Проводниковые материалы с высокой удельной проводимостью

Проводниковые материалы с высокой удельной проводимостью: медь, алюминий, железо; их сплавы. Применение меди в электротехнике для изготовления проводов, кабелей, шин распределительных устройств, обмоток трансформаторов. Использование железа и сплавов.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 18.10.2019
Размер файла 6,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Реферат

Контрольная работа состоит из пояснительной записки, выполненной в текстовом редакторе Microsoft Office Word 2010, на 17 страницах машинописного текста и 4 литературных источников.

Исследование проводниковых материалов с высокой удельной проводимостью.Для достижения поставленной цели необходимо выполнить следующие задачи.

Для достижения поставленной цели необходимо выполнить следующие задачи:

1.Дать определение и рассказать какие есть проводниковые материалы с высокой удельной проводимостью.

2.Определить свойства проводниковых материалов с высокой удельной проводимостью

5. Изучить область применения проводниковых материалов с высокой удельной проводимостью.

В заключении приводятся основные результаты, полученные в ходе выполнения контрольной работы.

Введение

По величине проводимости проводники подразделяются на материалы высокой проводимости и материалы высокого сопротивления. К материалам высокой проводимости относятся серебро Аg, медь Cu и её сплавы - бронзы и латуни, алюминий А?, железо Fe и его сплавы, а также золото Аu, платина Рt, хром Сr и ряд других. Они используются для изготовления проводов и кабелей.

Самой высокой проводимостью обладает серебро: с = 0,016 мкОм.м, ТКс = 3,6.10-3, Тпл = 960 оС, плотность 10500 кг/м3, до 200 оС устойчиво к окислению. Для предохранения от коррозии серебро покрывают лаком или другим металлом - палладием Рd. Как и все благородные металлы, серебро отличается высокой пластичностью, позволяющей получать фольгу и проволоку диаметром до 0,01 мкм, использующейся при небольших токах. Предел прочности при растяжении ур ? 200 МПа, удлинение при разрыве ? 50%. Серебро по сравнению с медью и алюминием находит ограниченное применение: в сплавах с медью, никелем или кадмием - для контактов в реле и в других приборах на небольшие токи, в припоях ПСр - 10; ПСр - 25 и др., в виде пасты для непосредственного нанесения на диэлектрики.

1. Проводниковые материалы с высокой удельной проводимостью

Медь. Преимущества меди, обеспечивающие ей широкое применение в качестве проводникового материала, следующие:

1) малое удельное сопротивление (из всех материалов только серебро имеет несколько меньшее удельное сопротивление, чем медь);

2) достаточно высокая механическая прочность;

3) удовлетворительная в большинстве случаев стойкость по отношению к коррозии (медь окисляется на воздухе даже в условиях высокой влажности значительно медленнее, чем, например, железо; интенсивное окисление меди происходит только при повышенных температурах);

4) хорошая обрабатываемость (медь прокатывается в листы, ленты и протягивается в проволоку, толщина которой может быть доведена до тысячных долей миллиметра);

5) относительная легкость пайки и сварки.

Медь получают чаще всего путем переработки сульфидных руд. После нескольких плавок руды и обжигов с интенсивным дутьем медь, предназначенная для электротехники, обязательно проходит процесс электролитической очистки. Полученные после электролиза катодные пластины меди переплавляют в болванки массой 80-90 кг, которые прокатывают и протягивают в изделия требующегося поперечного сечения. При изготовлении проволоки болванки сперва подвергают горячей прокатке в так называемую катанку диаметром 6,5-7,2 мм; затем катанку протравливают в слабом растворе серной кислоты, чтобы удалить с ее поверхности оксид меди СuО, образующийся при нагреве, а затем уже протягивают без подогрева в проволоку нужных диаметров -- до 0,03-0,02 мм.

