гусалов А. Х. Физкультурно-оздоровительная группа. Москва, 1987.

3. Орешкин Ю.А. К здоровью через физкультуру. Москва, 1990.

4. Синяков А.Ф. Самоконтроль физкультурника. Москва, 1987


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.