Стандартная медь, в процентах по отношению к удельной проводимости которой иногда выражают удельные проводимости металлов и сплавов, в отожженном состоянии при 20°С имеет удельную проводимость 58 МСм/м, т.е. r = 0,017241 мкОмЧм. Твердую медь употребляют там, где надо обеспечить особо высокую механическую прочность, твердость и сопротивляемость истиранию (для контактных проводов, для шин распределительных устройств, для коллекторных пластин электрических машин и пр.). Мягкую медь в виде проволок круглого и прямоугольного сечения применяют главным образом в качестве токопроводящих жил кабелей и обмоточных проводов, где важна гибкость и пластичность (не должна пружинить при изгибе), а не прочность. Медь является сравнительно дорогим и дефицитным материалом. Поэтому она должна расходоваться весьма экономно. Отходы меди на электротехнических предприятиях необходимо тщательно собирать; важно не смешивать их с другими металлами, а также с менее чистой (не электротехнической) медью, чтобы можно было эти отходы переплавить и вновь использовать в качестве электротехнической меди. Медь как проводниковый материал все шире заменяется другими металлами, в особенности алюминием.

Сплавы меди . В отдельных случаях помимо чистой меди в качестве проводникового материала применяются ее сплавы с оловом, кремнием, фосфором, бериллием, хромом, магнием, кадмием. Такие сплавы, носящие название бронз, при правильно подобранном составе имеют значительно более высокие механические свойства, чем чистая медь: sр бронз может быть 800-1200 МПа и более. Бронзы широко применяют для изготовления токопроводящих пружин и т. п. Введение в медь кадмия при сравнительно малом снижении удельной проводимости значительно повышает механическую прочность и твердость. Кадмиевую бронзу применяют для контактных проводов и коллекторных пластин особо ответственного назначения. Еще большей механической прочностью обладает бериллиевая бронза (sр -- до 1350 МПа). Сплав меди с цинком -- латунь -- обладает достаточно высоким относительным удлинением перед разрывом при повышенном по сравнению с чистой медью пределе прочности при растяжении. Это дает латуни технологические преимущества перед медью при обработке штамповкой, глубокой вытяжкой и т. п. В соответствии с этим латунь применяют в электротехнике для изготовления всевозможных токопроводящих деталей.

Алюминий является вторым по значению (после меди) проводниковым материалом. Это важнейший представитель так называемых легких металлов (т.е. металлов с плотностью менее 5 Мг/м3 ); плотность литого алюминия около 2,6, а прокатанного -- 2,7 Мг/м3 . Таким образом, алюминий приблизительно в 3,5 раза легче меди. Температурный коэффициент расширения, удельная теплоемкость и теплота плавления алюминия больше, чем меди. Вследствие высоких значений удельной теплоемкости и теплоты плавления для нагрева алюминия до температуры плавления и перевода в расплавленное состояние требуется большая затрата теплоты, чем для нагрева и расплавления такого же количества меди, хотя температура плавления алюминия ниже, чем меди.

Алюминий обладает пониженными по сравнению с медью свойствами -- как механическими, так и электрическими. При одинаковых сечении и длине электрическое сопротивление алюминиевого провода больше, чем медного, в 0,028:0,0172=1,63 раза. Следовательно, чтобы получить алюминиевый провод такого же электрического сопротивления, как и медный, нужно взять его сечение в 1,63 раза большим, т.е. диаметр должен быть в » 1,3 раза больше диаметра медного провода. Отсюда понятно, что если ограничены габариты, то замена меди алюминием затруднена. Если же сравнить по массе два отрезка алюминиевого и медного проводов одной длины и одного и того же сопротивления, то окажется, что алюминиевый провод хотя и толще медного, но легче его приблизительно в два раза: 8,9/(2,7Ч1,63)»2.

Поэтому для изготовления проводов одной и той же проводимости при данной длине алюминий выгоднее меди в том случае, если тонна алюминия дороже тонны меди не более чем в два раза. Весьма важно, что алюминий менее дефицитен, чем медь.

Для электротехнических целей используют алюминий, содержащий не более 0,5% примесей, марки А1. Еще более чистый алюминий марки АВОО (не более 0,03% примесей) применяют для изготовления алюминиевой фольги, электродов и корпусов оксидных конденсаторов. Алюминий наивысшей чистоты АВОООО имеет содержание примесей, не превышающее 0,004%. Разные примеси в различной степени снижают удельную проводимость g алюминия. Добавки Ni, Si, Zn или Fe при содержании их 0,5% снижают y отожженного алюминия не более чем на 2-3%. Более заметное действие оказывают примеси Сu, Ag и Mg, при том же массовом содержании снижающие v алюминия на 5-10%. Очень сильно снижают gалюминия добавки Ti и Мп.

Прокатка, протяжка и отжиг алюминия аналогичны соответствующим операциям над медью. Из алюминия может прокатываться тонкая (до 6-7 мкм) фольга, применяемая в качестве электродов бумажных и пленочных конденсаторов.

Алюминий весьма активно окисляется и покрывается тонкой оксидной пленкой с большим электрическим сопротивлением. Эта пленка предохраняет алюминий от дальнейшей коррозии, но создает большое переходное сопротивление в местах контакта алюминиевых проводов и делает невозможной пайку алюминия обычными методами. Для пайки алюминия применяются специальные пасты-припои или используются ультразвуковые паяльники. В местах контакта алюминия и меди возможна гальваническая коррозия. Если область контакта подвергается действию влаги, то возникает местная гальваническая пара с довольно высоким значением ЭДС, причем полярность этой пары такова, что на внешней поверхности контакта ток идет от алюминия к меди и алюминиевый проводник может быть сильно разрушен коррозией. Поэтому места соединения медных проводников с алюминиевыми должны тщательно защищаться от увлажнения (покрытием лаками и тому подобными способами).

Иногда, например, для замены свинца в защитных кабельных оболочках, используется алюминий с содержанием примесей не более 0,01% (вместо 0,5%для обычного проводникового алюминия).

Такой особо чистый алюминий сравнительно с обычным более мягок и пластичен и притом обладает повышенной стойкостью по отношению к коррозии.

Алюминиевые сплавы обладают повышенной механической прочностью. Примером такого сплава является альдрей, содержащий 0,3-0,5% Mg, 0,4-0,7% Si и 0,2-0,3% Fe (остальное Аl). Высокие механические свойства альдрей приобретает после особой обработки (закалки катанки -- охлаждение в воде при температуре 510-550°С волочение и последующая выдержка при температуре около 150°С). В альдрее образуется соединение Mg2 Si, которое сообщает высокие механические свойства сплаву; при указанной выше тепловой обработке достигается выделение MgOSi из твердого раствора и перевод его в тонкодисперсное состояние.

Сталеалюминевый провод, широко применяемый в линиях электропередачи, представляют собой сердечник, свитый и из стальных жил и обвитый снаружи алюминиевой проволокой. В проводах такого типа механическая прочность определяется главным образом стальным сердечником, а электрическая проводимость -- алюминием. Увеличенный наружный диаметр сталеалюминевого провода по сравнению с медным на линиях передачи высокого напряжения является преимуществом, так как уменьшается опасность возникновения короны вследствие снижения напряженности электрического поля на поверхности провода. На рис. 3-1 приведены некоторые характеристики сталеалюминевого провода марки АС.

Железо (сталь) как наиболее дешевый и доступный металл, обладающий к тому же высокой механической прочностью, представляет большой интерес для использования в качестве проводникового материала. Однако даже чистое железо имеет значительно более высокое сравнительно с медью и алюминием удельное сопротивление r (около 0,1 мкОм-м); значение rстали, т. е. железа с примесью углерода и других элементов, еще выше.

Сталь как проводниковый материал используется также ввиде шин, рельсов трамваев, электрических железных дорог (включая «третий рельс» метро) и пр. Для сердечников сталеалюминевых проводов воздушных линий электропередачи (см. выше) применяется особо прочная стальная проволока, имеющая ар = 1200-1500 МПа и Dl /l= 4-5%. Обычная сталь обладает малой стойкостью к коррозии: даже при нормальной температуре, особенно в условиях повышенной влажности, она быстро ржавеет; при повышении температуры скорость коррозии резко возрастает. Поэтому поверхность стальных проводов должна быть защищена слоем более стойкого материала. Обычно для этой цели применяют покрытие цинком. Непрерывность слоя цинка проверяется опусканием образца провода в 20%-ный раствор медного купороса; при этом на обнаженной стали в местах дефектов оцинковки откладывается медь в виде красных пятен, заметных на общем сероватом фоне оцинкованной поверхности провода. Железо имеет высокий температурный коэффициент удельного сопротивления. Поэтому тонкую железную проволоку, помещенную для защиты от окисления в баллон, заполненный водородом или иным химическим неактивным газом, можно применять в бареттерах, т.е. в приборах, использующих зависимость сопротивления от силы тока, нагревающего помещенную в них проволочку, для поддержания постоянства силы тока при колебаниях напряжения.

2 Свойства проводниковых материалов с высокой удельной проводимостью

Свойства меди. Удельная проводимость меди весьма чувствительна к наличию примесей. Так, при содержании в меди 0,5% примеси цинк, кадмий и серебро удельная проводимость снижается на 5%. При том же содержании никеля, олово или алюминий удельная проводимость меди падает на 25 - 40%. Еще более сильное влияние оказывают примеси бериллия, мышьяка, железа, кремния или фосфора, снижающие удельную проводимость на 55%. В то же время присадки металлов повышают механическую прочность и твердость меди. Недостатком меди является ее подверженность атмосферной коррозии с образованием оксидных и сульфидных пленок. Вследствие окисления медь непригодна для слаботочных контактов. Металлическое отслаивание и термическое разложение оксидной пленки вызывает повышенный износ медных контактов при сильных токах. Значительное влияние на механические свойства меди оказывает водород. Водород легко проникает в глубь металла при повышенных температурах. Давление образующегося в металле водяного пара из-за незначительной его скорости диффузии может достигать нескольких тысяч атмосфер. Это приводит к образованию микротрещин, нарушающих плотность материала и придающих ему хрупкость и ломкость. В производстве это явление называют водородной болезнью.

Свойства алюминия. Вторым по значению после меди проводниковым материалом является алюминий - металл серебристо-белого цвета. Удельное сопротивление алюминия в 1,6 раза больше удельного сопротивления меди, но алюминий в 3,5 раза легче меди. Благодаря малой плотности обеспечивается большая проводимость на единицу массы, т. е. при одинаковом сопротивлении и одинаковой длине алюминиевые провода в два раза легче медных, несмотря на большее поперечное сечение. К тому же по сравнению с медью алюминий намного более распространен в природе и имеет меньшую стоимость. Отмеченные обстоятельства обусловливают широкое применение алюминия в технике. Недостатком алюминия является его низкая механическая прочность. Алюминий получают электролизом глинозема А12О3 в расплаве криолита Na3AlF6 при температуре 950°С.

Свойства железа.При переменном токе в стали, как в ферромагнитном материале заметно сказывается поверхностный эффект, поэтому в соответствии с известными законами электротехники активное сопротивление стальных проводников переменному току выше, чем постоянному току. Кроме того, при переменном токе в стальных проводниках появляются потери мощности на гистерезис. В качестве проводникового материала обычно применяется мягкая сталь с содержанием углерода 0,10-0,15%, имеющая предел прочности при растяжении sр = 700-750 МПа, относительное удлинение перед разрывом Dl /l = 5-8% и удельную проводимость g , в 6-7 раз меньшую по сравнению с медью. Такую сталь используют в качестве материала для проводов воздушных линий при передаче небольших мощностей. В подобных случаях применение стали может оказаться достаточно выгодным, так как при малой силе тока сечение провода определяется не электрическим сопротивлением, а его механической прочностью.

3.Применение проводниковых материалов с высокой удельной проводимостью

Применение меди. Медь применяют в электротехнике для изготовления проводов, кабелей, шин распределительных устройств, обмоток трансформаторов, электрических машин, токоведущих деталей приборов и аппаратов, анодов в гальванопластике. Медные ленты используют в качестве экранов кабелей. Твердую медь используют в тех случаях, когда необходимо обеспечить высокую механическую прочность, твердость и сопротивляемость истиранию, например, для изготовления неизолированных проводов. Если необходимо хорошая гибкость и пластичность, а предел прочности на растяжение не имеет существенного значения, то предпочитают мягкую медь (например, для монтажных проводов). Из специальных электровакуумных сортов меди изготавливают детали клистронов, магнетронов, аноды мощных генераторных ламп, выводы энергии приборов СВЧ, некоторые типы волноводов и резонаторов. Кроме того, медь используют для изготовления фольгированного гетинакса и применяют в микроэлектронике в виде осажденных на подложки пленок, играющих роль проводящих соединений между функциональными элементами схемы. Несмотря на большой коэффициент линейного расширения по сравнению с коэффициентом расширения стекол, медь применяют для спаев со стеклами, поскольку она обладает рядом замечательных свойств: низким пределом текучести, мягкостью и высокой теплопроводностью.

Применение аллюминия.Алюминий и ряд его сплавов широко применяют в электротехнике благодаря его:

высокой электропроводности;

коррозионной стойкости;

малой плотности;

хорошим обрабатываемости давлением;

декоративному виду;

меньшей стоимости по сравнению с более дорогой медью и ее проводниковыми сплавами. проводниковый материал медь

Электротехническая промышленность -- крупнейший потребитель алюминия. Мировая доля ее потребления составляет 18% от общего количества алюминия. Наиболее широко алюминий используют в кабельной промышленности, на которую в настоящее время приходится около 90 % всего алюминия, потребляемого в электротехнике.

В зависимости от величины удельного электросопротивления алюминиевые электротехнические сплавы подразделяются следующим образом:

проводниковые сплавы;

сплавы с повышенным электротехническим сопротивлением.

Применение железа.Железо используют при разработке нагревостойких сплавов и сплавов с высоким сопротивлением, в которые железо входит как необходимая составная часть. Его применяют также в электровакуумных приборах как материал для анодов, экранов и других элементов, работающих при температурах до 500 °С. Как ферромагнитный материал железо является основным и наиболее дешевым компонентом магнитных материалов. Вследствие низкого удельного электрического сопротивления железо используют при изготовлении изделий, предназначенных для работы только в постоянных магнитных полях.

Заключение

Основным является требование максимальной удельной проводимости материала. Однако электропроводность металла может снижаться из-за загрязняющих примесей, деформации металла, возникающей при штамповке или волочении, что приводит к разрушению отдельных зерен металла. Влияние деформаций металла на его электропроводность устраняется при отжиге, во время которого уменьшается число дефектов в металле и увеличиваются средние размеры кристаллов металла. В связи с этим проводниковые материалы используют в основном в отожженном (мягком) состоянии. Наиболее распространенными современными материалами высокой проводимости являются цветные металлы (медь, алюминий, цинк, олово, магний, свинец) и черные металлы (железо), которые применяются в чистом виде. Еще шире используют сплавы этих металлов, так как они обладают лучшими свойствами и более дешевы по сравнению с чистыми металлами. Однако цветные металлы и их сплавы экономически целесообразно использовать в тех случаях, когда необходимые свойства изделий нельзя получить, применяя черные металлы, чугун и сталь. Для улучшения свойств цветные сплавы подвергаются термической обработке - отжигу, закалке и старению. Отжиг влияет на мягкость материала и уменьшает напряжения в отливках. Закалка и старение повышают механические свойства.

Список использованных источников

1. Боородицкий Н.П. Электротехнические материалы. - Л.: Энергоатомиздат, 1985

2. Проводниковые материалы / Под ред. Л.Ш. Казарновского. - М.: Энергия, 1970

3. Методические разработки к курсам “Конструкционные Материалы” и “Материаловедение” / Под ред. А.А. Клыпина. - М.: Издательство МАИ, 1993

4. Учебное пособие к лабораторным работам по металловедению. / Под ред. О.Х. Фаткуллина. - М.: Издательство МАИ

Размещено на Allbest.ru


Подобные документы

  • Понятие электропроводности металлов, ее сущность, особенности. Гипотезы о существовании электронных газов в металлах и опыты, подтверждающие их. Проводники характерные свойства. Материалы, обладающие высокой проводимостью, их обоснование и характеристика.

    лекция [300,8 K], добавлен 21.02.2009

  • Магниевые сплавы в атомной энергетике. Алюминий и его свойства. Применение алюминиевых сплавов в реакторостроении. Магний и его свойства. Роль защитной оболочки, предохраняющей урановый металлический сердечник от коррозионного воздействия теплоносителя.

    курсовая работа [1,5 M], добавлен 04.12.2013

  • Использование мегаоометра для измерения высокого сопротивления изолирующих материалов (диэлектриков) проводов и кабелей, разъёмов, трансформаторов, обмоток электрических машин и других устройств. Технические характеристики прибора и принцип его работы.

    реферат [67,7 K], добавлен 17.04.2012

  • Роль и значение трансформатора, его конструктивные части и принцип действия. Характеристика трансформатора тока типа ТФН, электротехнические материалы, применяемые для его изготовления. Свойства меди и электротехнической стали, трансформаторная бумага.

    реферат [222,2 K], добавлен 29.03.2012

  • Характеристика производственных помещений цеха и выбор светильников в соответствии с условиями. Расчет освещения по методу удельной мощности и по методу коэффициента использования. Выбор распределительных щитов, сечения проводов и кабелей и защита сети.

    контрольная работа [2,3 M], добавлен 28.12.2011

  • Назначение, конструкция и принцип действия вакуумного выключателя ВВТЭ-10-10/630У2. Свойства и характеристики электротехнических материалов применяемых для изготовления аппарата. Преимущества вакуумных выключателей. Получение, марки и сплавы меди.

    контрольная работа [1,1 M], добавлен 25.05.2012

  • Расчет осветительных установок цехов методом удельной нагрузки на единицу площади цеха. Расчет удельной плотности нагрузки низкого напряжения на территории размещения оборудования электроприемников предприятия и выбор номинальной мощности трансформаторов.

    курсовая работа [2,0 M], добавлен 21.02.2015

  • Зависимость твёрдости от нагрузки, прикладываемой к индентору, и его формы. Методы измерения твёрдости: статические, динамические (ударные). Методы Бринелля, Роквелла, Виккерса, Шора, Польди, Бухгольца. Электропроводность металлов, свойства проводников.

    контрольная работа [48,0 K], добавлен 21.04.2012

  • Силовой трансформатор как один из важнейших электрических элементов. Характеристика его магнитной системы и обмоток. Классификация трансформаторов. Условное обозначение их различных типов. Основные материалы, общие вопросы проектирования трансформаторов.

    курсовая работа [2,3 M], добавлен 21.12.2014

  • Расчет удельной электрической нагрузки электроприемников квартир жилых зданий. Определение расчетной нагрузки трансформаторной подстанции. Величина допустимых потерь напряжения городских распределительных сетей. Выбор сечения проводов линии силовой сети.

    контрольная работа [308,4 K], добавлен 13.07.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.